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High-frequency damping of collective excitations in fermion systems.
I. Plasmon damping and frequency-dependent local-field factor

in a two-dimensional electron gas
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Starting from a general expression of CJlick and Long [Phys. Rev. B 4, 3455 (1971)]for the imagi-
nary part of the frequency- and wave-number-dependent dielectric function e(k, co) of an electron
gas in a two-particle —hole pair excitation approximation, an asymptotic expression for e2(k, co) is de-
rived, which is valid for any iL)aue number k provided co is much higher than a certain characteristic
k-dependent frequency. The formula for e2(k, co) is cast in a form suitable for application to any ar-
bitrary potential U(k) in three-, two-, and one-dimensional space. In the case of D =3 and the
Coulomb potential v {k) our result is the same as that of Glick and Long, although its region of va-

lidity is now larger. As a specific example, the damping of plasmons in a 2D electron gas has been
calculated. Also, an interpolation formula for the complex local-field factor G{k,co) in a 2D elec-
tron gas has been derived. The latter immediately leads to an expression for the co-dependent
exchange-correlation potential —a result analogous to the one derived by Gross and Kohn in the
3D case. The asymptotic expression for e,{k,co) is used in paper II to calculate the damping of zero
sound in normal liquid He.

I. INTRODUCTION

Elementary excitations in Fermi liquids, like the
plasmons in an electron gas or zero-sound phonons in
liquid He, may be found theoretically as complex poles
of the density-density response function y(k, co), or, alter-
natively, as peaks of the dynamic structure factor S (k, co)
viewed as a function of co. These functions are written in
terms of the proper polarizability II(k, co) and the interac-
tion potential between particles v (k) (see, e.g. , Ref. 1):

y(k, ~)=IT(k, ~)x[1—v(k)IT(k, ~)]=IT(k,~)x~(k, ~),
(1.1)

where kz is the Fermi wave number [e.g. , kF =(3' n)'
in a three-dimensional system]. This property is also
shared by all the first-order diagrams, and by such class
of higher-order diagrams in which all the intermediate
states consist of exactly one-particle —hole pair at any
given moment of time [examples are given in Figs.
1(a)—1(d)]. Finite width of the elementary excitations
arises due to diagrams which contain multiple-
particle —hole excitations among their intermediate states,
e.g. , Figs. 1(e)—1(g). Glick and Long (hereafter referred
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Here n is the particle number density. The complex
dielectric function E(k, co) has been introduced in (1.1),
whose real and imaginary parts will be denoted as e, and

respectively. In the random-phase approximation
(RPA), II(k, co) is approximated by the 0-order diagram
(Lindhard function) and the collective excitations are un-
damped. S(k, co) has a delta-function-like peak. This is
so because ez, in this approximation, is exactly zero for
frequencies co higher than tospE(k), the single-pair excita-
tion (SPE) edge, given by

~) c (c

FIG. 1. Examples of diagrams for proper polarizability: (a)
one pair, zeroth order; (b) one pair, first order; (c) one pair,
second order; (d} one pair, third order; (e) two pair, second or-
der; (f) two pair, second order; (g) three pair, fourth order.
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to as GL} investigated in a systematic way the lowest
terms of the perturbation theory which can give rise to
damping, i.e., the second-order diagrams with two-
particle —hole pair excitations (references to earlier works
dealing with these problems may be found in GL). They
were able to obtain in a closed form an asymptotic (valid
at high frequencies, i.e., %co &)EF} expression for Ep(k, co)
under the additional assumption that k is small compared
to kz. Their considerations were restricted to a three-
dimensional electron gas and, therefore, to the Coulomb
interaction among the fermions.

In the present paper we derive an asymptotic expres-
sion for ez(k, co), analogous to that derived by Glick and
Long, but which is free from all the above-mentioned re-
strictions. This expression is cast in a form suitable to be
used, for future applications, for any general form of the
potential u(k) in either three-, two-, or one-dimensional
space and for arbitrary k. In the case of D=3 and
U(k)=4ne /k our result is the same as that of Glick
and Long, although their restriction k «k„on its validi-
ty is removed now. As a specific case, we have used our
expression to calculate the damping of plasmons in a
two-dimensional (2D) electron gas and the damping of
zero sound in liquid He. Both these problems are of
great physical interest. The 1atter forms the subject
matter of part II (see the following paper).

