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Band structure and related properties of molybdenum

A. R. Jani, * G. S. Tripathi, N. E. Brener, and J. Callaway
Department of Physics and Astronomy, Louisiana State Uniuersi ty, Baton Rouge, Louisiana 70803-4001

(Received 24 October 1988)

Self-consistent, all-electron, local-density calculations are reported for bcc molybdenum, using
the linear combination of Gaussian orbitals (LCGO) method. We obtain the density of states, the
Fermi surface, charge form factors, the Cornpton profile, and the optical conductivity. Results are
compared with other calculations and with experiments where these exist. A possible ferromagnetic
state is found for an increased lattice constant, developing at about 8.07 a.u.

I. INTRODUCTION

This is the third in a series of papers concerning the
electronic structure of cubic 4d transition metals. Our
previous calculations have considered rhodium' and
niobium. In this paper, we report an all-electron self-
consistent calculation of energy bands and related prop-
erties of bcc molybdenum based on the local-density ap-
proximation in density functional theory and employing
the linear combination of Gaussian orbitals (LCGO)
method.

The electronic structure of molybdenum is character-
ized, as is the case for 3d, 4d, and Sd metals in general, by
the overlap and hybridization of a wide nearly free-
electron s-p band with a relatively narrower d-band com-
plex. This leads normally to a rather complex Fermi sur-
face of several sheets. In the case of molybdenum, the
Fermi energy falls in a range of energies in which the d-
electron density of states is not large, leading to a low-
electron specific heat, comparable to that typically found
in simple metals, or noble metals.

Non-self-consistent band calculations for molybdenum
are described in Refs. 5—11. Previous self-consistent band
calculations on Mo include the work of Alp erovich
et a/. ,

' who employed the Green's-function method and
used the calculation to interpret x-ray emission bands.
Moruzzi et a/. ' performed a self-consistent band calcu-
lation of Mo using the Korringa-Kohn-Rostoker (KKR)
method in which the electron charge density was as-
sumed to be of the muffin-tin form. They computed the
density of states and the radial charge density and com-
pared the latter with that obtained for the Mo atom.
Zunger et al. ' carried out a self-consistent band calcula-
tion using a nonlocal-pseudopotential approach and
mixed-basis representation for the crystalline wave func-
tions. Fermi-surface cross sections and the density of
states were computed and the spatial variation of the
charge density associated with several band states was
discussed. Bacalis et al. ' performed band calculations
for the elements of the fifth and sixth columns of the
Periodic Table including Mo, using a self-consistent
augmented —plane-wave (APW) method. They also con-
sidered relativistic effects. The Fermi energy and the
density of states were calculated by the linear tetrahedron
method. '

It is clear from the foregoing remarks that, although
there have been a number of band calculations of Mo,
most of them have not gone beyond the calculations of
the density of states and the interpretation of the Fermi
surface data. The present work differs from previous
studies in that we consider, in addition to the fundamen-
tal electronic structure, some related properties (x-ray
form factors, Compton profile, and optical conductivity)
which are, or can be, compared with experiment. In ad-
dition, we study the possible formation of a ferromagnet-
ic state at expanded values of the lattice constant, and
find that a moment may be expected to develop at a lat-
tice constant of about 8.07 a.u. Although there have
been many recent studies on possible ferromagnetic states
of transition metals at large lattice constants, ' ' cal-
culations of this type for molybdenum have not been re-
ported.

The outline of the paper is as follows. Section II con-
tains a brief description of the band-structure calculation.
We present, in Sec. III, the results of the band-structure
calculation and the density of states; the calculated
Fermi-surface cross sections are discussed in Sec. IV; the
results of x-ray form factors and the Compton profile are
given in Sec. V; we report the computation of the optical
conductivity in Sec. VI; and in Sec. VII, we discuss the
possibility of a ferromagnetically ordered state for ex-
panded values of the lattice constant in Mo.

II. PROCEDURE

We employ a linear combination of atomic orbitals
(LCAO) method, within the framework of the local-
density approximation, in which the wave function is ex-
panded in a set of Gaussian orbitals (LCGO). This
method does not make any shape approximation to
charge densities or potentials. The details of this pro-
cedure are described in Ref. 3. We present below a brief
description of some essential features of the present cal-
culation.

