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High-frequency damping of collective excitations in fermion systems.
II. Damping of zero sound in normal liquid He
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The polarization potential approach of Aldrich and Pines to treat the elementary excitations in
liquid He is here extended by an explicit many-body calculation of the two-particle —hole pair con-
tribution to the imaginary part of the proper polarizability, as outlined in paper I and using a physi-
cally reasonable ansatz. The result is then used to calculate the line shape of the zero-sound mode
in liquid He. The calculated dispersion and width of the zero-sound mode for different values of
pressure are compared with the recent neutron inelastic scattering experiments of Scherm et al.
[Phys. Rev. Lett. 59, 217 (1987)]. The agreement between theory and experiment is quite satisfacto-
ry for small wave numbers; for large wave numbers the cause of the discrepancy between theory and
experiment is critically examined. A possible modification of the effective potential between 'He
quasiparticles is suggested.

I. INTRODUCTION

Many years ago Landau' had predicted that a Fermi
liquid, like liquid He, could sustain at absolute zero tem-
perature, a collective mode which is phononlike, which
he called zero sound in order to distinguish it from ordi-
nary sound. The condition for the existence of the latter
is co~ && 1, whereas for the former the condition is
~~&&1; co being the frequency of the sound and ~ the
mean collision time of the particles. Landau's prediction
was later verified by Skold et al. through neutron
inelastic-scattering experiments. These authors measured
the dispersion of zero sound in the region of wave num-
ber transcending the validity of the Landau theory. The
dispersion was found to be anomalous and to flatten for
wave numbers k )0.8 A '. This and other discoveries
led to some considerably activity towards a microscopic
understanding of liquid He. The interest in this system
has been further heightened by recent neutron inelastic-
scattering experiments of Scherm et al. at 120 mK.
These experiments have furnished us, for the first time,
with very detailed information both on the dispersion and
damping of zero sound as a function of the density (or
pressure) of the liquid. Their significance lies in the fact
that they serve as a touchstone for the microscopic
theories of excitations in Fermi liquids.

Since He is a very dense liquid, a semiphenomenologi-
cal theory seems to be the only possible way of describing
this system. Of the known semiphenomenological
theories of excitations in liquid He, perhaps the most
successful one is the so-called polarization-potential ap-
proach of Aldrich and Pines. One of the most remark-
able successes of this approach has been that it predicted
both the anomalous dispersion of zero sound and its Aat-
tening in the large-wave-number region before it was ex-

perimentally seen. More recently, Hess and Pines (here-
after referred to as HP), using the approach of Ref. 5,
have been able to explain quantitatively the experimental
results of Scherm et al. on dispersion as a function of
pressure. To achieve this, these authors obviously had to
adjust the parameters of their effective potential with
pressure. In spite of its great success, the polarization-
potential approach of Pines and co-workers is incapable
of explaining the damping of zero sound. In fact, no
damping mechanism exists in their approach. On the
other hand, experiments of Ref. 4 show that the damping
of the zero-sound mode is substantial and increases both
with wave number and pressure. The primary aim of the
present paper is to understand the mechanism of damp-
ing of the zero-sound mode and calculate its line shape
from microscopic considerations.

For wave numbers less than a certain critical wave
number k, at which the zero-sound mode touches the
particle-hole continuum, there are only two possible
channels of decay. One channel corresponds to the decay
of one phonon into two phonons, and the other corre-
sponds to the simultaneous excitation of two or more
particle-hole pairs from the Fermi sea. The former mech-
anism can easily be ruled out because the anomalous
dispersion, which is responsible for the linewidth in this
case, disappears with increasing density, whereas the ob-
served width increases with density. Besides, it predicts a
linewidth which is almost two orders of magnitude small-
er than what is observed. Therefore, the damping of zero
sound must arise from processes involving multi-
particle-hole excitations. The latter even in the lowest
approximation (two-pair excittions) are fairly complex to
calculate, and almost impossible to model.