We have also derived an expression for the frequency-
dependent exchange-correlation potential f„,(k, co) in the
2D case—a result analogous to the one derived by Gross
and Kohn in the 3D case.

II. EXPRESSION FOR eq( k, ri) )

In the Appendix we have derived the following asymp-
totic expression for the imaginary part of the dielectric
function corresponding to ten second-order diagrams
with two-pair excitations:

TABLE I. Angular characteristics in D dimensional space.

+SD

2

2m 3
8
1

S

where

2 2D
k~asym k

2
+ D+2 F (2.3b)

We have seen in the Appendix that the asymptotic for-
mula (2. lb) is accurate within 1% for ri ~0.7 in the case
of 2D electron gas with screened or bare Coulomb in-
teraction. In the Appendix, there is also a second restric-
tion given defining the frequency range of validity of the
formula (2.1b), namely,

co &)cospE(k), (2.3c)

which is connected with the nonanalyticity of e2(k, ~) at
co =cospE(k). Figure 2 permits one to gain some feeling of

15

14

izability, and can be approximated, as discussed by GL,
by statically screened potential. If one is interested strict-
ly in the second-order diagrams, v„should be the bare
potential.

As we have seen in the Appendix, Eq. (2.1) is valid for
any k with an accuracy of order g, given by

1/2
co„„(k)

(2.3a)

e2(k, co)= —u (k)ImII2 (k, co),

ImII (ken)= —m fi ~' 2 ' 0 D k

(2.1a)
12

Xk"Q ' PD(g)[l+O(ri)], (2.1b) IQ

(2.1c)

PD(g) = v„(Q){1+2[A (Q) —2](p )D

+[& (Q) —2]'(p )nI . (2.1d)

g du„(g)
U„(g) dg

(2.2)

U„(g) is the screened potential. It is the interaction
occurring within the Feynman diagrams for proper polar-

The subscript 2p on H stands for two-pair excitations. In
(2.1), D stands for the dimensionality of the space, QsD is
the full solid angle in D-dimension, (p )D and (p )~ are
given in Table I, and A (Q) is defined by

0.5 1.5 2.5

FIG. 2. Characteristics frequencies and frequency ranges for
D=3. Dashed line: co„y (k), Eq (2.3b); dashed-dotted hne:
cospE( k), Eq. (1.3); dashed-double-dotted line: cospE( k) Eq. (1.3)
with + sign replaced by —sign, pertaining to the lower edge of
single-particle excitations; cross-hatched area: region of validi-

ty of the asymptotic formula (2.1); hatched area: single-pair ex-
citation continuum.
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the restrictions mentioned previously. The region of va-
lidity of the formula (2.1), shown as the cross-hatched
area, was chosen (according to the assumed 1% accuracy
in the Coulomb case) to be

co) 2max[co„y (k), cospE(k)] .

A. e~(k, co) for the Coulomb potential in D=3 case

"s
e2(k, co)=—

8 v'2
(k/kF )

( fico /2E„)'

where

(X~/2E,.)'"f (co) =
( fico/2EF )

' ~ +&2r,

Xf (co)[—,'+ ,'f (co—)+—',f2(co)], (2.13)

(2.14)

Here,
and kzaz =&2/r, . In the limit r, ~0 (i.e., neglecting
screening) or, alternatively, in the limit co~ ~

4ire 4rrfi 1

ma
(2.4) 1 1ir 1

e2(k, co) =
64 (kFaii ) (fico/2Ep)

(2.15)

Within the Thomas-Fermi (TF) approximation,

u(k) u(k) 4rriii 1

eTp(k) 1+(klkTp) maii k +kT„

(2.5)

where

Comparing (2.9) and (2.15), we see that in the D=3
case the wave number and frequency dependence of e2 is,
respectively, k and co ",whereas the corresponding
dependence of e2 in the D=2 case is k and co

III. LOCAL-FIELD CORRECTION G ( k, m)
FOR AN ELECTRON GAS

6~ne 2

TF EF
(2.6) The function 6 is defined by

Using the above expressions, Eq. (2.2) and Table I in Eq.
(2.1), it is easy to show that

4 k~ k'
e2(k, co) = 9' aii (mco/h)"

G(k, co)=1/Q (k, co) 1/Q(k, c—o),
where

Q (k, co)= —u(k)II (k, co),

H is the Lindhard function, and

(3.1)

(3.2)

XF (co)[ —,', + 4, F(co)+ ', F—(co)], —

~( )
m co/')i

mcolfi+k Tp

(2.7)
Q (k, co) = —u (k)II(k, co) =e(k, co) —1 .