The exchange-correlation potential used has the von
Barth —Hedin form, but with parameters given by Ra-
jagopal, Singhal, and Kimball.

The Gaussian-orbital basis is chosen from Ref. 37, and
contains 16 s functions, 12 p functions, 8 d functions, and
l f function; they are given in Table I. It may be noted
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TABLE I. Orbital exponents of the Gaussian basis set.

1s
2s
3$
4s
5s
6s
7$
8s
9s
10s
11s
12$
13$
14s
15s
16s

564 811.58
84 340.172
19 223.887

5640.427
1935.0108
736.037 01
304.546 61
134.491 52
50.361 75
22.461 279
7.711 217
3.926 3438
1.828 7531
0.891 389 77
0.394 964 69
0.085 897 748

1p
2p
3p
4p
5p
6p
7p
8p
9p
10p
11p
12p

1d
2d
3d
4d
5d
6d
7d
8d

4706.3308
1104.2933
361.171 22
139.142 98
58.356 511
25.821 389
10.718 475
4.773 2916
2.026 2457
0.887 646 41
0.342 082 79
0.088

172.7583
51.005 487
19.267 661
7.922 9414
3.378 5846
1.329 3987
0.495 31799
0.158 956 73

0.8

III. BAND STRUCTURE AND DENSITY OF STATES

The self-consistent band structure of bcc molybdenum
obtained following the procedure described in the preced-

that an extra p orbital and an f orbital were added to,
and the most diffuse s orbital was deleted from, the origi-
nal table.

The value of the equilibrium lattice constant was es-
timated for T =0 K with the aid of measured thermal-
expansion coefficients. This has been done because most
Fermi-surface measurements are performed at low tem-
peratures. The equilibrium lattice constant was found to
be 5.94284 a.u. This value was used to compute the
quantities described in Secs. III—VI.

The calculations were carried out to self-consistency
using 55 points in the —„th (irreducible) part of the Bril-
louin zone. The final bands were generated at 506 points,
and related properties were calculated with this grid.
Relativistic effects were not included.

ing section is plotted in Fig. 1. We have given the ener-
gies at selected symmetry points relative to the Fermi en-
ergy in Table II(a), together with the corresponding re-
sults obtained by five different methods, three of which
are self-consistent methods. There is overall agreement
among these results. In Table II(b), we give a brief sum-
mary of band calculations, along with selected band pa-
rameters. In the bcc lattice 1" and H are convenient
points to use for discussing s-d —and d-band widths. The
s-d —band width which is given by the Hz5-1, separation
is found to be 0.761 Ry, which compares well with the
average value 0.747 Ry of the other reported calcula-
tions. The H25-H, 2 separation measures the d-band
width, and our value for this quantity is 0.693 Ry. This
also compares very well with other reported values, espe-
cially with those which are obtained by APW
methods. ' The width of the occupied portion of the s-
d band, EF E(I, ), i-s found to be 6.47 eV which is in
reasonable agreement with the photoemission result of
Kress and Lapeyre who found it to be about 6 eV. The
width of the occupied portion of the d band [EF-E(H,z)]
is found to be 5.55 eV which is in overall consistency with
other calculations. It may be interesting to note that the
widths of both the occupied portion and the total d band
are larger than the corresponding values
[EF-E(H,2)=4.20 eV, and E(Hz~)-E(H, z)=6.53 eV] of
its 3d counterpart, chromium, obtained using the same
procedures as employed here. d bands in the 3d elements
are normally narrower than those of their 4d counter-
parts.

As in the cases of niobium and rhodium that we have
discussed previously' there is reasonable general agree-
ment between the results of different calculations as seen
in Tables II(a) and II(b), even though the computational
methods are quite different. In particular, the energies
obtained in the self-consistent calculations (Refs. 13—15,
and the present) agree for many (but by no means all) lev-
els within roughly 0.2 eV. It is difficult to find a clear
pattern in the differences. There is, apparently, a tenden-
cy for the pseudopotential calculation of Ref. 14 to give a
more compressed band with excited states lower in ener-

gy than the others. One expects and finds that the in-
clusion of relativistic effects depresses the energy of the
s-like state I

&
at the bottom of the band, and it is some-

what surprising not to find evidence of this for other s-
like states (P„N, ).

