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Dielectric response of a semi-infinite HgTe/CtiTe superlattice
from its bulk anti surface plasmons
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An analytic expression for the Raman-scattering cross section from both bulk and surface collec-
tive excitations in a semi-infinite HgTe/CdTe superlattice is derived. Calculations show that there
exist three new branches for both intrasubband and intersubband surface plasmons. The optical
surface plasmons possess a gap between bulk and surface modes. This dramatic feature will make
the observation of existence of the surface plasmon in experiment feasible. The gap is explained in
terms of additional energy exchange between surface modes and interface states.

I. INTRODUCTION

%'ith recent advances in molecular-beam-epitaxy
(MBE) technology, HgTe/CdTe superlattices can now be
grown. ' Collective charge-density excitations in
HgTe/CdTe superlattices as well as in other superlattices
recently received considerable attention. The
density-density correlation functions for the bulk, semi-
infinite, and finite superlattices have been calculated.
The theory of resonant Raman scattering, and
electron-energy loss ' (EEL) has been formulated. Bulk
plasmons have been observed experimentally" ' in light
scattering experiments. Surface plasmons still await
detection, because it is difficult to satisfy the conditions
that wave vector q should be greater than a critical one,
q, in experiment. In addition, owing to the limited reso-
lution of Raman spectrum, we have not yet detected the
surface-plasmon modes in superlattices even in the case
of a null critical wave vector. '

A Hg Te/CdTe superlattice is a material which consists
of both semimetal and wide-band-gap semiconductors.
The I 6-I 8 energy bands in HgTe layers are reversed, as
shown in Fig. l, in contrast with those in CdTe layers to
give the zero band gap. The computations of the band
structure of HgTe/CdTe superlattices given by PWM, '

linear combination of atomic orbitals' ' (LCAO) and
envelope-function-approximation' ' (EFA) methods
agree well and show that the electronlike, heavy-hole-
like, and light-hole-like states are, as expected, confined
very well in HgTe and CdTe layers. ' ' On the other
hand, I 8 energy bands in both HgTe and CdTe layers
possess the effective masses with opposite signs on each
side of the interface, respectively, which directly leads to
the formation of a quasi-interface state with its energy ly-
ing between 0 & E; & A, where A =

Vz is the separation of
I 8 energy bands in both HgTe and CdTe layers. Clearly,
the electrons in HgTe layers will be in the quasi-interface

states localized near the interface with the energy E,. (A.
Moreover, light holes in CdTe layers will also be in the
anomalous quasi-interface states localized near the inter-
face, owing to the minus effective mass of the light hole.
All of these resu1ts are consequences of matching the
bulk states belonging to the conduction band in HgTe
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FIG. 1. Band structure of bulk HgTe and CdTe. The LH,
HH, and E indices refer to light holes, heavy holes, and elec-
trons, respectively.
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with those belonging to the light-hole valence band in
CdTe. This match is only favorable when the bulk states
to be connected are made of atomic orbitals of the same
symmetry type and the effective masses on either side of
the interface have opposite signs. As a collective excita-
tion model, we can treat the interface states in HgTe and
CdTe layers as two different kinds of quasiparticles with
the effective masses ME and MLH separately, just as the
model given by Sham et al. ' '

