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Layered, semiconductor superlattices with well widths comparable to the electron wavelength are
routinely grown to tailor the electronic properties of artificially structured materials. With the re-
cent advances in the art of nanofabrication, two-dimensional arrays of quantum nanostructures,
which should exhibit three-dimensional, quantum, carrier confinement, can be made. Quantum-
nanostructure arrays constitute a new generation of artificially structured materials with tailorable
electronic properties. In a superlattice, zone folding of the band structure occurs only for bands
along the growth direction. However, for a two-dimensional array of nanostructures, the zone fold-

ing can be tailored in two directions allowing more band mixing and the possibility of greater band
alteration. We have performed augmented-plane-wave calculations for independent electrons in a
two-dimensional array of two-dimensional, circular, quantum nanostructures to explore the possi-
bilities of tailoring a two-dimensional band structure. Band structures are presented for arrays
formed from different types of nanostructures: quantum boxes (wells), quantum bumps (barriers),
and quantum resonators (a well surrounded by a thin barrier to allow resonant trapping in the well).
Low-energy band states are quasibound in quantum-box arrays. The low-energy states channel be-
tween bumps in quantum-bump arrays. In quantum-resonator arrays, the low-energy states can be
channeling states or resonant states. Useful electronic properties that can be controllably tailored
are identified and discussed.

I. INTRODUCTION

The energy levels of electrons in a quantum well are
modified by the confinement when the well width is corn-
parable to or smaller than the electron wavelength. Lay-
ered superlattices of semiconductor quantum wells are
now routinely grown to tailor the electronic properties of
artificially structured materials. Band gaps and effective
masses can be altered by varying layer compositions and
thicknesses.

In a superlattice, a one-dimensional, periodic potential
(the variation in composition) modifies the band structure
of a three-dimensional material. By use of current
nanofabrication techniques a one-dimensional periodic
potential or patterning can be imposed on a two-
dimensional layer, ' creating an array of quantum wires,
and a two-dimensional periodic potential or patterning
can be imposed on a two-dimensional layer, ' creating an
array of quantum boxes. In this paper we will explore
theoretically the possibilities of tailoring the electronic
properties of a two-dimensional layer by use of an im-
posed, two-dimensional, periodic array of potentials or
patterning.

Others have previously suggested that two-dimensional
device arrays could be used to modify electronic proper-
ties and have calculated the band structure and collective
excitations for the arrays. ' Our aim in this paper' is
to explore how the band structure of a two-dimensional
layer can be modified by arrays of different types of quan-
tum nanostructures: quantum boxes (wells), quantum
bumps (barriers), and quantum resonators (a well sur-
rounded by a thin barrier to allow resonant trapping in
the well).

In the next section we will present the motivation for
this work, the model used, and the approach taken to cal-
culate band structures. Band structures for two-
dimensional layers modified by a two-dimensional period-
ic potential are presented in Sec. III. Charge densities of
selected electronic states are presented to illustrate the
character of states in the arrays. Conclusions are dis-
cussed in the last section.

II. MODEL, MOTIVATION, AND METHOD

In this paper, two-dimensional arrays, with lattice con-
stants 3 and 3, of two-dimensional, circular quantum
nanostructures (see Fig. 1) are inodeled. We assume that
the third dimension is a narrow well with only one occu-
pied subband, as is typical for quasi-two-dimensional sys-
tems, and can be ignored. We consider conduction elec-
trons. The effective-mass approximation, with an isotro-
pic mass, is used to describe motion in the layer in the ab-
sence of the imposed array of potentials.

We assume that the array of nanostructures is defined

by a two-dimensional, periodic variation in the composi-
tion of the layer. The heterojunctions between well and
barrier materials determine the boundaries of the nano-
structures. The nanostructure potential is determined by
the conduction-band offsets of the materials which are
the well and barrier regions. Arrays made from three
different structures have been considered (see Fig. 2).
Quantum boxes are finite well regions surrounded by con-
nected barrier regions. Quantum bumps are finite barrier
regions surrounded by connected well regions. Quantuin
resonators (or "doughnuts") are finite well regions sur-
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FIG. 1. Two-dimensional array, with lattice constants 3
and 3,of two-dimensional, circular nanostructures.

rounded by barriers with finite thickness which are sur-
rounded by connected well regions.

