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Drift and diffusion in a one-dimensional disordered system
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The low-frequency drift and di8'usion coe5cients in a one-dimensional difusion model are deter-
mined. Of particular interest is the case of a constant bias and random hopping elements with a dis-

tribution which diverges for small values of the hopping elements. With use of the replica method
this Inodel is shown to be equivalent to a particle in a uniform magnetic 6eld proportional to the
bias. This model exhibits scaling behavior at low frequencies with crossover scaling behavior for
small and large bias.

I. INTRODUCTION

The problem of drift and diffusion of a particle on a
random, one-dimensional random lattice has been widely
studied recently. ' ' Various models have been proposed
and in many of them the hopping rates are biased in one
direction and the particle drifts in this direction with
diffusion superimposed on this motion. Depending on
the model the drift and diffusion may be normal or anom-
alous. These models may be of interest in neural net-
works, microcircuits in electric fields, diffusion in alloys,
etc.

The motion of the particle is described by an equation
of the form

Bp i+~+1 ~ +i

—( W„'
„ i + W„'„+i )p„,

where 8",, is the hopping rate from site r —1 to site r
and p„is the probability of finding the particle at site r.
n the problem of difFusion with bias W„',„WW„'„,and

in this paper we will study the case in which

In case (a) [Eq. (1.3)], a number of methods can be ap-
plied to calculate the average drift and diffusion constant
which are normal, i.e., at low frequencies the average
drift and diffusion constants are frequency independent.
Aslangul, Pottier, and Saint-James' have studied two
models, not identical to (1.2), which fall into this
category. This paper is devoted mainly to case (b) [Eq.
(1.4)] and we extend the method of Stephen and
Kariotis' (SK) who considered the same problem with
5=0. Use of the replica method enables us to map this
problem onto that of a particle in magnetic field propor-
tional to the bias 5. We are then able to obtain results for
the drift velocity and diffusion constant at low frequen-
cies for small and large 5.

II. GENERATING FUNCTION

The Laplace transform of (1.1) with the initial condi-
tion p„(0)=5„0is

+ ( W„'
„ i + W„'„+,)P„=5„0+U„, (2.1)

i
=8'„,]+5,

(1.2) where

P„(co)= f e 'p„(t)dt

W, '= f dWp(W)W'
0

and, 'case (b),

(1 3)

(1—a) W (with 0&a & 1), 0& W & 1 (1.4a)

0, 1&W. (1.4b)

where 5 is a constant bias and 8"„,,= 8"„,
&

is a ran-
dom variable chosen from the same distribution for each
bond. We consider two types of distributions, p(W'),
which have been widely studied" in the case 5=0: (a)

p( W) is such that the inverse moments of W are finite,
e.g. , P„' '=G„,(w),

P„'"=g Go„(co)U„.
(2.2)

These Green's functions are easily found in the ordered
system in which 8'„,„=8 for all r and for later refer-
ence we note the results

and we have included an external potential U, for con-
venience. The solution of (2.1) can be written in terms of
the Green's functions G and up to terms linear in U,
P =P' '+P"' withr r
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6(0)(~)
(co +4Wco+45 )'

(2.3) s(p)=(exp —ip" pGes —i XU, Gep"
l

. (2.12)
T

G(o)
co 2—i 5 sink+2 W(1 —cosk )

(2 4) The average Green's functions are then given by

where the superscript zero refers to the ordered case and
6' '(k, co) is the Fourier transform of Go„'(co). Thus 5
determines the drift and 8' the diffusion of the particle.
In case (a) to a first approximation in the inverse mo-
ments of W the results (2.3) and (2.4) are still valid with
8'replaced by S;.

For the disordered system we expect (Goo(co)) and
( 6(k, co) ) to show scaling behavior in the low-frequency
limit:

a'(6 (co))= i, s (p)
Bp Bp p=0

(2.13)

U Pa p 0

(2.14)

where so(p) is the part of s independent of U, 5s is linear
in U, and we have chosen U„=Ue ' ". It is convenient
to introduce the Fourier transform of s (p)

(Goo(co) )=,
&

fo(5/co~),1

( 6(k, co) ) = f (kg—, 5/co&),1

(2.5)
s(V)= fdpe' ' + ' 's(p) .