A very similar situation exists in the damping of
plasmons in an electron gas. This problem was treated
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some time ago, as we have seen in paper I, by Glick and
Long. In contrast to the electron-gas problem, the
damping in He is quite large and one cannot use the
simplified formulas for the linewidth I, derived by as-
suming that I" «coo(k), coo(k) being the frequency of the
mode. One is required to calculate the full dynamic form
factor S ( k, co ), and estimate both the position and the
width from the line shape. Besides, one has the added
problem of adapting to the He case, the calculation of
two-particle —hole processes of Ref. 8, a calculation
which was performed by evaluating the contribution of
ten Feynman diagrams in the second order of the pertur-
bation theory. Unfortunately, the latter cannot be
straightforwardly applied to the Lennard-Jones —type of
potential. The other difficulty is the large mass renormal-
ization which exists in this problem. To circumvent these
difficulties, we have adopted the attitude that the effective
interaction between two He quasiparticles is some kind
of pseudopotential, which, being weak, is amenable to a
perturbation treatment. We, therefore, make the ansatz
of replacing the bare interaction by an effective interac-
tion when evaluating the Feynman graphs of Fig. 2 of
Ref. 8. Also, we replace the bare mass m by an effective
mass m* in the propagators. Note that here m* is in-
dependent of the momentum. The above ansatz is really
not new and is, in fact, in the spirit of the polarization-
potential theory of Pines and coworkers. For the
effective potential between the quasiparticles we adopt
the scalar polarization potential fk of HP and use it to
evaluate the two-particle —hole pair diagrams, which con-
tribution, in the lowest order, is responsible for the damp-
ing of zero sound. Stated more explicitly, we extend the
approach of HP by including, using microscopic con-
siderations, the imaginary part of the two-pair contribu-
tion to the proper polarizability 11(k,co). This contribu-
tion, which is solely responsible for the damping of zero
sound, is impossible to model, as we shall see, because of
its complicated dependence on frequency m and on the
form of the effective interaction u (k).

It should be mentioned that a microscopic calculation
of the dispersion and damping of zero sound in liquid He
and its variation with pressure was first attempted by
Glyde and Khanna. Their calculation was based on the
theory of sound propagation in a dilute Fermi gas by
Gottfried and Picman. ' It is doubtful that the latter
theory can be applied to a dense system like liquid He.
Besides, as we now know, the overall agreement with ex-
periment is not very satisfactory.

II. DYNAMIC STRUCTURE FACTOR S(k, a) )

where n is the number density.
In the approach of HP, the function y is written as

y„(k, co)
y(k, ro) = (2.3)7

2
1 —f„'+ h„' y„(kco)2

where g„(k,co) is the so-called screened response, and fk
is the Fourier transform of the effective symmetrized po-
tential between He quasiparticles. The other term in the
denominator takes care of the backAow. Our ansatz con-
sists in making use of the parameters fk and hz in the fol-
lowing way:

v(k)=f„' (2.4)

and

m*=m +neo, (2.5)

where m is the bare mass.
We now write the HP response g of Eq. (2.3) in the

form (2.1), i.e.,

x=
1 vHHp 2

1 —fu+, ~k X..k

(2.6)

Inverting (2.6) and using (2.4) we have

IIHp(k, co) = y„(k, co)

s
1 — hky„(k, co)

k

(2.7)

Thus, within our ansatz and within the HP formulation,
Eq. (2.7) gives the proper polarizability. For y„and hk,
we use the expressions of HP. Equation (2.7) is reminis-
cent of a random-phase-approximation (RPA) -like ex-
pression for the proper polarizability, where the interac-
tion is (co /k )hk and m in the Lindhard function yo is
replaced by m*. It takes care of the contribution in-
duced by the vector polarization potential.