It has been proven that the thickness of the materials,
Hg Te and CdTe, will mainly decide the width of the band
gap and subbands, respectively. We assume the layers of
HgTe and CdTe have the same thickness d/2 and d is
smaller than the critical thickness d, =(2mLH/mzA)'
so that a superlattice will behave like a semiconductor. It
appears that the interface states play more important
roles in Hg Te-CdTe superlattices, in comparison with the
situations in type-I and -II superlattices. Besides, we con-
sider the motion of quasiparticles in the layers to be corn-
pletely free. If 1 is not too small, we can neglect the tun-
neling effects coming from the overlap of interface states
localized at adjacent interfaces in the quantum well.
Indeed, when the planar wave vector k~~ is not very small,
the hybridization between the interface states and the
heavy-hole-like states will affect the fundamental gap of
the material, which contributes a great deal to the tran-
sportation and the optical absorption. ' We have partly
taken this effect into consideration by using the wave
functions with finite width of localization at interfaces,
and including the coupling between the interface states
and heavy-hole-like states. If we confine the study of col-
lective excitation to the case in which the transitions of
single particle are limited to the neighborhood of the I
point of energy bands in the k space, we can neglect the
hybridization in the band structure. ' However, this hy-
bridization can be taken into account by using a two-
band tight-binding model. The study of coupled in-
trasubband and intersubband collective excitation modes
of interface and heavy-hole-like states will be given in the
Appendix. It proves that the simplification, which
neglects the hybridization in the energy dispersion, is
reasonable under certain conditions.

The goal of this paper is to give the calculation of col-
lective excitations in HgTe/CdTe superlattices, including
the surfaces modes, where a rich spectrum is expected.
The paper is organized as follows: In Sec. II the model
system is presented, and in Sec. III the density-density
correlation function for this system is calculated, where
three new bands for both intrasubband and intersubband
surface plasmons have been found. They possess a
dramatic gap between surface and bulk modes even for
q ~0, which is attributed to the additional surface

I

Coulomb interaction at adjacent interfaces in the quan-
tum well, induced by the breaking of translational sym-
metry in the superlattice direction.

This attractive feature will directly lead to the possibil-
ity of the detection of surface modes in experiment. The
theories of Raman scattering and inelastic scattering are
given in Sec. IV. It presents no fundamental difficulty in
a numerical computation, although it has not been given
here. Concluding remarks are contained in Sec. V.

II. THE MODEL SYSTEM

E„(k)=E„J+A' k /2m, . (2)

The system consists of a semi-infinite array of quantum
wells, which are embedded in a medium, occupying the
half-space z ) —d/4, with a frequency-dependent dielec-
tric function

&,(~)=&„(~'—~L) /(~' —~&), (3)

where we have taken into account the electron-phonon
coupling by replacing the background dielectric constant
Es with es(co) in Eq. (3). coL and cur are the longitudinal-
and transverse-optical —phonon frequencies. The other
half-space is filled by an insulator with a dielectric con-
stant eo. In this paper, we assume that only the lowest
subband is filled at T=O, and the exchange-correlation
potential V"' is taken to be zero for convenience.

III. DENSITY-DENSITY CORRELATION FUNCTION

The density-density correlation function is the central
quantity for calculations of Raman intensities and
electron-energy-loss spectra. Following Ref. 9 we expand
the density-density correlation function in the single-
particle states

We now proceed to discuss the linear response of
HgTe/CdTe superlattices to an external potential in the
absence of a magnetic field. In our approximation given
in the Introduction, the single-particle wave function in
this model superlattice can be written as

~kn,,j ) e=xp(ik r)g„(z —jd/2) .

Here k is a two-dimensional (2D) wave vector describing
the planar motion in the (x,y) plane; j and n are the layer
index and the subband index, respectively. We shall re-
strict our consideration only to the case of interface
states. The layers are labeled by an integer j, even-
numbered layers will be taken to be HgTe layers, in
which electrons are confined, while odd-numbered layers
are CdTe layers, in which light holes are confined. The
noninteracting single-particle energy is given by

II(q, co;z, z')= g g II, , (/, /', /", /'")g;(z —/d/2)g. (z —/'d/2)g (z' —/"d/2)g, (z' —/"'d/2) . (4)

In the random-phase approximation (RPA), II; J.~, (/, /', /", /"') satisfies the Dyson integral equation

II; . , (/, /';/", /"')=II, .(/, /)5;, 5 5((5((.5(„(„,+g g IIO (/, /)V, .„,(/, /', m, m')II„, , (m, m', /", /"'),
r, s m, m'
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where II; (1,1) is the polarizability of the noninteracting system, and V, J.„,(1,l, m, m ) is the Coulomb interaction, in
eluding the efTect of image charges and subband structure. Furthermore, we employ the commonly used diagonal ap-
proximation, which decouples different intersubband excitations. Then Eq. (5) can be rewritten as