The density of states was calculated by using the linear
tetrahedron method' ' using 506 points and is plotted
in Fig. 2. There are three main structures below the Fer-
mi energy and two peaks above the Fermi energy. The
peak positions in our plot are at —3.92, —3.02, —1.69,
1.62, and 2.24 eV, respectively, from the Fermi energy.
In Table III(a), we have compared these positions with
those obtained by some other calculations ' ' and from
photoemission experiments. ' There is also good
agreement between our positions and those obtained by
other self-consistent calculations. ' '

The density of states at the Fermi energy was found to
be 8.76 states atom ' Ry '. This is in excellent agree-
ment with other reported values [Table II(b)]. The elec-
tronic specific-heat coefficient yb, „d was found to be
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FIG. 1. Energy bands of bcc molybdenum.

3.6X10 cal/molK . There are a number of measure-
ments of this quantity. ' Vfe list them together vnth
our results in Table III(b). They range between
4.8 X 10 and 5.26 X 10 cal/mol K . This suggests
that, on an average, the experimental value is about 1.4
times that of the theoretical value, and this enhancement
is presumably due primarily to the electron-phonon in-
teraction. This is in fair agreement with the electron-
phonon enhancement parameter 1.41 found from
McMillan's theory.

IV. FERMI SURFACE

The Fermi surface of molybdenum has been studied ex-
perimentally by the de Haas —van Alphen (dHvA)
eFect, ' radio frequency size e6'ect (RFSE), ' mag-
netoacoustic geometric resonance e6'ect, "' and cyclo-
tron resonance. One of the distinguishing characteris-
tics of molybdenum is the multiplicity of its Fermi-
surface sheets. Bands 3—5 contribute to the Fermi sur-
face, and there are four sheets. %'e discuss them below in
the order of increasing number of carriers. The largest
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FICz. 2. Density of states of bcc molybdenum.
FICx. 3. Cross sections of the molybdenum Fermi surface in a

(100) plane.
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surface (I 4), which arises from the fourth band, is the
electron jack centered at the I point of the Brillouin
zone. The next largest surface (H~) is the third-band hole
octahedron at H. In addition, the third band also con-
tributes six nearly ellipsoidal hole surfaces (N3) at N.
The smallest surfaces (b.5) are the six fifth-band electron
lenses located at the 6 line. These Fermi-surface cross
sections, which are labeled in Figs. 3 and 4, are drawn in
planes (100) and (110). We have calculated the extremal
areas of these cross sections, and as can be seen from
Table IV, there is good agreement between our values
and the experimental results, ' as well as with the results
of Ref. 10. It may be noted that a jack-octahedron sepa-
ration is predicted by the experiments. ' However,
Figs. 3 and 4 do not show such separations because our
calculation is nonrelativistic. The spin-orbit interaction

in Mo produces separations between these pairs of sur-
faces.

p(0) =n, (5.2)

in which n, is the number of electrons in the unit cell.

V. X-RAY FORM FACTORS
AND COMPTON PROFILES

A. X-ray form factors

The x-ray form factors are given by the expression

p(K)= fp(r)e' 'd r, (&.1)

where the integration is over the whole crystal and p is
normalized so that

TABLE II. (a) Selected symmetry point energies (in eV) relative to the Fermi energy. The abbreviations relative to exchange-
correlation potentials are as follows: KS (Kohn and Sham); SSTL (Singwi, Sjolander, Tosi, and Land); HL (Hedin and Lundqvist);
and VBH-RSK (von Barth and Hedin, as parametrized by Rajagopal, Singhal, and Kimball). The abbreviations relative to methods
are as follows: AP% (augmented plane wave); KKR (Korringa-Kohn-Rostoker); NLP (non local pseudopotential}; LCGO (linear
combination of Gaussian orbitals); NSC (non-self-consistent); SC (self-consistent); and Rel (relativistic). (b) Comparison of band cal-
culations. Energy diff'erences are in Rydbergs.

Lattice
constant

(a.u.}

Exchange-
correlation

potential

Method of
calc.

Ref. 6

5.947 83

Slater

APW-NSC

Ref. 8

5.9467

Renormalized
atom

Renormalized
atom —NSC

{a)
Ref. 13

5.89

KKR-SC

Ref. 14

5.9584

KS and SSTL

NLP-SC

Ref. 15

5.953 48

HL and Xo.

APW-SC
Rel. Nonrel.