In the frequency range of interest here and above the
particle-hole continuum edge, the right-hand side of (2.7)
according to Refs. 5 and 6 is purely real. We, therefore,
consider HHp to play the role of the real part of the prop-
er polarizability II, while the imaginary part of II is cal-
culated in I within our ansatz of course. Since we shall
confine ourselves to the frequency domain, where the
asymptotic expression for ImII2 can be used [see Eq.
(2.1b) of paper I], we write

The density-density response function, within the
many-body perturbation theory, for a system of fermions
interacting via a potential v (k) can be written as

II(k, co) =II (k, co)+i ImII (k, co),

where

(2.8)

II(k, co)

1 —u (k)II(k, co)
(2.1)

03n 2
1ImII„(k, ~)=—,k'P(Q)

16~4' Q7
(2.9)

where II(k, co) is the proper polarizability. The dynamic
structure factor S ( k, co ) is given by Q =Q(~)=

1/2

(2.10)

S(k, co) =—1
Imp(k, co), and
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2 l.o

(2.11)

The suftix 2p on H is used to denote that we are consider-
ing only two-particle —hole pair contributions. Note that
if lmrr2 =0, we regain the HP expression (2.3) for y. We
have thus extended the HP approach by including the
two-particle —hole pair contribution to multipair excita-
tions. In the frequency range of interest here, the imagi-
nary part of the HP expression for multipair excitations
gives zero contribution. Also, note the simple depen-
dence of ImII2~ on k and a very complicated dependence
on cu via Q and u(Q).

Using Eqs. (2.1), (2.2), and (2.7)—(2.11), it is straightfor-
ward to calculate S(k, co) and thus the line shape of the
zero-sound mode. From the line shape we determine the
position of the maximum coo(k) and the full width I (k) at
half maximum. It is important to remember that now,
because of the presence of damping, the position of coo(k),
i.e., the dispersion of zero sound, would change from its
value in the HP calculation. The more the damping, the
greater is the change.

0.5

E

0
0.5

0.5 I.O

CD (lneV)
l.5

FIG. 1. Dynamic structure factor S{k,co) vs co at SVP for
k =0.4, 0.5, 0.6, and 0.8 A, ca1culated {a) with HP potential,
and (b) with modified potential.

III. DISCUSSION OF RESULTS

A. HP Potential for v(k)

(3.1)

where a8=28400. 5 A K, a6=10163.3 A K, and

r, =5.0 A are parameters independent of pressure, while

r, , a, and b are pressure dependent. Their values
at p =0 are, respectively, 3.00 A, 23.2 K, and 16.3 K for
era ' = t' J, and 3.03 A, 20.9 K, and 15.4 K for cr o '= 1 f.
For other pressures see Table II of Ref. 6. Interesting to
us is fl'„ the Fourier transform of the symmetrized poten-
tial,

u (k) f~ —f elk' i [f—T L(r)+f t T(r)]d 3r (3.2)

We have recalculated fk using Eqs. (3.1) and (3.2) and the
dispersion of zero sound as given by the formulas of HP.
We find that our results agree with theirs, which provides
a check on our calculation. With u(k) thus known, we
have calculated S(k, cu) as mentioned in Sec. II. The re-
sults at saturated vapor pressure (SVP) are shown in Fig.
1(a) for some values of k. The scale along the y axis for
S(k, cu) is in absolute units. Notice that the line shape of
the zero-sound mode is quite broad and somewhat asym-
metric and that the maximum falls off as k increases.
Such plots were made for every pressure" and k. Peak
position coo(k) and the width I (k) as read from such
curves are as shown in subsequent figures and are also

The r space potentials used by HP, have the form

a [1—(rjr, ) ] for r (r,
f(r )= . b [(r, Ir)' —(r, Ir) ] for r, (r(r, ,

—(asjr +a6lr ) for r, (r,

given in Table I.
Dispersion and width for four different values of pres-

sure are shown, respectively, in Fig. 2(a) and Fig. 2(b) as
continuous curves. Dashed-dotted curves denote the
dispersion obtained without damping and are, therefore,
the same as given by HP. Open squares are the experi-
mental points of Ref. 4. Notice that the frequency coo(k)
increases in the presence of damping, thus spoiling the
good agreement with experiment obtained by HP without
damping. The same situation prevails at all pressures.