(2.6)
In terms of this function

(2.15)

where the angular brackets indicate an average over the
disorder. From (2.3) and (2.4) in case (a) P= —,

' and the
crossover exponent P =

—,'. The correlation length
g= co ~ 'go(5/co~). In case (b) the exponent
P=1/[2(2 —a)], the same as in SK, and we will show
below that P =2P.

To identify the drift velocity v and diffusion constant D
we can expand (2.6) in powers of kg and write the expan-
sion in the form

(600(co)) = i f—dV
~
V

~ so( V),

(G(k, co)) =—f dV V'5s(V)1

in the limit n =0.

III. INTEGRAL EQUATION

(2.16)

(2.17)

4k(6(k, co)) =—1+ u — D — u + .
CO Cc) CO CO

We focus attention on site 0 and in generating function
(2.11) we represent everything to the right and left of site
0 by Q„'and Qi, respectively. Then

(2.7)
( V) — ip)~v~ gi g s (3.1)

We now introduce a partition function

Z y eH(v) (2.8)

From translational invariance the Q' satisfy the integral
equation

where the V are n-component complex variables, integra-
tion is over the real and imaginary parts of V between—~ and + (x), and

Qg L ( V) = fdV'K~ L(V, V')Q~ L ( V'),

where

(3.2)

H( V) =i Q V„*.G '„,V, i g (V—„U„+V„*U„*)
Tps

and

6 '„,=(co+ W„'„i + W„'„+))5„,

(2.9) ( i+V —V'~ ) +S'(V*—V' ) (V+V')+iep~(v'~
R,L

It is convenient to put

g e

( V) —e(i +S e)x~)V~ g '( V)

(3.3)

(3.4)
res~ res~ (2.10)

It is convenient to arrange that G ' is Hermitian and to
achieve this we replace 5 by I', O'. In the final results we
will analytically continue 5' to e ™25with no apparent
difficulties. To determine the average Green's functions
we introduce

so that Q satisfies

e ' '"
Qz L(V)= f dV'K+ I (V, V')Q„I(V),

where

(V Ve) —( iKv v
I ) +s'(v'v' v'v' )

R, L

(3.5)

(3.6)
)fc

s(p)= f(dp)e
' ' ' ' 'e ' '), (2.11)

where p is an n-component vector and it is understood
that the n =0 limit is to be taken. Omitting terms in U*
which are not required

We can reduce (3.5) to a differential equation by noting
that apart from a multiplicative factor (which is unity
when n =0) K is the Green*s function, replicated n times,
of a particle of unit mass in a magnetic field in two di-
mensions
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D(r', r,P) = g q~(r')e ~ g&~(r)

4n sinh(Pco, /2)
exp

pco~

2 4
(xy' —yx') — cath (r' —r)

2
(3.7)

where
'2

H= —p ——A, A= —(y, —x),1 e B
C

1 8'+ i5'
45' 8' —i 5' (3.8)

and we can write the Hamiltonian in the form

and y are the eigenstates of H. Focusing attention on
Kz, we identify the cyclotron frequency co, =45' and the
inverse temperature

=e ' zL"', (z)/&m, E =46.m, (3.15)

where m ) 1 is an integer, go =e '/, L ' " is a Laguerre
function, and z =26R . We can now expand

Q= pa
m=0

(3.16)

with ao= 1 to satisfy the condition Q(0)=1. When (3.16)
is substituted in (3.1) and (2.17)

in the n =0 limit. It is easily shown that its normalized
eigenfunctions and eigenvalues are

aH= ——
2 BV„

1 8
2i 5'V— —— +2i5'V„

2 (6 )= g (&ma —&m+la, ) . (3.17)00

(3.9)

Then K(V, V')=D(V', V,P) and the integral equation
(3.5) can be written

H /45'

We adopt the convention here and below that
lim Oa v'm = —ao = —1. The equations for the
coefficients a are obtained by substituting (3.16) in (3.10)
and using the recursion relations of the Laguerre func-
tions. This gives

(
8"—i 6'

8'+i 5' (3.10) F(m)a = ,'i 6 ——[—&m (m —1)a,+2ma

We omit the subscripts R and L because Q is the spheri-
cally symmetric solution of (3.10) and the sign of the field
5' is unimportant.