Present

5.942 84

VBH-RSK

LCGO-SC

C, ( I"
1 )

E;(I 2~)

E(I „)
C{H12 )

c(H~~ )

a{Hi~ )

C(Xl )

v{%2 )

C(Xl )

C{IVY )

E(%4)
~{+,)

.{~4)
c{P3)
~{a,)

—6.64
—1.09

1.46
—5.49

3.87
9.51

—5.06
—3.11

1.67
1.66
2.18
4.58

11.85
—2.44

2.29
10.81

—5.92
—1.49

1.37
—6.24

4.16

—5.52
—3.71

1.69
2.42
2.27
5.06

—2.62
2.35

—6.50
—1.41

1.34
—5.93

—5.40
—3.54

1.58

—2.6

—5.67
—1.52

1.51
—5.21

3.21
9.21

—5.42
—3.61

1.68
1.36
1.68
3.63
9.41

—2.88
2.12
9.5

—7.3
—1.29

1.47
—5.69

3.91
9.16

—S.40
—3 ~ 34

1.49
2.16
4.69

—2.62
2.29
9.65

—6.4
—1.36

1.32
—5.67

3.71
9.59

—5.20
—3.38

1.94
2.00
4.47

—2.54
2.12

10.83

—6.47
—1.47

1.52
—5.55

3.88
9.43

—5.23
—3.51

1.60
1.96
2.16
4.64

12.20
—2.61

2.28
10.7

c{H2& )-c{I, )

~{X', )-~{I, )

EF-~(H»)
EF-c(I, )

X(EF ) (State/Ry/atom)

0.772
0.688
0.610
0.403
0.488

8.24

0.741
0.764
0.613
0.458
0.435

(b)

0.594
0.436
0.477

8.84

0.652
0.619
0.516
0.383
0.416

8.57

0.826
0.706
0.648
0.418
0.538

7.99

0.744
0.690
0.613
0.417
0.470

9.19

0.761
0.693
0.619
0.408
0.475

8.76
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TABLE III. (a) Calculated and observed structures in the density of states of Mo, relative to the Fer-
mi energy (in eV). (b) Electronic specific-heat coefficient yb, „d (10 cal/mol K ).

(a)

Ref. 6 Ref. 13 Ref. 14 Present
Photoemission

Ref. 38 Ref. 40

—4.28
—2.92
—1.56

1.50
2.45

—3.9
—3.1
—1.6

1.6

—3.96
—2.92
—1.63

1.61
2.10

(b)

—3.92
—3.02
—1.64

1.62
2.24

—3.9

—1.6
1.0
2.0

—1.6

Present work
Horowitz and Daunt (Ref. 41)
White and Woods (Ref. 42)
Shimizu, Takahashi,

and Katsuki (Ref. 43)
Handbook Chem. Phys. (Ref. 44)
Hultgren et al. (Ref. 45)
S. A. Nemononov (Ref. 46)

3.6
5.1+0.4
5.24
5.05—5.25

5.21
5.26
4.8—5. 1

The advantage of using the LCGO method is that one
can obtain p(K) directly from the band-structure calcula-
tions in terms of quantities called generalized overlap in-
tegrals, and without additional labor.

%'e list our calculated x-ray form factors in Table V.
The form factors for the atom are calculated from our
starting charge densities, while those for the solid are ob-
tained self-consistently. A comparison of these two sets
of data reveal, as expected, that the form factors in bulk
molybdenum di8'er only slightly from those of the free
atom, thereby indicating that the overall electron distri-
bution in the solid is close to that of the free atom. This
statement, however, does not mean that the outermost or
valence electrons are not redistributed in forming the
solid; it means only that x-ray reAection intensities are
represented well by the free-atom values of the form fac-
tors, and are not very sensitive to small redistributions of
the electrons. Unfortunately, to our knowledge, there are
no experimental results or previous theoretical calcula-
tions of the form factors.

%e have also listed the angular anisotropies in the

same table which define the ratio of the form factors for
wave vectors K of the same magnitude, but di6'erent
orientations such as (3,3,0) and (4, 1„1); and (4.3,1) and
(5, 1,0).