Then,

ImG =1m@/)Q(' —Img'/[Q'['.

(3.3)

(3.4)

Equation (2.7) is exactly the same as Eq. (19) of GL. In
the limit that k Tp —+0, i.e., no screening, Eq. (2.7) reduces
to

For

g2
co) cospE(k)= (k +2kkp), Img =0,

2IIl

92 1 (k/kF )'
ei(k, co) =

135ir (kFaii ) (fico/2Ep)"
(2.9)

so that,

ImG (k, co)= Ime(k, co)/~ Q (k, co)
~

In the case of large co, we know that

(3.5)

B. ez(k, co) for the Coulomb potential in D=2 case
Q(k, co)=—co (k)

(3.6)

2ire 2irA' 1

k maii k
(2.10)

and that this leading contribution comes from Q only
because Q above fulfills the first-moment sum rule.
Hence,

u(k) 2irh 1

eTp(k) map k +kTp
(2.11) ImG(k, co) =Ime(k, co)

co& k

14

1+0 (3.7)

where

2~ne
TF (2.12)

Up to this point the above considerations are valid for
any dimensionality D. In the specific case of D=2 (see,
e.g., Ref. 5)

Using the above expressions and proceeding as in the
D =3 case we have

22irne k k
kF

2
2EF

(3.8)
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Using (2.15) and (3.8) in (3.7) we have

ImG (k, co) = 11m
]

k A~

kF 2EF

(D=2 case).
The corresponding resul't ' in the D= 3 case is

co i k
1n r, k 2EF

64 v'2 kF
(3.9) From (4.3) we have

co, (k)
co2(k) =

6(k, O) —G(k, ac )

(4.5)

(4.6)

1/3

ImG (k, co) = 23 4
60 9~

k Ace
—3/2

(3.10)

f„,(k, co) = —v (k)6(k, co) .

From (3.9) and (3.11) we have

(3.11)

Imf „,(k, co) = — co
32 m a~

(3.12)

for large co. This function, as in the D=3 case, does not
depend on k and on r, .

(D= 3 case). Notice that in both cases, the dependence of
Imo on r, is the same since one is considering second-
order diagrams. Dependence of ImG on k is di6'erent in
the two cases for two reasons: co ~k in the D=3 case,
while co~ ~k' in the D=2 case, and Ime~k in D=3,
while Ime~k in D=2. Dependence on co is dictated by
that of a) Ime.

The function f„",(k, co), introduced by Gross and
Kohn, and which is related to the exchange-correlation
potential, is given by

6(k, ~ )=Id(k) —— 5k;„,
3~Z k
4 r, kF

where

5„;„=(& E;„&—
& E;„&o)i& E;„&

(4.8)

(4.9)

and Id(k) is defined in Ref. 5, Eq. (5.16), as an integral
with Hartree-Fock structure factor SH„(q) of the in-

tegrand to be replaced by exact S(q). &Ek;„& is the exact
kinetic energy of the interacting electron system and

&Ek;„&o that of the noninteracting system. Expression
(4.8) is the same as Eq. (4.13) of Iwamoto if we identify
6(k, ~) with 63(k). Now &Ek,„& can be expressed in
terms of e,—the correlation energy per particle, and is

given by (see e.g., Ref. 7)

The value of 6(k, ~) can be determined from the
third-moment sum rule. Expanding

—v (k)y(k, co) = (k, co)
(4.7)

1+[1—6(k, co)]Q (k, co)

in powers of co ', we see that G(k, ~ ) will enter the
coefficient of co, which, when compared to the third
moment M3(k) gives

IV. MODEL OF 6'(k, co) IN D=2 CASK &E„;„&=&E„;„&— [,e,(, )] .
dPs

(4.10)

Following Gross and Kohn we propose a simple form
for ImG(k, co), interpolating between its small-co behav-
ior, ImG ~ co+', and its large-co behavior ImG ~ co ', Eq.
(3.9). We write

co, (k)co
Im6 ( k, co) =

co~(k)+co
(4.1)

where co,(k) and co&(k) are two functions of k to be deter-
mined. The full 6(k, co), which is analytic in the upper
half of the complex co plane can be written as

ico, (k)
6(k, co)= 6(k, co )+

co+ ico2( k)

Thus, 6 ( k, ~ ) is known for arbitrary k provided we
know S(q) and e, (r, ). The latter quantity has been cal-
culated by Ceperley, for some values of r, and an inter-
polation formula may be obtained. Unfortunately,
Ceperley has not given the values of S(k). It is, however,
possible to calculate it in the STLS approximation.