II, (l, l';1",1'") = Il, .(1,1)5„,5, ,„5,„,„,+ g II, (l, l) V, , (l, l', m, m ')lI, . (m, m ';1",1"') .
m, m'

Under the electric quantum limit, Eq. (6) gives

X„(l,l', 1",1"')=X„(l,l)5„5, I.5, ,- + g X„(l,l) V„ „(l,l'; m, m ')X„(m, m ';1",1"'),
rn, m'

(6)

where X„=IIQ„+II„ofor nXO and XD=II00. The sub-
stitution of Eq. (7) reduces Eq. (4) to the form

X„(k,k') =X„(k)5k„+X'„(k,k'),

f„„(k, k')=f„( k) 5„„+f„'(k, k') .

(14)

(15)
X(q, ;z,z')=g g X„(l,1', 1",1'")

/I III IIII

Xe„(t,t';z)e„(t",t'",z')

with the symbols given by

4'„(l, l', z) =g„(z —td /2)go(z —1'd /2) .

A lengthy manipulation will further lead Eq. (8) to

X(q, co;z,z') =g g X„(1,1')

X 4„(z—ld /2)C&„(z' —1'd /2) (10)

(16)

—exp( —qd)]I/2P(k)+ V „(q),
(17)

with

The explicit forms of X„(k) and f„(k) can be given by

X„(k)=[I—Xouqf„(k)] ~XD,

f„(k)= I r „(q)[exp( ikd )——exp( qd )]-
+r „( q)[exp—(ikd)

with

N„(z —jd/2) =4„(j,j;z)
+[+„(j+1,j;z) +%„(j—1,j;z)

G+„(q)
—+" q exp( qd /2)G+„(q)—

exp( +qd /2) G +„(q)
G+„(q)

+%„(j,j +1;z)+%„(j,j —1;z)]/2 .

Following Refs. 8 and 9, we now Fourier transform all
quantities, e.g. ,

X„(k,k') =(1/X)g exp( ikjd/2—)X„(j,j')exp(ik'j'd/2)
J J

X'„'(k,k') X'„(k,k')

X„'(k,k') X~ (k, k') (12)

where k =2n~/Nd, n =0, 1,2, . . . , N —1, d is the period
of the superlattice, and even and odd "j" refer to elec-
tronlike and light-hole-like states, respectively. The
Fourier transform of Eq. (10) gives

V „(q) exp( —qd/2)G „(q)
exp( —qd /2)G „(q) V „(q)

V (q)=

where the symbols G+„(q) and V „(q) are given by

G+„(q)=—,
' f dz f dz' N„(z)@„(z')

X exp[ —q(z+z')],

V „(q ) = —,
' f dz'N„(z)N„(z')exp( —

q ~z —z'
~ ),

(20)

(21)

and P (k) =cosh(qd) —cos(kd). Furthermore, we
straightforwardly write down the surface part of
Coulomb interaction:

X„(k,k') =X05q„+u g XQ„„(k,k")X„(k",k'),
k"

where u =2~e /e, (co)q, and

x'.
go 0 '~h

(13)
f„'(k,k') =

I [1—exp( qdN )]/4XP(k)P(k') I—

X [ a —b, exp( ikd ) —b z exp( i k 'd)—
+cexp[i(k —k')d ]I,

where

(22)

Here f„„(k,k') is the Fourier transform of the Coulomb
interaction V„„(l,l'). We write X„(k,k') and f„„(k,k') in
terms of the "bulk" and "surface" parts where bulk part
merely means a part diagonal in k space and surface part
is the rest:

a =[r „(q)+r „(—q)]+av+„(q)exp(2qd),

b, = fr „(q)exp( qd)+r „(—q)exp(—qd)]

+ar+ „(q)exp(qd ),

(23)

(24)
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b2 = [r „(q)exp(qd) + r „(—q)exp( —qd ) ]

+ar+„(q)exp(qd ), (25)

I a—G —b H

cH —b)G

aH —bG——+ —2—
I—cG+b H (30)

c=[r „(q)+r „(—q)]+ar+„(q),
a = [1—exp( —qdN ) ]exp( —qd /2 )

X[e,(ro) —eo)/[e, (co)+co] .