We now focus attention on case (b) in which case this
equation simplifies considerably in the low-frequency
scaling region. We introduce scaled variables 8'=co ~u,
V=co ~(x+iy), and 6=5'/co ~ and after subtracting Q
from both sides of (3.10) and retaining the leading terms
in co, as in SK, we find (with P= 1/[2(2 —a)])

—&m (m +1)a +, ] (3.18)

for m ~1.
(a) b, ))1. In this case we only need the first few

coefficients and from (3.18) with ao = 1 we find

&/2+2 aF(1) F(—1)— ( )
e igi a+) /2—

sin(ma)

(3.19)

When these results are substituted in (3.17) we find
F(H'/4b, )Q= ib, '(x +y )Q,—

where

(3.11)
1

1
co sin(ma) +

2m(1 —a)5
(3.20)

and

F(x)=(1—a)f du
0 0

H'(b, ) = ——a
2 Bx

'2
—2i hy —— +2ihx1 a

2 By

(3.12) where we have replaced 5' by e' 5. This is consistent
with scaling form (2.5). We can also identify the diffusion
constant as D =[sin(na)/m(1 —a)]5 from the second
term of (3.20).

(b) 6(1. In this case we require a for large m and
(3.18) can be replaced by a differential equation. For
large m (see Appendix)

(3.13) F(m) = —I (a)(2me' )' (3.21)

H'= —— +a' 1 a +26 R
2 ()R2 2R BR

(3.14)

Thus the crossover exponent of (2.5) $=2P. Equation
(3.11) cannot be solved in closed'form but we can obtain
results for large and small values of the scaled 6eld 6 by
expanding in the eigenstates of H'. Q is a spherically
symmetrical function of R =x +y in which case

and (3.18) becomes

m a" +ma' —
—,'a =I (a)(2mbe' ) (3.22)

The substitution m =( At) ~/4be™/2 with A =(2—a) /
2 I (a) reduces this to Bessel's equation and the solution
satisfying the boundary condition lim 0&m a = —1

and vanishing at ~ is
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im/2) i /2
a = — K2t((t),I (2P)(2A) ~ (3.23)

when H" =H'(+6) where H'(b, ) is given by (3.13). The
solution of (4.4) for k =0, 5Q' ' say, is given by

where K is a Bessel function. Equation (3.17) can now be
evaluated by replacing the sum by an integral with the re-
sult

5g(0) — i ~P—1U.
2

+2i hy

~c"'
sin(2mP)co ~ (3.24)

+i +2ibx Q .
By

(4.5}

In this section we discuss the Green's function (2.14)
and determine the drift and difFusion constants using
(2.7). When we include a field U„=Ue '""the part of the
generating function (2.12) linear in U can be written

ico{V)»(I')=e"" (5QL QR+gt, 5QR iU VQLQR» (4.1)

where 5Q~ L are the changes in Qz L due to the field. We
again put

Q~ L(V) —e
'

I I'5Q (V)

so that 5Q satisfies

e —'"5Q~ L ( V) =JK~ L (V, V')

X [5Q~ (VL') i V' Ug—~ t ( V')],

(4.2)

where C&
' is given in SK. This result agrees exactly with

SK. We have not carried it to higher order in 6 because
it is easier to determine the drift velocity and diffusion
constant for weak fields using the results of the next sec-
tion.

IV. DRIFT AND DIFFUSION

5g =5g'"+M' (4.6)

and after using the equation satisfied by 5Q' ' we obtain

[6' F(H" /46)+iR ]M'=co ~ '(e —'"—1)

X(5Q( '+M') . (4.7)

From (4.5) M' must be of the form

M' = 2b, m~ 'U —(x+i y )M, (4.8)

where M is a function of R only. In the n =0 limit H"
acting on a function of this symmetry replaces (3.14) by

HI/
l 0 1 () +25 R +23 .
2 gR' 2R QR

(4.9)

This Hamiltonian has normalized eigenfunctions and ei-
genvalues

This is easily verified by applying the operator on the
right-hand side of (4.5) to (3.11) and noting that this
operator commutes with H". It is thus convenient to put