In the limit of small k, Id(k) has a very simple form
and is given by Eqs. (4.14) and (4.17) of Ref. 7. There-
fore, combining this result with (4.10) we have

lim G(k ao) = + —r c, + r,

coi(k)co2(k) cocoi(k)
=6(k, ~ )+ +i

co +co2(k) co +co2(k)
(4.2) e, in rydbergs.

From Ref. 7, Eq. (3.6c), we have

(4.11)

co, (k)
6(k, O)=G(k, ~ )+

co2 k
(4.3)

We must choose co2( k) )0.
From (4.2) we see that the static local field is given by

kF
lim G (k, O)

1 d6'q=—+ —T
rr 8V'2 ' dr,

1 d E'~

8&2 ' dr'

(4.12)

while

lim [co ImG(k, co)]=co,(k) .

Comparing (4.4) with (3.9) we find

(4.4)

We thus note that the model 6 (k, co), as given by (4.2), in
the limit k —+0 can be calculated if one knows the corre-
lation energy as a function of r, . From (3.11) and the
foregoing set of equations, we can calculate f„",(k, co) in
the limit k~0, a knowledge of which may prove useful
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in certain density-functional calculations. where X was defined in (5.5) and
2 '2

V. PLASMON DAMPING COP =P(k, co)=
k

k+ — —1.
2

' (5.1 1)

As mentioned in the Introduction, plasmon excitation
may be investigated theoretically as the peak of the loss
function S(k, co), Eq. (1.2). In the case of a narrow peak
(which is true for 2D plasmons, as will be shown), the
peak position, i.e., plasmon frequency co i(k) is obtained
as a solution of the equation involving the real part of e:

e, [k,a) i(k)]=1+ReQ[k, co i(k)]=0 . (5.1)

In RPA, where the role of terms higher than Q is
neglected, Eq. (5.1) becomes

We mention that in the limit of small k Eqs. (5.3) and
(5.10) reduce to

co,(k)=co (k)[1+O(k)], (5.12)

e', [k,co,(k) ]= [1+0 (k)],2

co& k
(5.13)

leading to a particularly simple form of the relative width
(5.9)

1+ReQ [k, cop, (k)]=0 .

This equation may be solved analytically,

(5.2) I (k) =e~[k, co (k)][1+0(k)] .
topi k

(5.14)

co,(k)=co~(k)(1+X), +—k X1 1 2

'+2
]. /2

(5.3)

In connection with the construction of the model
G (k, co), it may be convenient to have the width expres-
sion in terms of the local-field function. From (3.5) we
have

where, according to (3.8)
1/2 e~(k, co)= ~Q(k, co)~ ImG(k, co) . (5.15)

and

a) (k)= S—k (5.4) But at the plasmon frequency ReQ is —1 according to
Eq. (5.1), while ImQ is very small as compared to 1 (nar-
row plasmon peak), so

X=X(k)=k j(&2r, ) . (5.5) ez[k, co„i(k)]=ImG [k,co„i(k)][1+0(ImG) ], (5.16)

@~[k, co@i(k ) ] 1

e'i[k, co i(k)] [co—co i(k)] +(I (k)/2)

(5.6)

where we have defined

1.(k) e~[k, co,(k)]
e', [k,co„,(k) ]

and

(5.7)

We are using in this and the next section kF as a unit for
the wave vector and 2E+/A as a unit of frequency.

Now the width of the plasmon peak is determined from
the loss function, written for frequencies in the vicinity of
co i(k) as

—1 —1
Im =Im

e'(k, ~) ei[k, co i(k)][co—co@i(k))+ie~[k,a)pi(k)]

and this result allows to calculate I (k) in terms of ImG
using (5.9).