For simplicity, we assume that the heterojunction po-
tential profiles are abrupt, as shown in Fig. 2. No at-
tempt has been made to account for charge depletion or
accumulation at the interfaces or to include a composi-
tional grading at the interfaces. Arrays made with nano-
structures that have abrupt interfaces have not yet been
fabricated. However, arrays of nanostructures with grad-
ed interfaces have been made by use of ion implanting

and annealing to enhance interdiffusion in the patterned
regions of a well (Cibert et al. and Petroff et al. ). Ar-
rays have also been made by modulating a two-
dimensional layer with a two-dimensional periodic gate
potential (Bernstein and Ferry ) and with a patterned
strain in the barrier layer adjoining the well (Kash
et al. ). These potentials do not have abrupt profiles ei-
ther. The calculations we perform could be done with
graded interfaces. We leave that for future consideration.
Although our model assumes that the potential profile is
determined by heterojunction band offsets, only the po-
tential profile is used in the calculation. In our model we
also include the effects of any well-barrier effective-mass
discontinuity. However the effects of this discontinuity
are small for most well-barrier systems. Thus, the band
structures for arrays defined by gates or patterned strain
should be qualitatively the same as the band structures
we calculate for nanostructures defined by heterojunc-
tions, provided that the potential profiles are similar.

The effects of a two-dimensionally periodic potential
on a two-dimensional layer differ from the effects of a
one-dimensional, periodic potential, as in a superlattice,
in two important respects. When a periodicity is im-
posed, zone folding of the band structure occurs. The
zone-folded band structure for a free electron in a two-
dimensional layer with imposed period (but no potential)

= A =30 nm is shown in Fig. 3. In a one-
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FIG. 2. Configuration and radial potential, as determined by
the conduction-band offsets, for quantum-box, quantum-bump,
and quantum-resonator nanostructures. Well and barrier re-
gions are denoted to and b. The band edges for wel1 and barrier
are V„and Vb. R is the radial dimension of the structure.

FIG. 3. Zone-folded, two-dimensional, free-electron band
structure. The lattice constants are 3„=A~ =30 nm. k
dispersion for k~ =0 (solid curves), k~ =+2m/A~ (dashed
curves), and k„=+4m/A~ (dotted curves) are shown. The elec-
tron effective mass is m =0.067m, .
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dimensional superlattice, zone folding occurs only in one
direction, and only the k„=0 band in Fig. 3 is present.
When a two-dimensional periodicity is imposed, addition-
al doubly degenerate zone-folded bands appear for
k =+2~n /A~ with n = 1,2, 3, . . . . These new bands
are replicas of the k =0 band shifted to higher energy by
E(k =0, k =2vrn/A~). There is much greater oppor-
tunity for band modification when a two-dimensional
periodicity is imposed because a single band can have
multiple crossings with its zone-folded replicas. Of
course, a band can also have crossings with other types of
bands. Here we are considering the case where different
types of bands (s and p bands, for example) are widely
separated in energy. Zone folding and crossing of replica
bands occur in a bulk crystal on an eV energy scale be-
cause A & 1 nm. In two-dimensional nanostructure ar-
rays, A„—10 nm and the zone folding and band crossings
occur on a meV energy scale, which is the energy scale
that is relevant for electronic states important in device
applications.

When a two-dimensional array of nanostructures is
used to tailor electronic properties, the choice of
nanostructure —box, bump, resonator —provides a de-
gree of freedom to tailor the electronic states which is not
available with a superlattice of barriers and wells. Quan-
tum boxes could be used to localize electrons in finite re-
gions. Quantum bumps could be used to define channels,
which in turn could be connected to form a network.
Quantum resonators could be constructed so that states
trapped resonantly within the resonator would overlap in
energy and hybridize with extended states which channel
between resonators. One aim of this paper is to deter-
mine (1) whether quantum boxes in an array can still lo-
calize states effectively, (2) whether quantum bumps can
define channels, and (3) whether quantum resonators can
be designed to hybridize quasilocalized and extended
states.