For small wave numbers, the calculated widths are in
good agreement with experiment, but with increasing
wave number this agreement gets worse. However, in
comparing theory with experiment, one should bear in
mind that ImH2, which determines the width, is a very
sensitive function of the potential, effective mass, and fre-
quency, as is seen from Eqs. (2.9)—(2.11). In view of this,
the present agreement should be considered as remark-
able, and an indication of the reasonableness of our an-
satz. Part of the discrepancy between theory and experi-
ment could very well be due to our use of the asymptotic
formula. Also note that whenever the calculated width is
large, there is a correspondingly large change in coo(k).

In order to understand the possible reasons for the cal-
culated width being too small for larger values of k and
for higher pressures, we decided to examine in greater de-
tail some of the quantities entering in Eq. (2.7) for
Imllz (k =1 A ';co). In Fig. 3(a) are shown the func-
tions u(Q(cu)), P(Q(co)), and ImII2 (k =1 A ',cu) as a
function of co at SVP; and in Fig. 3(b) are shown the same
quantities for p =18 bar. From Fig. 2(b) and Table I, we
see that at SVP the calculated value of I is =0.35 meV
at k =0.8 A ', and is about 30% less than the experi-
mental value of 0.51 meV. The corresponding experi-
mental value of coo(k) is 1.1 meV. We are, therefore, in-
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TABLE I. Zero-sound energy coo(k) and width I"(k) in He. Results denoted by HP are the same as
obtained by Hess and Pines (i.e., when damping is neglected). Our results: A —obtained with the HP
potential; B, with modified potential. Experiment —from Ref. 4.

p
(bar)

10

k
(A )

0.3
0.4
0.5
0.6
0.7
'0.8
0.9
1.0
1.1

0.3
0.4
0.5
0.6
0.7
0.8

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

0.4
0.5
0.6

HP

0.422
0.582
0.736
0.874
0.998
1.070
1.122
1.146
1.156

0.531
0.715
0.884
1.027
1.138
1.212

0.805
0.984
1.132
1.242
1.315
1.353
1.363
1.350

0.909
1.101
1.257

our 3
0.432
0.606
0.784
0.947
1.079
1.179
1.249
1.292
1.316

0.565
0.777
0.964
1.114
1.226
1.305

0.878
1.056
1.194
1.295
1.364
1.405
1.425
1.429

0.974
1.145
1.281

coo(k)
(meV)
our B

0.406
0.554
0.708
0.878
1.045
1.178
1.273
1.339
1.381

0.509
0.670
0.825
0.972
1.100
1.199

Expt.

0.43
0.57
0.71
0.83
1.00
1.09
1.13
1.19
1.19

0.55
0.70
0.83
0.96
1.14
1.20

0.79
0.92
1.10
1.28
1.28
1.33
1.38
1.35

0.89'
1.06'
1.33'

Our 3
0.104
0.188
0.266
0.313
0.335
0.347
0.356
0.368
0.378

0.197
0.265
0.283
0.276
0.264
0.255

0.256
0.240
0.212
0.187
0.171
0.166
0.172
9.173

0.218
0.172
0.121

I (k)
(meV)
Our B

0.066
0.132
0.253
0.384
0.443
0.441
0.434
0.411
0.403

0.090
0.166
0.269
0.358
0.400
0.407

Expt.

0.18
0.17
0.25
0.25
0.45
0.51

0.22
0.29
0.38
0.53
0.57
0.62

0.37
0.43
0.63

0.32'
0.59'
0.67'

'Experiment is at p =20 bar.

terested in the energy range from 0.85 —1.35 meV in our
calculation of S(k, co). This corresponds to a value of Q
in the range 1.30—1.64 A '. In the above energy range,
we see from Fig. 3(a) that u(Q(co)) reaches the point
where it crosses the energy axis and where its value is
rather small. But the value of the function P(Q(cu)) is
quite large due to the value of the derivative of the poten-
tial being large. In this energy range, the function P
changes by a factor of —,'. On the other hand,
Im112~(k =1 A, cu) changes by a factor of —,', over this
range due to the occurrence of Q in the denominator,
which accounts for the factor —,'. From this we conclude
that by changing the derivative of the potential in the
above-mentioned range, we could make the width come
closer to the experimental value. It is possible to do so
without changing u(k) at k =0.8 A ' and thus leaving
the peak position practically unchanged.