In particular, we can find the behavior of the relative
width in the region k —+0. From (5.14), (5.16), and (4.1)
we have

1.(k) ct)i(k)cd@(k)
(5.17)

~pi(k) co~(k)+co (k)

The numerator is ~k'k' =k ~, see (4.5) and (5.4),
while the denominator is the sum of a term ~ k [co~, see
(4.6), (4.11), and (4.12)] and a term co o: k'. So, finally,
the relative width is ~ k for small k, while the propor-
tionality coef5cient is given in terms of the correlation en-

ergy and its derivatives, as it follows from (4.5), (4.6),
(4.11), (4.12), and (5.4). We must stress that the k —+0
limit of the width cannot be found from (5.14) directly us-

ing the asymptotic expression (2.13) or (2.15). This is so
because the plasmon frequency co ~ k '/ goes below

co„„(k),Eq. (2.3b),

e', (k, co) = e, (k, co) .= a

So the relative full width at half maximum is

(5.8) co„„(k)=—,'(1+k ),
therefore q, Eq. (2.3a), grows to infinity as il cck
which makes the expansion (2.1) meaningless.

(5.18)

I (k)
co i(k)

2m~(k, co)

cori(k, co) co=ca ~(k)

(5.9)
VI. NUMERICAL ESTIMATE OF THE

RELATIVE YVIDTH OF PLASMON IN D=2
Using the RPA result of Ref. 9, we have

2ct)

1 k
e', (k, co)=

2kX (P ~) n

2' +1
(5.10)(P+~)'~~

We have calculated plasmons for various densities and
wave vectors, using the RPA formula (5.3)—(5.5) for peak
position co~,(k) and (5.10) and (5.11) for e„while asymp-
totic formula (2.13) with (2.14) for ez, and (5.9) for the rel-
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TABLE II. Plasmon frequency co»(k) and its relative width I (k)/co~i(k) at various densities for a
two-dimensional electron gas.

rs

4.08

2.81

0.97

k,
kF

2.2

1.8

1.4

1.0

0.1

0.3
0.5

0.1

0.3
0.5

0.1

0.3
0.5

0.3
0.5

Scop((k)

2EF

0.82
1.51
2.15

0.62
1.15
1.63

0.44
0.82
1.17

0.53
0.75

0.27
0.52
0.45

0.30
0.54
0.47

0.33
0.55
0.46

0.52
0.41

co„y (k)
o)pl(k)

0.80
0.69
0.72

0.91
0.75
0.74

1.08
0.85
0.80

1.02
0.91

~spE( k)

cop((k)

0.30
0.58
0.79

0.32
0.60
0.80

0.34
0.62
0.81

0.65
0.83

ative width I (k)/co &(k). Some results are given in Table
II. The cutoff vector, at which the plasmon dispersion
curve touches the edge of single-pair excitation region
[see (1.3)]

making it impossible to have a meaningful estimate for
r, ~0.9. It is clear from Table II that in an electron gas
in two dimensions the plasmon width arising from elec-
tron correlations is no more than 0.5%%uo.

~spE(k) =-,'(k +2k), (6.1)
ACKNOWLEDGMENTS

is denoted by k, . It is related to the density parameter r,.
via equation:

' 1/2

r, = 1+ 1+
2 2

(6.2)

zl= [co„„(k)/co~&(k)]' (6.3)

as given in the sixth column, increases sharply for k tend-
ing to 0, we cannot calculate the width for the small k re-
gion. The allowed k region narrows with decreasing r„

As it is discussed in the Appendix, since the frequency
cospE( k) is also a point of nonanalyticity of ez( k, co ), the
use of the asymptotic expression of ez(k, co) requires the
ratio cospE/co to be small. We see from the last column in
Table II that this quantity grows to 1 with k tending to
k„making our scheme inapplicable in this range of k.
On the other hand, because [see (2.3a) and (5.18)] the
quantity

This work was mostly carried out during our participa-
tion in the Workshop on Condensed Matter Physics at
the International Center for Theoretical Physics, Trieste,
Italy. Our thanks are due to the Center for its hospitality
and to Professor Mario Tosi for his interest in this work.