To answer these questions we have performed
augmented-plane-wave (APW) calculations" for the band
structure of two-dimensional electrons moving in the
periodic potential defined by the nanostructure array.
The modification of the three-dimensional APW
method" to do a two-dimensional APW calculation is
straightforward. The APW calculations are done for in-
dependent electrons; no attempt is made to include de-
pletion profiles. The APW method requires that the
Schrodinger equation be solved in a central core out to
the mufFin-tin radius. In our case, this core region in-
cludes the nanostructure and a finite circular annulus of
the region surrounding the nanostructure. Since the po-
tential is piecewise constant in the core, solutions to the
Schrodinger equations are Bessel functions in each region
of the potential. By matching solutions as each interface
in the nanostructure and accounting for the mass discon-
tinuity at each interface, the wave function at the edge of
the core can be determined. A more complicated poten-
tial would require a numerical solution of the
Schrodinger equation.

Band structures for different nanostructures and arrays
can be related by the following scaling argument. If dis-
tances are scaled by a factor A. (prime and unprimed

quantities for scaled and original structures)

A' =LA, A'=LA, R,'=AX;,

where the R; (see Fig. 2) are the radial dimensions which
define the nanostructure and the band offsets are scaled

Vb
—V' =( Vb —V~)/k

[Vb (Vb) and V (V' ) are the barrier and well band
edges in the original (scaled) structure], then the energies
E and E' of equivalent states in the original and scaled
systems are related by

E' V„'=—(E —V )/A,

provided that differences in the effective masses between
the original and scaled structures are small. Thus,
different structures will have the same band structure (ex-
cept for the scale factor 1/A, ) if other energies and po-
tentials scale as 1/A, and distances scale as A, .

III. ARRAY BAND STRUCTURES

We have calculated the band structures for quantum-
box, quantum-bump, and quantum-resonator square ar-
rays to show how electronic states of a two-dimensional
layer can be modified by different nanostructure arrays.
We present results for square arrays with A„= A =30
nm. To present results which are typical for semiconduc-
tor structures, we use the following material parameters:
The effective mass in the wells is m =0.067m„and the
barrier material is an alloy, x is the deviation of the alloy
composition from the well material, with mb
=m +0.083xm, and Vb= V +(0.74 eV)x. We present
band structures as a function of x to show how variations
in barrier height change the electronic states. For
quantum-box and -bump arrays the band structures are
presented for nanostructures with fixed size (R = 8 nm) as
a function of barrier composition (x =0.05, 0.1, and 0.2).
Band structures are presented for quantum-resonator ar-
rays, with fixed composition and outer radius
(x =0.4, R2 = 13 nm), as a function of inner-hole radius
(R, =6, 9, 11 nm). When x =0, all three arrays produce
the same band structure —the zone-fold free-electron
band structure shown in Fig. 3. Only the band structure
in the x direction is shown in the figures. Bands in other
directions have been calculated and are similar. The
charge densities of selected states are presented to illus-
trate the character of those states. Dipole matrix ele-
ments for valence- to conduction-band transitions are
also presented for selected states to illustrate their char-
acter.

A. Quantum-box arrays

The band structure for a quantum-box array with
x =0.05 (Fig. 4) is similar to the zone-folded, free-
electron band structure. The corresponding bands are
easy to identify. However, band mixing, avoided cross-
ings, and distortion are also evident when x =0.05. Band
gaps are present at the zone edges. One quasibound state
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B. Quantum-bump arrays

FIG. 7. Charge density of the lowest-energy zone-center
(k=0) conduction-band state in a quantum-box array with
x =0.05. One unit cell is shown. The barrier region is shaded.
The state is normalized such that a plane wave has unit charge
density everywhere.

Band structures for quantum-bump arrays with
x =0.05, 0.1, and 0.2 are shown in Figs. 9—1I. The band
structures for quantum-bump and -box arrays are qualita-
tively different, have different band splittings, orderings,
and band gaps. Most importantly, bands in quantum-
bump arrays do not lose their dispersion as x increases.
In fact, the low-energy bands become independent of x as
x increases. For example, the lowest five bands change
little as x increases from 0.1 to 0.2. This indicates that
these low-energy states do not tunnel into the bump re-
gions and are insensitive to the barrier height. Instead,
these states are located in the channels between the
bumps. The states are analogous to bonding states in
crystals.

The charge densities of the two lowest-energy zone-
center states in an x =0.2 bump array are shown in Fig.
12. The lowest-energy state is s-like in the central region
of well material that is surrounded by four bumps. Sub-
stantial charge also exists in the channels that connect
adjacent central-well regions. The charge in the first ex-
cited state is located in the bonds that connect adjacent
central well regions. Figure 13 shows that states at the
zone edge (k =m/A„, k~=0) move along weakly cou-
pled channels in the x direction.