B. Compton profile

An analysis of the Compton profile is important since
it is sensitive to the state of the valence electrons of the
solid. Since the revival of the Compton scattering tech-
nique about two decades ago, a great deal of work has
been done on the Compton profile of solids. Experimen-
tal innovations such as the use of energy dispersive detec-
tors and high-energy y-ray sources have extended the ap-
plication of this probe to heavier solids such as transition
metals. Much of the earlier work on transition metals in-
volved polycrystalline samples, whereas recently mea-
surements have been carried out using single crystals. An
extensive review of these data are given in Ref. 57.

We report in this work a computation of the Compton
profile and its anisotropy in molybdenum. We have con-

TABLE IV. Calculated extremal areas of Fermi-surface cross sections (in a.u. ).

Sheet

I"4 (jack)

H3 (octahedron)

X3 (ellipsoid)

Planes

(100)
(110)

(100)
(110)

(100)
(110)
(110&

(100)
(110)

Koelling et ah.

Ref. 10

0.6282
0.4313

0.4110
0.3085

0.0685
0.0804
0.1166

0.0170

Present

0.6170
0.4289

0.393
0.3089

0.071
0.0798
0.1205

0.029
0.0189

Exp (Ref. 51}

0.6174
0.4223

0.4023
0.3031

0.060
0.0703
0.0974

0.0137
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literature. Since core electrons do not differ appreci-
ably in the solid from those in the free atom, a free-atom
core contribution would suffice to account for the total
Compton profile.

TABLE VI. Calculated Compton-profile function in the
[100], [110],and [111]directions together with the directional
average profile.

P

FICz. 4. Cross sections of the molybdenum Fermi surface in a
(110) plane.

TABLE V. X-ray form factors of molybdenum.

Atom

42.003
32.296
28.054
25.388
23.497
22.055
20.891
19.907
19.049
18.282
18.282
17.585
16.945
16.352
15.799
15.799
14.796

Angular anisotropies

Solid

42.003
31.587
27.486
24.984
23.114
21.619
20.583
19.599
18.702
18.053
18.013
17.374
16.806
16.231
15.704
15.67
14.727

I(330)/I(411)
I(431)/I(510)

1.0022
1.0022

sidered only the valence-electron (4d+5s) contribution
to the Compton profile. We have not calculated the core
contributions because a Hartree-Fock contribution of
core electrons for the free atom is already available in the

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0

~[]oo](q)

2.370
2.373
2.313
2.296
2.244
2.171
2.101
2.018
1.856
1.712
1.548
1.300
1.058
0.887
0.784
0.576
0.417
0.319
0.279
0.252
0.243
0.228
0.201
0.172
0.154
0.125
0.089
0.068
0.057
0.050
0.044
0.042
0.037
0.032
0.027
0.025
0.022
0.020
0.018
0.017
0.015
0.015
0.014
0.014
0.013
0.014
0.014
0.013
0.012
0.011
0.011

J[l [o](q)

2.589
2.580
2.505
2.388
2.264
2.109
1.975
1.863
1.764
1.635
1.453
1.259
1.077
0.866
0.677
0.556
0.460
0.376
0.304
0.269
0.238
0.210
0.186
0.168
0.146
0.122
0.103
0.086
0.069
0.057
0.049
0.042
0.036
0.032
0.028
0.025
0.022
0.020
0.018
0.017
0.016
0.015
0.014
0.013
0.013
0.013
0.014
0.012
0.011
0.011
0.011

J[111](q)

2.827
2.772
2.638
2.395
2.190
1.987
1.874
1.788
1.757
1.682
1.483
1.154
0.854
0.761
0.795
0.716
0.514
0.369
0.299
0.255
0.221
0.202
0.191
0.164
0.131
0.122
0.123
0.106
0.071
0.050
0.040
0.035
0.032-
0.030
0.030
0.029
0.023
0.020
0.019
0.018
0.017
0.015
0.013
0.013
0.013
0.013
0.013
0.012
0.009
0.008
0.010

J,„(q)

2.588
2.570
2.485
2.364
2.239
2.095
1.985
1.888
1.789
1.669
1.488
1.244
1.014
0.845
0.738
0.603
0.461
0.358
0.295
0.261
0.235
0.213
0.192
0.168
0.145
0.122
0.104
0.086
0.066
0.053
0.045
0.040
0.035
0.031
0.029
0.026
0.022
0.020
0.019
0.017
0.016
0.015
0.014
0.013
0.013
0.013
0.013
0.012
0.011
0.011
0.011
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FICs. 5. Spherically averaged Compton profile of molybde-
num. FIG. 6. Anisotropy of calculated Compton profile of

molybdenum.