(26)

(27)

X I A —B i exp(ikd) —B2exp( ik—'d )

+C exp[i(k —k')d ]jy~(k')

with the coefficients given by the following equations:

(28)

=M—1B

where

and
—2B

=M
C

By using the ansatz for g ( k, k '
) (Ref. 9) in Eqs.

(13)—(15), we get

g'„(k, k') =
I [1—exp( qdN—)]l4NP(k)P(k') jy„(k)

6= Iu [1—exp( qd—N)]/4N j gy„(k)/P(k)
k

H+ =
I uz[1 —exp( qd—N )]/4N j

Xg exp(+ikd )y„(k)/P(k)
k

(31)

(32)

Poles of the density-density correlation function
y„(k,k') define collective excitations of the superlattice.
When the number of layers N is very large (N ~~ ), bulk
plasmons are given by the poles of the bulk part while
surface plasmons are given by the poles of the surface
part. For a finite number of layers, the full solution must
be used. The finite-size e6'ect will give 2N discrete collec-
tive modes if we ignore the electron-phonon coupling.
Here we are only interested in the semi-infinite superlat-
tice system (N —+Do ); thus we can get bulk and surface
plasmons from Eqs. (16) and (28), respectively.

First, we shall neglect the electron-phonon coupling.
Then for intrasubband excitation, we have

D exp(Pdl4)[exp(Pz)+exp( —Pd)exp( —Pz)], —3d l4~z d /4—
go(z) = D exp( —Pd/4)[exp(Pz )+exp( —/3z )], —d /4 ~z ~ d /4

D exp(Pd l4)[exp( —Pz }+exp(—Pd }exp(Pz)], d/4~z & 3d/4

(33a)
(33b)

(33c)

with the normalization factor

D =exp(Pd /4) /[d +2 sinh(Pd /2 ) //3]'

and the long-wavelength form of yo "(q,co)

(34)

yo'"(q, co)=n, hq lm, hen (3S)

The ratio of the plasma frequencies for the electron and hole layers is y = [co~,(q)] /[cosh (q) ] . Then we get the analytic
solution

co2~= j [ro, (q)]'+[co „(q)]']j [ V +(S—1)6 ]/2

+I[,(q)] —[ h(q)] j [V +(S—1)6 ] +4[,(q)] [ (q)] (S') 6 j /2,
where

(36)

6 = I4[2+exp( —/3d/2)]/[d+2sinh(Pd/2)/P] j

X [sinh[(2P+q)d/4]/(2P+q)+sinh[(2P —
q )d /4]/(2P —

q )+2 sinh(qd /4)q]

V =
I 4[2+exp( —Pd /2 ) ]/[d +2 sinh(Pd /2) /P] j

X (2q /(q —4P )[sinh(Pd /2) /P+ sinh(Pd ) /4P+ d /4]+ [d +2 sinh(Pd /2) /P]/q
—[exp[ —(2P+q )d /4]/(2P+q) —exp[(2P —

q )d /4]/(2P —
q )+2 exp( —qd/4)/q j

X I sinh[ ( 2P+ q )d /4] /( 2P+ q ) + sinh [(2P —
q )d /4] /( 2P —

q ) +2 sinh( qd /4) /q j ),
which is just the result presented in Ref. 3. Here we have introduced the structure factors S and S defined by

S(q, k ) =sinh(qd)/P (k),
S'(q, k ) =2 cos(kd/2)sinh(qd/2)/P(k) .