For an array with larger bumps (larger 8 ), the chan-
nels are narrower and the coupling between central-well
regions is weaker. In this case the low-energy states have
less dispersion and are separated by larger gaps. Thus
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I

0.3 0.4 0.5

FIG. 8. Charge density of the lowest-energy (top) and first
excited {bottom) zone-center conduction states in a quantum-
box array with x =0.2.

kx ~Units o f 2'/Ax~

FIG. 9. Band structure for a quantum-bump array: Same as
Fig. 4 except that x =0.05 in the bump.
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the strength of the coupling between central-well regions
can be controlled by the size of the bumps. When the
bumps touch and the central-well regions are decoupled,
the array becomes a quantum-box array and the low-
energy bands become Hat.

0.08

.060

C. Quantum-resonator arrays

The low-energy states of quantum-resonator arrays are
shown in Figs. 14—16 for resonators (x =0.4, R2=13
nm) with different inner cores (R, =6, 9, and 11 nm).
Higher-energy states have not been plotted because the
band distortions are severe and ordering of high-energy
bands is dificult to identify consistently.

Two types of low-energy bands are present. The bands
insensitive to R

&
are channeling states, as in quantum-

bump arrays, which propagate in the connected well re-
gions but do not tunnel into the cores of the quantum
resonator. These states have little dispersion because the
channels are narrow (R2= 13 nm). The bands which are
sensitive to R

&
are resonance states which can tunnel into

the resonator core. The ordering and character of the
lowest states is shown in Fig. 17. For resonators with
large inner cores (R, =9 nm), the lowest-energy state
tunnels into the core and the first excited state is a chan-
neling state. For R

&

~ 9 nm, the energy of localization in
the core is large and the resonance state is the first excit-
ed state. For R

&
=9.5 nm, the resonance state and chan-

nel state are nearly degenerate. A crossover and hybridi-
zation of levels occur.

The charge densities for the zone-center, lowest-energy
channeling and resonance states are shown in Figs. 18
and 19 for R, =9 and 11 nm, respectively. The trapping
of the resonant state in the resonator core is clear. Leak-
age of the resonance state out of the core and of the chan-
neling state into the core increases as the barrier thick-
ness decreases. When the channeling and resonance
states are nearly degenerate (R, =9.5 nm) the two states

0.08

0.04—

0.02—

0.1 0.2 0.3 0.4 0.5

are strongly hybridized and have nearly the same charge
densities. For each state, the charge density inside the
resonator core has a magnitude similar to the charge den-
sity in the well region outside the resonator, indicating an
equal mixing of channeling and resonant character in the
strongly hybridized states.

Hybridization and dispersion of channeling states and
resonance states can be controlled by the choice of reso-
nator. The resonance level can be varied without
affecting the channeling states by keeping Rz fixed and
varying R, . If R, is held fixed and R 2 is varied, the
channeling-state dispersion is modified while the reso-
nance state does not change much. The resonance state
becomes sensitive to changes in R z when R, =R 2 and the
states must evolve to the free-electron states. By fixing
R, and R2 and increasing the lattice constants, the
dispersion of both types of states can be increased.

We obtain additional characterization of the electronic
states in a nanostructure array by calculating the dipole
matrix elements for transitions between valence and con-

k„(units of 2ajA„)

FIG. 15. Band structure for a quantum-resonator array:
Same as Fig. 14 except that R I

=9 nm.
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FIG. 14. Band structure for a quantum-resonator array:
Ay 30 nm, R

&
=6 nm, x =0.4, and Vb

—V~ =0.296 eV.
Bands of channehng states are shown as dashed curves and
bands of resonant states are shown as solid curves.

&g(U&&t:s o& 2K/Ax)

FIG. 16. Band structure for a quantum-resonator array:
Same as Fig. 14 except that R

&

= 11 nm.
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FICi. 20. Overlap matrix elements between a zone-center
plane-wave valence state and the lowest-energy (first excited)
zone-center conduction states (denoted (gs~u ) and ( 1 ~u ), re-

spectively) in a quantum-resonator array as a function of core
radius R, .

tween states in different bands becomes finite.
The overlap integral for the transition between a zone-

center valence state in the lowest-energy hole band (first
Brillouin zone) and the lowest energy zone-center con-
duction state is approximately the fraction of the array
unit cell occupied by the conduction state. For
quantum-box (quantum-bump) arrays with well-localized
zone-center ground states, the overlap integrals are ap-
proximately the fraction of the array unit cell occupied
by the box (region between bumps).