APPENDIX: ASYMPTOTIC HIGH-FREQUENCY
FORM FOR TWO-PAIR CONTRIBUTION TO 62(k, co)

The purpose of this appendix is to derive in a rigorous
way the asymptotic form for ez(k, co), corresponding to
ten second-order diagrams with two-pair excitations, con-
sidered by GL. Our expression should be valid for arbi-
trary potential, be applicable to fermion systems in one-,
two-, or three-dimensional space, and to serve for arbi-
trary k. Its range of validity for frequency co is limited by
the following k dependent inequalities: cu) cospE(k) [see
(1.3)] and co) co„„(k)[see (A32)].

The full integral form of ez is

ez(k, co)=CD(k) f d q, d qzd q36(kF —q, )6(kF —qz)6(q —k )6(q —k )5
2

Xo.(q„qz, q„k)[o (q„qz, q3, k) —
—,'a(qz, q„q„k)],

where

q&=I +q&+q2 —
q3

CD(k) = v (k)m A (2m )'

a (q„qz, q3, k) =B(q3 —q„k, q3
—

qz
—k, q3

—qz) —B (q3 —q, —k, k, q3
—

qz
—k, q3

—qz),

B(pi~pz~p3~p4)=v. .(lpil)(pi pz)(pl p3) (pl p4)

v„(p)=v (p)/~(p, 0),

(Al)

(A2)

(A3)

(A4)

(A5)
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and B(x) is a unit step function. Equations (Al) —(A6)
represent Eq. (16) of Gl, adapted by us to D dimensional
space. The static screening of the interaction in (A6) in-
volves, of course, selected higher-order diagrams, so, if
exactly second-order diagrams are of interest, e(p, 0) in
(A6) should be replaced by 1.

The first step in the evaluation of e2, Eq. (A 1), consists
in integrating over q3

= ~q3~. It is convenient to introduce

the notation

Q =men/iii,

K=k+q&+q2,
v=q3 K/(q3K),

(A7)

(A8)

(A9)

in terms of which the delta function of (A 1) may be writ-
ten as

—Q (I+rI,~) =5 qq— —Q(1+g,~)' /[2Q(1+g, ~)' ],
(A 10)

where

il, ~=[q2i+q2 —K (1—
—,'v )]/(2Q ),

and we have assumed that

(A 1 1)

where

YK
q3=Q (1+ni2)'"+

2Q
(A15)

g)2) —I

The integral in D dimensional space is represented as

and it was assumed that Q is large enough to satisfy

q~3&kF~ and q4=(q3 —2vXq3+K )~k~ . (A16)

f dDq, =f "dq, qD 'f dD 'n
sD( n), (A13)

Xcr( )[a( ) ——,'a( . . )], (A14)

where n;=q, . /q, and Qso is the full solid angle in this
space (see Table I). After integration over q3, using (A10)
and (A13), (Al) reduces to

gz(k, co)=CD(k) fd q, 6(kF qi )f—d qz6(kF —q2)

X f d 'QsD(n3)q, '[2Q(1+g,2)' ]

Since ~q, ~
and ~q2( do not exceed k~ [due to theta func-

tions in (A14)], the condition sufficient for inequalities
(A12) and (A16) to be satisfied is such that Q is much
larger than k and simultaneously much larger than kF.
Let us assume that this is fulfilled, leaving details to be
worked out later. In this case such quantities as k/Q,
~qi~/Q, ~qz~/Q, E/Q, ~g, z~, and ~q3

—Q~/q are very
small for all allowed values of integration variables in
(A14). Therefore we can expand the integrand in power
series with respect to these small parameters.

The structure of (A4) suggests the following expansion:

B (pi ~ p2~ p3~ P4) B (pi k p2 p3) p4) k
~

(P tpi2~ P3r P4)
~Pl

(A17)

where, according to (A5),

1 aa
B Bp)

1 ~U. (Pi ) Pi P2+
U„(pi ) ~pi Pi Pi'P2

p3 P4

P& P3 PI p4
(A18)

ote that the error in (A17) is of the order of (k/Q) . It is not a small-k expansion. Finally, denoting Q=Qn3, we
have

q q q k) — (0 0 Q k)[1+O(q)]=k Q (Q)I I+[& (Q) —2]P I[1+0(P)],
where

p=n3 k/k,

(A19)

(A20)

(A21)

A set of small corrections, denoted by 0 (g), contains the following terms,
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I Q —
q3