The Compton profile of the valence electrons was com-
puted using the expression

J-(q)= f d p p(p)5(q —p k),0 (5.3)
(2m. )

where p is the momentum distribution function, k is a
unit vector along k, 0 is the volume of the unit cell,

(5.4)

and Ace is the energy transferred to the electron after a
Compton scattering event has occurred. The momentum
density requires a summation over all occupied states. At
T =0 K, this can be written as

p(p)= g e(E —E„(k))lg„(k,p)l',

where EF is the Fermi energy, E„(k) is the energy of a
state, e is the unit step function, and 1(„(k,p) is the
momentum-space Bloch function which is related to the
position-space Bloch function by Fourier transformation.

The directional profiles were calculated using 506
points in the —,', th part of the Brillouin zone. The Comp-
ton profiles J&(q) along the [100], [110],and [111]direc-

tions together with the spherically averaged profile for
each value of q ranging from 0 to 5 a.u. are given in Table
VI. The spherically averaged profile is also plotted in
Fig. 5. Differences of the Compton profile with respect to
directions of the momentum transfer are shown in Fig. 6.
Apparently, at present, there are no experimental results
for molybdenum. It may, however, be noted that there

have been some positron annihilation measurements
on molybdenum, and the resulting data have been ana-
lyzed by an independent particle model using APW tech-
niques. Since electron-positron correlation is important
in the interpretation of annihilation measurements, a
quantitative comparison between the Compton profile
and the annihilation measurements is not possible. How-
ever, the Compton-profile results show the same qualita-
tive features.

VI. OPTICAL CONDUCTIVITY

The study of the optical conductivity of metals is of in-
terest in the sense that it provides quantitative informa-
tion on the structure of energy bands. The optical con-
ductivity of Mo has been studied experimentally by
several groups. ' Koelllng et al. have calculated
the interband contribution to the optical conductivity of
molybdenum in the range of 0 to 5.5 eV using a constant
matrix-element approximation. They have used the re-
sult of a relativistic, non-self-consistent APW band-
structure calculation for this purpose. Similar approxi-
mations have been made by Picket and Allen, who cal-
culated the imaginary part of the dielectric function of
Mo using the results of an APW band-structure calcula-
tion. Since momentum matrix elements occurring in the
expression of the optical conductivity determine the
strength of optical transitions, the constant matrix-
element approximation may be a severe one.

We have, therefore, calculated the frequency-
dependent optical conductivity using the standard formu-
la"

o(~)=, gf, I(Iklpl«& I' fi(k)[1—f„(k)]&(E„(k)—E((k)—+~),
3m co („(2') (6.1)
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where fi(k) and f„(k) are the Fermi distribution func-
tions for bands I and n, respectively, and the remaining
notation is conventional. The use of a Gaussian basis set
facilitates the evaluation of the momentum matrix ele-
ments analytically, thus enabling one to retain the k
dependence of these quantities. The k-space integration
was performed numerically by the linear tetrahedron
method using 506 points.

The interband optical conductivity is plotted in Fig.
7(a). The major structure (peaks) occur at 2.05, 3.95, and
6.81 eV. Since, in our computation, contributions from
various bands were not separated out, it is not possible to
make assignments of peaks to particular transitions with
much certainty. However, positions of these structures
are in reasonable agreement with the same in experi-

within the range studied. Furthermore, ob-
served structures are not as sharp as the calculated ones.
The discrepancy may be due to the lifetime broadening
effect and the intraband Drude contribution. The Drude
parameters are taken from Ref. 67. The effect of lifetime
broadening has also been included with a choice of 0.29
eV for the reciprocal lifetime. We have plotted the com-
bined results of the intraband and interband conductivi-
ties in Fig. 7(b). As is seen in Fig. 7, the calculated re-
sults are in satisfactory agreement with experimental re-
sults ' within the limits of experimental uncertainties.