On the other hand, for intersubband excitation, we have

(37)

(38)

(39)

(40)
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C exp( —/3d/4)[exp[ —/3(z+d/2)] —exp[/3(z+d/2)]j, —3d/4«z « —d/4
g, (z) = C exp( /3—d /4) [exp(/3z ) —exp( —Pz ) ], —d /4 z «d /4

C exp( —/3d/4)[exp[ —/3(z —d/2)] —exp[P(z —d/2))J, d/4«z «3d/4

(41a)
(41b)

(41c)

with the normalization factor

C =exp(/3d /4) /[2 sinh(Pd /2)/P —d ]'~~

and the long-wavelength form of y', "(q,co) to the order of q,

g' (q, co)=2n, , hagio/A(~ Bio)

This leads to the following analytic result:

co+=A,o[1+(a,+a& )[V „+(S—1)G „]/qd J+(A,o/qd )[(a,—az ) [V „+(S—1)G „]+4a, az(S') G „j'

(42)

(43)

(44)

where

a, & =[(2n, h/A'A&o)(2me /e, )](d/2),
the ratio of parameters a, & is y'=o, ', /o. &, and

G „=[
—8/[4 sinh (/3d /2)//3 —d ]][sinh[(2/3 —

q )d/4]/(2P —
q ) —sinh[(2P+q )d /4]/(2/3+q ) j

„=[8/[4sinh (/3d/2)//3 —d ]J

X (q [sinh(/3d ) —/3d ]/2/3(q 4/3 )+ [e—xp[ —(2/3+q )d /4]/(2/3+q )+exp[(2p —
q )d /4](2/3 q)J-

&( [sinh[(2/3+q )d /4]/(2/3+q )
—sinh[(2/3 —

q )d /4]/(2/3 —
q ) J ),

(45)

(46)

(47)

which has been predicted in Ref. 4.
The surface plasmons for both intrasubband and inter-

subband excitations can be determined by zeros of the
determinant of matrix M, and M is given by Eq. (30).

All the results, taking the electron-phonon coupling
into consideration, are presented in Figs. 2—5 for both in-
trasubband and intersubband excitations.

From Figs. 2 and 3, we can see that there exist four
bulk modes I] —I4, two of which come from the splitting,
owing to the electron-phonon coupling. The interaction
between optical phonons and bulk plasmons is responsi-
ble for the optical-phonon bands I2 and I3. I ] and I4 are
the optical and acoustical bulk plasmon, respectively.
Moreover, there are two optical-phonon —surface-
plasmon modes S2 and S3, one optical surface-plasmon
mode S„and one acoustical surface-plasmon mode S4.
0, mode is a new optical-phonon —surface-plasmon mode
S„and one acoustical surface-plasmon mode S4. The 0&
mode is a new optical-phonon —surface-plasmon mode in
the intrasubband excitations, which, to our knowledge,
has never been reported before. It should be noted that
the existence of a gap between S

&
and I

&
modes can be

explained as the additional surface Coulomb interaction
between neighboring interfaces.

From Figs. 4 and 5, we know that there are four bulk
modes Ij —I4. Among them I3 and I4 are two optical-
phonon bands, coming from the electron-phonon cou-
pling. There are also two optical-phonon —surface-
plasmon modes S3 —S4 as well as the other two surface
hodes S& —S2 associated with intersubband excitations.

We now turn to Raman intensity, which is proportion-
als to the function F(co, Q) in Eq. (48),

F(co, Q) = —g A„1m[a'„'(2k,*,2k, )+y'„(2k,*,2k, )

+y"„'(2k,*,2k, ) +y„"(2k,*,2k, )], (48)

where

and

Q=(q, k, )=(q; —q„k,'+k;) .