The above situation gets much worse for higher pres-
sures, as can be seen from an examination of Fig. 3(b) for
p =18 bar. For example, at k=0.6 A ', the range of in-
terest of energy is from 0.99—1.67 meV and of Q is from
1.70—2.33 A '. In this range, we see that u(Q(cu) ) starts
from zero and is small negative and very Aat, making

P(Q(cu)) rather small. The value of P at co=1.33 meV is
only 6% of its peak value. This is the reason why the cal-
culated width is too small compared to experiment for
higher pressures.

In view of the above analysis, we were tempted to
make minor changes in the HP potential to see what
erat'ect they would have on the line shape. Besides, one
would like to know whether these changes are consistent
with the calculation of other properties of He involving
u (k).

B. Modified potential

We modified the original Hp potential [see Fig. 4(a)
solid line] for two pressures SVP and 5 bar by adding a
small correction shown as a dashed-dotted curve. The re-
sulting potential is shown as a dashed curve in Fig. 4(a).
The corresponding potentials in k space are shown in Fig.
4(b). A constraint was imposed on the modification such
that the value of u(k) at k =0 remains unchanged; i.e.,
the value of the Landau parameter I', remains the
same. " At this stage, no physical significance should be
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FIG. 2. Zero-sound energy coo{k) and full width I (k) at half maximum vs k for various pressures. Solid lines, calculated with HP
potential; dashed lines, with model potential; dashed-dotted lines, with HP potential when damping is neglected. Squares denote ex-
perimental points from Ref. 4. (Experimental points shown on 18-bar figure correspond to 20 bar. )

attached to these changes, which should be considered
more in the nature of an exercise. Peak positions and
widths were recalculated for the modified potentials, and
are shown as dashed curves in Fig. 2, and are given in
Table I as results 8. We see that the peak position is
shifted down due to the lowering of the main peak of
v(k), resulting in a better agreement with experiment.
Also, the width agrees with experiment over a wider k
range. The latter improvement is the result of the in-

creased slope of v(k) in the vicinity of k values, where
v (k) =0.

In Fig. 1(b) are shown the zero-sound line shapes at
SVP for diFerent values of k using the modified potential.
A comparison with Fig. 1(a) shows that maximum of
S (k, co) decreases somewhat more rapidly with increasing
k. Note that the calculated line shapes are in absolute
scale, and are in remarkably good agreement with the
corresponding experimental curves as seen from Fig. 1 of
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the full width of zero sound at k =0.8 A for SVP and k =0.6
A for 18 bar. Note: kelvins are used as energy unit for func-

tions plotted here and in Fig. 4.

Ref. 4.
The above considerations have demonstrated that the

precise form of the potential is quite important in deter-
mining both the position and the width of the zero-sound
mode. In fact, these considerations may help in deter-
mining a better potential than obtained hitherto. We
might mention that after our calculations were complet-
ed, our attention was drawn to a remark by Levin and
Valls in which they point out that Bedell and Pines, ' in
order to get a good agreement with the transport
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coeScients and the superAuid transition temperature T,
in He, were led to modify the Aldrich-Pines potential. It
turns out that our modified potential [dashed curve of
Fig. 4(b)] is quite close to the Bedell-Pines potential, as
can be seen from Fig. 10 of Ref. 3. It seems to us that it
will be possible to construct in the future a common po-
tential which should be good for transport properties and
T, as well as for zero-sound dispersion and damping (Fig.
5).