VII. MAGNETIC TRANSITION

conditions should lose their order if the lattice constant is
decreased sufficiently. There have been a number of
theoretical calculations pertaining to these phenome-
na. Alldersen and co-workers have studied the
volume dependence of the magnetic moment of bcc, fcc,
and hcp Fe, using local-spin-density (LSD) and atomic-
sphere approximations (ASA). Similar calculations have
been performed by Kubler, employing the
augmented —spherical-wave procedure, and by Bagayoko
and Callaway using the LCGQ method and the pro-
gram BNDpKG. The latter method has been used exten-
sively to investigate the onset of the ferromagnetic rno-
ment in a number of transition metals, ' ' including
several 4d metals. On the other hand, Moruzzi and co-
workers ' have studied magnetic transitions in 3d
metals by analyzing self-consistent total-energy band-
structure calculations in the local-spin-density approxi-
mation utilizing a fixed —spin-moment procedure. In ad-
dition, several authors have used the general-potential
linear augmented —plane-wave (LAPW) method to inves-
tigate the volume dependence of the magnetic moment of
bcc and fcc Fe. No investigation of molybdenum
has been made to date.

We performed a spin-polarized band-structure calcula-
tion of molybdenum, using the LCGO method and the
program BNDPK.c, in the local-spin-density approxima-
tion. It has been found that bcc Mo is nonmagnetic
(NM) at the equilibrium value of the lattice constant.

There has been increasing interest in the study of the
volume dependence of the magnetic properties of transi-
tion metals. It has been predicted that with some in-
crease in the lattice constant, nonmagnetic transition
metals will undergo a transition to a magnetically or-
dered state. Systems that are magnetic under normal
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FIG. 7. Optical conductivity of molybdenum. Circles
represent experimental points from Ref. 61 and diamonds
represent experimental points from Ref. 62.

FIG. 8. Ferromagnetic moment of bcc molybdenum vs lat-
tice constant.
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TABLE VII. Calculated ferromagnetic moments for different
values of the lattice constant.

Lattice constant (a.u. )

Magnetic moment
ml /pg m 2/Pz

5.942 84 —8.05
8.06
8.07
8.12
8.25
8.35
8.45
8.75
9.0
9.5

10.0

4.091
4.1145
4.265
4.493

4.894
5.097
5.322

However, with increase in the lattice constant, Mo shows
the following behavior: the magnetic moment is zero up
to a =8.06 a.u. , there is a double-moment region between
a =8.06 and 8.65 a.u. ; and, finally, there is a single-
valued high-spin (HS) state beyond a =8.65 a.u. The
transition from the NM to HS state occurs discontinu-
ously somewhere in the double-moment region. We are
unable to predict the exact point at which the transition
occurs since we have not performed a total-energy calcu-
lation. The highest value of the lattice constant con-
sidered for the computation of the ferromagnetic moment
is 10.00 a.u. , at which the value of the moment is 5.32p~,
where pz is the Bohr magneton. We have not gone
beyond this value because our basis set may not be ade-
quate to describe the behavior beyond. However, we ex-
pect that, as the lattice constant is further increased, the
magnetic moment will acquire its free-atom value of
6.0pz in the LSD limit. ' These calculations do not con-
sider the possibility of antiferromagnetic order and there-
fore we cannot make definite predictions of the magnetic
order in the ground state. The results obtained in this
section are given in Table VII and plotted in Fig. 8.

VIII. CONCLUSIONS

Self-consistent band calculations of bcc molybdenum
have been made in the local-density approximation using
the LCGO method. A modified form of the von
Barth —Hedin exchange-correlation potential has been
employed. There is reasonable agreement with the re-
sults of other calculations employing different methods.
The density of states was calculated using the linear
tetrahedron method, and also agrees well with previous
calculations and photoemission data. The electronic
specific heat calculated using the density of states at the
Fermi energy is found to be about 1.4 times less than the
average experimental value, which is consistent with the
electron-phonon enhancement parameter obtained using
McMillan's theory. The calculated extremal areas of
Fermi-surface cross sections agree well with experiment,
as well as with a previous theoretical calculation. We
have made the first detailed analysis of the Compton
profile and its anisotropies in Mo. The interband optical
conductivity was calculated using the k dependence of
the matrix elements. There is satisfactory agreement be-
tween our results, which also include the Drude intra-
band contribution, and the experimental results. Finally,
a spin-polarized band-structure calculation has been per-
formed to study the lattice-constant dependence of the
ferromagnetic moment in bcc Mo. It has been found that
bcc Mo undergoes a discontinuous nonmagnetic to high-
spin transition inside a double-moment region.
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