—
qi I I Q —

q3
—qi —k

I0(iI}=0 (A22)

and also similar terms, with q, replaced by qz. Power-series expansion of the remaining factors of the integrand in
(A14) is straightforward. So we arrive at

e2(k, co)=CD(k) fd q, B(k~ —qi )f d q2B(kF q2—)f d 'QsD(n3)Q '(2Q) '2

X(k Q v„(Q)I1+[A(Q)—2]p j) [I+0(i))], (A23)

where the correction term 0 (i) ), besides the already listed terms (A22), includes also

vK0(il) =0 (A24)

Now the leading term of the integrand in (A23) [i.e., the full expression except the 0(i)) term] does not depend on qi
and qz, so corresponding integrations are straightforwardly carried out [see (A13)] as

f d q;B(kF —
q; )=QsDD 'kF . (A25)

Integration over the solid angle connected with the direction n3 leads to averaging of p and p". Therefore, the final ex-
pression is

e (ken)=v(k)k m iri m' 2 ' 0 D k Q
' P (Q)[1+0(i7)]

where
' 1/2

(A26)

(A27)

PD(Q)=v„(Q)QsD f d 'QsD(n3)I I+[A (Q) —2]p (n3) j

„(Q)tl+2[A(Q) —2]&p, & +[A(Q) —2] &p & j (A28)

with A ( Q) defined by (A21) and averages & p & D and
& p &D given in Table I. Note that the first form of (A28)
assures that

Pi, (Q) )0 . (A29)

« K'» = « (k+q, +q, ) » =k'+2 k' . (A30)

We find that a general estimate

(-,' « K'»)'"
'9= co„„(k)

(A31)

where

The error estimate 0 (il) in (A26) contains a list of the
same terms as in (A22) and (A24), but now those quanti-
ties are averaged out during integrations over d qi,
d q2, and d 'QsD. For example, the average K is

d, =q —q„d =q —q, —k,
d, =q3 —

q2, d4=q3 —
q2

—k .
(A33}

Now
~ d, ~

can become zero (q3=q, ) for the frequency co

determined by the delta function occurring in (A 1):

the screening parameter). We see that for iI~0.7 the er-
ror of the asymptotic formula (as compared to the "ex-
act" results of Monte Carlo integration) is less than the
accuracy of their plot, about 1%. At i)=0.94 the error is
30%, 60%, and 90% (for three potentials). At i)=1.1 it
is already in the range from 90% to 200%.

We also notice from GL Figs. 3 and 4 that ez(k, co) rap-
idly grows when co approaches kvF. In order to explain
this fact let us investigate the question whether the in-
tegrand of e&(k, co), in (Al), at given k, may become
singular for some co. In (A4), (A5) in the denominators
occur products of the following vectors:

(A32) [q3+(k+qi+q2 —q3)' —q i
—q2]

[q, +(k+q, +q2 —q, )
—q, —q2]

[(k+q2) —q2] .

covers the order of magnitude of all above-mentioned
small quantities.

In order to have some feeling of what error may corre-
spond to given q, we have analyzed the results shown by
GL, which were obtained for three different potentials
(bare Coulomb and screened Coulomb with two values of Using the triangle inequality

(A34)
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I&+ql —I&I+ Iql,

the above expression may be bounded by

(A35)

[(I&I+ Iq21)' —q2]= (k'+2kq, ) .
2m 2m

(A36)

The theta function in (Al) gives the restriction q2 kF.
So finally [compare with (1.3)]

ro (k +2kkp) =CospE(k)( A'

2&i
(A37)

Similar considerations apply when
I d; I

=0, i =2,3,4, and
in each case we get the same restriction (A37). Thus the

integrand has qualitatively diferent properties for fre-
quencies below and above rospE(k), the latter is therefore
the point of nonanalyticity of ez(k, co). Obviously, the
asymptotic formula (A26), derived above, may be valid
for frequencies being "far" from the point of nonanalyti-
city, i.e., for

Co ))tospE( k) (A38)

Coming back to the explanation for the strange behavior
of e2(k, co) at ro close to k UF, we note that at k=0. 1 k~
(used in GL calculations) rospE(k) =kup [see (1.3)], so the
observed fact must be connected with nonanalyticity of
ez(k, co) occurring there.
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