We now make the approximation '

Note, however, that there are two extra modes 0
&

and 02
with frequencies below co„associated with the 0-1 inter-
subband transition, in which the 0

&
mode has been pre-

dicted by Quinn et at. , while the 02 mode is a new one
not reported previously. The dramatic feature is that
there also exists a gap between S2 and I2 modes. The
reason for the existence of this gap is analogous to that in
the intrasubband excitation. We can easily see that both
I', and I4 modes are reversed in Figs. 4 and 5. A super-
lattice analog of the trapped surface modes in accumula-
tion layers has been recently discovered by Puri and
Schaich. '

IV. RAMAN INTENSITIES
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k'=k'=k+i/2A,

where

k =(co, /c)Re[a, (~;)]' '

and

I/A, =(2';/c )Im[e, (co;)]'

2k is thus the momentuIn transfer to the plasmon from a
photon along the superlattice axis, and A, is the photon
decay length inside the material. A„ is an amplitude
given by

A„=exp( d—/2A)f ,dz f dz' exp[ 2i—k(z —z')]

X exp[ —(z +z')/A, ]

X4„(z)N„(z'),. (49)

The terms n =0 and n =1 stand for the contributions
from intrasubband and intersubband excitations, respec-
tively. Here the density-density correlation function

e~(CO) = e~(CO COLQ+i 7 pgCO)/(CO COTQ+i7'pgCO)

p pQ being the phenomenological width, and

+0' —rt hg /I h(CO +E7 hCO)

Xl 2a, hII10/@~ II10+~7,h~)

(50)

(51)

(52)

y, I, being the phenomenological broadening, related to
mobility in the usual way. The peaks in the spectrum
correspond to the poles of the polarizability matrix
g„(k,k'). The broadening of the bulk and surface
plasmons is due to phonon decay and the parameters y, &

separately.

g„(k,k') and 4„(z) are given by Eqs. (16), (28), and (11).
It should be noted that the single-particle energy sepa-

ration Q,o of interface states is identical for both elec-
trons and light holes, so that we must take into account
all the terms of g„(k,k') in Eq. (48). This means that the
light will couple to electrons, as well as light holes in in-
terface states. Instead of Eqs. (3), (35), and (43), we use

, 0. -/n,
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2. 0
0 4
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4. 0 6.0

FIG. 2. Two higher branches of the collective intrasubband
excitation spectrum for phonon-plasmon modes in quasi-2D in-
terfaces with the parameters Pd =0.7742, e„=16.0, eo = 1.0,
y=15.0, (cuL/Qq) =0.5, and (coT/Qq) =0.25.

FIG. 3. Two lower branches of the collective intrasubband
excitation spectrum for phonon-plasmon modes in quasi-2D in-

terfaces. The parameters are the same as in Fig. 2.
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3.0-

2. 0

1.8'.
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M 1(7T'}
2

P d=o. 7742
~' =17.5

2 3
0,0

To 2

0,0 4

&h =1.84

~0=1.0

~ =16.0
&= d/4

change in the spectra of interface states given in Figs.
2—5.

Introducing the index o.=1,2, 3 representing the light-
hole-like, electronlike, and heavy-hole-like states, respec-
tively, we have

~k, n,j;a)=exp(ik r)g'„'(z —jd/2) . (A 1)

Here k is a two-dimensional wave vector describing the
planar motion in the (x,y) plane; j and n are the layer in-
dex and the subband index, respectively. The layers are
labeled by an integer j; even-numbered layers will be tak-
en to be HgTe layers, in which electrons and heavy holes
are confined, while odd-numbered layers are CdTe layers,
in which light holes are confined. The single-particle en-
ergy is given by

E'. '(k)=E' '+Pi k /2m' ' .nj nj J (A2)

1.2=
~,'(o)

Sl

2. 0 4.0
I

6.0
qcl

Generally, m ' ' will depend on the planar wave vector k~~.