(4.3)
=e ' L' '(z); F. =46(m+ —'+—') (4.10)

+i co~ 'U (x+i y )Q (4.4)

where K is given by (3.6). We now adopt the convention
in the following equations that the upper and lower signs
refer to 5git and 5QL, respectively. Following the same
methods as in Sec. III, in case (b) in the scaling region
(4.3) can be replaced by

F(H" i45)5Q=[ iR +co —~ '(e +—'"—1)]5Q

with m +0. We now expand M in terms of this complete
set of eigenfunctions

M= gb
m=0

(4.11}

After expressing 5Q( ' given by (4.5) and (3.16) in terms
of these eigenfunctions, we find the equations for the
coefFicients b

F(m + '+' )b +—g z[ mb, +(2—m +1)b —(m +1)b +i]

where again we use the convention that lim 0&ma
QO= 1.

The Green's function (2.14) can be expressed in terms
of the coe%cient b

Again Eq. (4.12) can be solved in the limits of large and
small fields.

(a) b, ) 1. In this case we only need to consider the
coe%cients bo ' and b&'

' and after expansion in powers of
k we find

(G(k, ~)=—1 —g (b"'+b."')
CO m=0 (G(k, co) ) =—(1—Ak+ Ak —a, Ak+ . . ),1

(4.14)

X((/m+ la +,—+ma )
where Ak =26.co ~ 'k. Comparison with (2.7) gives the

(4.13) drift velocity and difFusion constant for 6) 1,
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sin{ m.a)
rr( 1 —a )

(4.15)

(b) 6 & 1. In this case we require b for large m and
we approximate (4.8) by a differential equation as in
(3.22). This equation can be solved as a power series in k
following the methods of SK and we find the drift veloci-
ty

APPENDIX

F(m) = —C dx
(1—x) (1+x)

(A 1)

where C =2(1—a)e' " '~ . We break the integral up
into two parts:

With the substitution x =(u —i)/(u+i) in (3.12) we
find

where

24 —4PP I5,
I (2P)

(4.16) I 1 —xF{m)=—C f dx
(1—x) (1+x)

I= —f dt f dt'(tt')'~K, p, (t)E», (t')Q(t, t')
0 0

(4.17)

and 9 is the Green's function introduced by SK. The
drift is linear in 5. The diffusion constant in this limit has
been calculated in SK and is proportional to co ~

Again these results are consistent with the scaling form
(2.6).

( ) f ~d 1 —(1—y/m)
y (1—y/2m)

(A3)

We may now take the limit m ~~ of the integral and
obtain

+ dx [1—
(
—x) ]

o (1+x) (1—x)

The second integral is bounded as m ~oo (a&1) and we
omit it. In the first integral for large m the main contri-
bution comes from x —1 so we set 1 —x =y /m and

V. DISCUSSION F(m)= —C 2 m' f dyy (1—e ~) .
0

(A4)

The low-frequency behavior of a one-dimensional
diffusion model with constant bias and random hopping
elements has been determined. The replica method
shows that this problem is equivalent to that of a particle
in a magnetic field proportional to the bias and allows us
to readily calculate the behavior for large and small
fields. The scaled field is 5=5/co ~ so that the results at
large 5 give the behavior at low frequencies or at long
times. At low frequencies we have confirmed the scaling
behavior of this model and determined the crossover scal-
ing exponent. For both large and small values of 5/~ ~

the drift is proportional to 5 and the diffusion constant
varies as 5 and co ~ ', respectively.

This is easily evaluated to give (3.21). This limiting pro-
cedure can be justified by dividing the interval of integra-
tion in {A3) into two parts:

f dy=f dy+f dy, (A5)

where 0&P& —,'. Then

1 —1 — m
hm f dy = f dyy (1—e «) .

y (1—y/2m) o

(A6)

In this interval y/m «1 for large m so that the in-
tegrand converges to the right-hand side of (A6). The
contribution of the second interval in (A5) is
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m 1 —(1—y/m)
dp 2—m~ y (1—y/2m)

and vanishes as m ~ ao.

1

=O(1/m" +) (A7)
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