The hybridization of states in a quantum-resonator ar-
ray has a clear effect on the overlap integrals and dipole
matrix elements. Figure 20 shows the overlap integrals
between the zone-center valence state and the two
lowest-energy conduction states in quantum-resonator ar-
rays as a function R&. For small R&, each overlap in-
tegral increases as R

&
increases because each state occu-

pies more of the array unit cell when the barrier is
thinner. When the channeling and resonant states are
nearly degenerate and strongly hybridize (R, =9.5 nm)
the overlap of the valence state to the lowest-energy con-
duction state peaks and the overlap to the first excited
state nearly vanishes. Both conduction states are nearly
equal mixtures of channeling and resonant states. The
mixing is in phase for the ground state, and so the ground
state strongly overlaps the valence plane-wave state. The
mixing is out of phase for the excited state and that state
is orthogonal to the plane wave. For R& &9.5 nm, the
hybridization weakens and both overlaps are finite.
When R, =R 2, the barrier is a weak perturbation and the
conduction states are plane waves. Thus the overlap to
the ground state (first excited state) approaches unity
(vanishes) when R i =Rz.

IV. CONCLUSIONS

Augmented-plane-wave band-structure calculations
have been performed to determine whether a two-
dimensionally periodic potential can be used to effectively
tailor the -lectronic properties of a two-dimensional lay-
er. When a two-dimensionally periodic potential is im-
posed, zone folding of the band structure occurs in two
directions. Zone-folded replicas of a parent band can
overlap and hybridize with the parent band on a meV en-

ergy scale. In contrast, parent and zone-folded replica
bands in a bulk crystal overlap on an eV scale. In a one-
dimensional superlattice, zone-folding occurs on a meV
energy scale but does not create replica bands. As a re-
sult of the more complicated zone folding in a two-
dimensional array, greater distortion on a meV energy
scale of the bands of a two-dimensional array is possible.
Band gaps, masses, and widths can be tailored by the
choice of nanostructure potential.

The two-dimensional, imposed potential was defined by
an array of quantum nanostructures. Three choices for
the quantum nanostructure were tested. Isolated quan-
tum boxes contain bound states. When quantum boxes
are placed in a two-dimensional, periodic array, the band
structure still possesses low-energy quasibound states.
The number of states and the dispersion are controlled by
the size and depth of the well and by the lattice con-
stants. Enhanced optoelectronic properties are predicted
for isolated quantum boxes because these structures
confine carriers in all dimensions. Quasibound states will
still exist when boxes are coupled in an array. Thus ar-
rays of quantum boxes should possess the enhanced op-
toelectronic properties of isolated boxes modified by the
interbox coupling possible in an array.

Extended two-dimensional quantum barriers are used
to confine electrons in quantum wells. Quantum bumps,
which are barriers with finite spatial extent, also
effectively exclude carriers from the barrier regions.
When quantum bumps are placed in a two-dimensional
array, channels are formed. Low-energy electrons local-
ize at the connections between channels and form bonds
between the connections. The dispersion of these states is
determined by the width of the channels. The connec-
tions become quantum boxes if adjacent bumps touch and
block off the channels.

The band structures for arrays of quantum resonators
have also been calculated. States which exist in the chan-
nels between resonators, and resonance states sensitive to
the size of the resonator core, can both exist. The ener-
gies and dispersion of these states can be controlled by
the choice of the inner and outer resonator radius and the
channel width. Structures can be designed so that chan-
neling and resonance states overlap in energy and strong-
ly hybridize.

Two-dimensional arrays of quantum nanostructures
could be used to tailor the electronic properties —band
masses, gaps, and widths —of a two-dimensional electron
system. Moreover, the choice of nanostructure deter-
mines the type of states in the band structure. The states
can be tailored to be free states, quasibound states, chan-
neling states, or resonance states. The full range of lat-
tice geometries, types of nanostructures, and unit-cell
configurations still must be explored to determine the
range of electronic properties that could be tailored.
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