If the single-particle transitions are limited to the neigh-
borhood of the I point of energy bands in k space, the

FIG. 4. Two higher branches of the collective intersubband
excitation spectrum for phonon-plasmon modes in quasi-2D in-
terfaces with the parameters Pd=0. 7742, e„=16.0, co=1.0,
y'=17. 5, (coL/'Q&o} =

2
and ~~T/'&10} =

4 and ea =1.84.

s'

V. CONCI. UDING REMARKS
1.2

pl
02

Pd=O. 7742
&'=17.5

In summary, we have presented the theory of collective
excitation, including the bulk and surface modes, in a
semi-infinite Hg Te/CdTe superlattice. The density-
density correlation function has been calculated and
several new plasmon modes have been predicted. The
theory can be easily extended to the finite-size superlat-
tice. Moreover, we have formulated the theory of Raman
scattering. In Raman-scattering experiments the intensi-
ty of the intersubband modes is higher than that of the
intrasubband modes, but the gap between Sz and Iz
modes is smaller than that between S, and I, modes.
The intersubband surface modes may be easily observed
in experiment. This will make it easy to detect the ex-
istence of the surface-plasmon mode when a large gap ex-
ists between S, and I, modes, or S2 and I2 modes.
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APPENDIX
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In this appendix we would like to calculate the hybridi-
zation between the interface states and heavy-hole-like
states and show that this effect will not make much

FIG. 5. Two lower branches of the collective intersubband
excitation spectrum for phonon-plasmon modes in quasi-2D in-
terfaces. The parameters are the same as in Fig. 4.
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2. Oi.

1.0

hybridization. Fortunately, the effect of the nonparabolic
energy dispersion relation cannot qualitatively change the
feature of the collective excitation spectrum of interface
states, although it contributes a great deal to the
transportation and the optical absorption. The gap be-
tween the bulk optical plasmon mode and the surface
mode will remain. Only the branch edges in the spec-
trum are quantitatively changed or shifted.

The effect of hybridization is reAected in three aspects,
including the finite width of localization of interface
states, the Coulomb interaction between the interface
states and the heavy-hole-like states, and the nonparabol-
ic energy dispersion relation.

Taking into account the first two aspects, we rewrite
Eq. (10) as

y(q, n~;z, z')= g g g y'„'(l, l')N'„'(z —ld/2)
+a' n I I'

X 0&'„'(z ' —l 'd /2 ), (A3)

0 5.0 10.0
where @'„' '(z —jd/2) have the same definition as in Eq.
(11),and

FIG. 6. The coupled collective intrasubband excitation spec-
tra of interface and heavy-hole-like states with finite width of lo-

calization at the interfaces.

dominant term no longer depends on k~~ (the zeroth-order
approximation), and then Eq. (2) is still applicable in this
case.

It should be pointed out that it is really difficult to cal-
culate the analytical expression of the energy dispersion
for both interface states and heavy-hole-like states with

N'„'(z —jd/2) =g'„'(z —jd/2)go '(z —jd/2) . (A4)

~h 0 0

Xp= o X'.

0 0 ~HH

(AS)

%'e would like to give the expressions below which have
different definitions than before, and omit those with the
same definitions. By using the substitutions of pp p'+„,
and V „with Eqs. (AS) —(AS),

S+„(q)=—,'exp[ q(d +—d' )/2] f dz f dz' 0&'„'(z)C&'„'(z')exp[ —q(z+z')],

t „(q ) = —,'exp[ —
q ~d

—d'
~ /2] f dz f dz' @'„'(z)@'„'(z')exp(—q~z —z'~ ),

d for light-hole-like states
d ='

0 for electronlike and heavy-hole-like states

(A6)

(A7)

(AS)

into Eqs. (22) and (33), we can get both the bulk and the
surface modes.

The computational result is presented in Fig. 6. The
solid lines in Fig. 6 stand for the modes with hybridiza-
tion, and the dashed lines for the modes without hybridi-
zation. The electron-phonon coupling has not been taken
into account in Fig. 6 for simplicity. The optical plasmon

mode of heavy branch co3 disappears here. It is clear that
the qualitative feature of the collective excitation spec-
trum of interface states, e.g., the gap between the bulk
and surface modes, is still retained, which, to a certain
extent, proves that the conclusions drawn here are quite
reasonable.
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