I.O

SVP

IV. CGMMENTS

Granting the ansatz [Eqs. (2.4) and (2.5)], the calcula-
tion of the imaginary part of the proper polarizability
and hence of the zero-sound line shape is based on micro-
scopic considerations. The merit of the ansatz is to be
judged by the results it yields for the line shape, keeping
in mind that this shape depends very sensitively on the
potential. The latter is strongly dependent on pressure
and wave number. In contrast to the other fermion sys-
tems, such as the electron gas, the situation in liquid He
is far from trivial since the linewidth of the zero-sound
mode is comparable to its energy.

One might worry that, on one hand, we have added to
HHp the imaginary contribution of the ten Feynman dia-
grams denoted by i ImHz~, and on the other hand, we
have ignored adding the corresponding real part. It is so
because we do not expect to improve the accuracy of the
total ReH by adding ReHz . In the first place, since this
contribution arises from the second-order diagrams, it
may introduce only a small correction to the dominant
zero- and first-order diagrams. Secondly, we should keep
in mind that besides the ten selected diagrams of H2,
there exist other second-order diagrams; and very often
in the perturbation expansion some compensations occur
among diagrams of the same order. It would, therefore,
be unwise to include only a part of them. And finally, as
it follows from HP formulation, their Reg„, incorporated
by us [see Eqs. (2.8) and (2.7)], includes in a model form a
multipair contribution, whose strength is fixed by HP by
the requirement that g„satisfy the f sum rule. There-
fore, we may consider that our two-pair contribution
ReH2 is already approximately contained within their
multipair term. The situation with the imaginary part
for co&cospE is, however, completely different: just the
ten diagrams of ImH2p provide the nonvanishing lowest-
order contribution to ImH, while the model multipair
contribution of HP gives ImHHP=O in this region of fre-
quency.

A word about the ansatz equation (2.5) is in order. We
have used m * in the evaluation of the ten second-order
diagrams, guided by the fact that, in the phenomenologi-
cal approach of HP, m* occurs in thier g„and hence in
the Lindhard function —the empty bubble diagram. We
did not incorporate the k dependence (which is weak in
the considered k range) of the effective mass because
there is no natural way of doing this within a perturba-
tion approach.

A brief comment on our choice of fk, the symmetric
part of the Aldrich-Pines (or HP) scalar polarization po-
tential for U (k) [Eq. (2.4)], is in order. Short-range corre-

UJ I ~ ~ ~ ~ ~ ~ ~ ~

0
0 I.O

FIG. 5. Characteristic energies vs k at SVP calculated with
modified potential. Solid line, position of the maximum; dashed
lines, position at half maximum of the zero-sound peak;
dashed-dotted line, zero-sound energy when damping is exclud-
ed. Experimental points from Ref. 4 are: squares, coo(k);
crosses, coo(k)+

2
I (k); hatched area limited by co,~,(k) single-

pair excitation continuum; dotted line, co„, {k).

lations in liquid He lead to a renormalization of the hard
core of the bare potential resulting in a "weak" pseudo-
potential. It is very difFicult, if not impossible, to calcu-
late quantitatively from first principles this pseudopoten-
tial. The only choice left is to resort to a semi-
phenomenological approach, and we have seen that the
HP potential does the job admirably and hence our
choice of fk for v (k). It is, indeed, a Lennard-Jones po-
tential with a truncated hard core.

We have tacitly assumed that the contribution of pro-
cesses involving more than two-particle —hole pairs to
ImII is negligible. This contribution should be much
smaller in the frequency range of interest since their
asymptotic behavior involves higher inverse powers of
frequency.

In the future, instead of using the asymptotic expres-
sion for the imaginary part of the proper polarizability,
one should calculate it by evaluating numerically the
multidimensional integrals. This could easily account for
at least part of the discrepancy from experiment in the
linewidth for both large and small wave numbers, and ex-
tend the validity of the calculation in the interesting re-
gion of wave numbers for which the dispersion is Bat.
Also, it would be very interesting to obtain an analytic
expression for the linewidth in the limit k ~0. It should
be possible to extend the present calculation to the case
of a fully polarized model liquid He using the effective
potential of Ng and Singwi. '
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