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Electromagnetic field near rough surfaces of spatially dispersive systems
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The Rayleigh-Fano method and a hydrodynamic model have been used to study the electromag-
netic field near a rough surface bounding a nonlocal conductor for both p- and s-polarized incident
waves. Nonlocality is accounted for by including longitudinal electromagnetic waves and using ad-
ditional boundary conditions. A formal perturbative solution has been derived to arbitrary order in
the amplitude of the roughness profile. We apply these formal solutions to an explicit first- and
second-order calculation of the diffracted fields and the reflectance of a periodic grating. Numerical
results are given for both local and nonlocal media, yielding significant differences, which are dis-
cussed.

I. INTRODUCTION

In recent years, there has been an increasing number of
theoretical' and experimental investigations on the
optical properties of surfaces that are not perfectly Oat.
A number of intriguing physical phenomena such as the
surface-enhanced Raman signal produced by molecules
adsorbed on metal surfaces, ' ' the enhancement of
second-harmonic generation in reAection from a metal
surface, ' and light emission by tunnel junctions '

require the presence of roughness to be observed. Most
of the theoretical work on rough surfaces has been done
by considering a local dielectric response of the metal. In
this case the Rayleigh-Fano method has been success-
fully applied not only to small-amplitude rough surfaces
but also to large-amplitude ones, where the method was
not expected to be valid. In the latter case, the use of the
extinction theorem has been essential to achieve rapid
convergence. The type of convergence that is attained
in large-amplitude roughness is still a matter of de-
bate

Qn the other hand, the treatment of a nonplanar sur-
face with a nonlocal (spatially dispersive) dielectric
response has not been thoroughly explored. One would
expect nonlocal effects to become important if the
diffracted fields has a short length scale of variation, as in
metallic gratings with spatial periods of the order of 100
A or less. An extreme example of this type of grating is
the reconstructed face of some metallic crystals where
the spatial period is of only a few angstroms.

In this paper we develop a perturbative formalism
based on the Rayleigh-Fano method for the scattering of
an electromagnetic wave by a rough metal which is de-
scribed by a nonlocal hydrodynamic longitudinal dielec-
tric function

CO

EI (co,k ) = eb ( co ) = P

co +icolr Pk—
and a local transverse response

COp

et(co) eb(co)—
6 + lS/7

(lb)

Here co is the frequency, co& is the plasma frequency for
the conduction-electron gas, ~ is its electronic lifetime,
Eb(co) is the contribution of the bound electrons to the
dielectric response, k is the wave vector, and P =—', UF is
the stiffness parameter, where UF is the Fermi velocity.

The response (la) implies the presence of longitudinal
electromagnetic waves whose wave vector I obeys the
dispersion relation

e1(co, I ) =0,
in addition to the usual transverse waves. As is well
known, the matching of all the field amplitudes across the
surface requires additional boundary conditions
(ABC' s). " These have usually been applied at a fiat
surface, ' in this paper we solve the hydrodynamic model,
but impose the usual electromagnetic boundary condi-
tions and the ABC's at the surface of a rough metal.

The hydrodynamic model is known to have many
shortcomings for flat surfaces: it does not account for
electron-hole pair excitations and it assumes an unrealis-
tic discontinuity in the electronic density at the surface.
We do not expect these effects to be less important at
rough surfaces. However it has not been possible yet to
apply microscopic calculations ' in the presence of
roughness and the extension of the semiclassical infinite
barrier model has some unsatisfactory features. The hy-
drodynamic model includes some nonlocal effects, such as
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the existence of longitudinal modes and their coupling to
transverse waves at surfaces, and it leads to a well-posed
problem at rough surfaces, so we believe that its solution
is an important step in the understanding of nonlocal
eA'ects at nonideal surfaces.

The outline of the paper is as follows. In Sec. II, we
extend the Rayleigh-Fano theory to nonlocal systems
within a perturbative approach and we obtain an iterative
expression for the scattered fields to all orders in the
profile amplitude. Then we apply the results to the calcu-
lation of the scattered fields and the reflectance of a
sinusoidal metallic grating up to second order. Our re-
sults and their comparison with the local theory are
shown in Sec. III, and Sec. IV is devoted to conclusions.

II. THEORY

In this section we solve the boundary-value problem
for an electromagnetic plane wave with arbitrary polar-
ization incident upon a surface defined by the equation

EI(Q)=L ' ' ' (Q„gy, I, ),
BI(Q)=0,

(7a)

(7b)

where I = ( Q„Q,I, ) satisfies the dispersion relation
given by Eq. (2) and L =L(Q, co) is the longitudinal am-
plitude function.

We choose the X-Z plane as the plane of incidence, i.e.,
q; = ( Q„;,0, q„). Using the notation introduced above,
the incident fields are given by

(refiected) field(s) by setting e, = 1 and replacing k, by q„
( —q, ). We call S =S (Q, co) and P =P (Q, co),
a=i, r, t, the amplitude functions. Here and in the fol-
lowing we omit the explicit dependence on Q and co and
the real-space coordinates of this and other quantities un-
less it is inconvenient.

Within a spatially dispersive metal there are also longi-
tudinal waves whose electric and magnetic fields are
given by

f(x,y, z) —=z —hg(x, y) =0 .

We assume that the region z&hg(x, y) is characterized
by the dielectric functions e, and eI given by Eq. (1) and
the region z (hg(x, y) is vacuum. We will treat h as a
small parameter in the perturbative solution of the prob-
lem.

The unit vector n directed normally outward from the
surface is given by

Pf ( —hg, —hg, 1)
n( )=

~Vf ~ [(hg ) +(hg ) +1]'~2

where g and g denote the partial derivatives of g(x,y)
with respect to x and y. The wave vectors of the incident,
rejected, and transmitted waves are denoted by

E, =E„(Q;)+E;(Q;),
B;=B„(Q;)+B~;(Q;),

the reflected fields by

E,=g [E„(Q')+Ep,(Q')]

B„=g[B,„(Q')+Bp„(Q')],
Q'

and the transmitted fields by

E, =g [E„(Q')+E,t(Q')+E(, (Q')],
Q'

B)=g [B,t(Q')+B,~(Q')] .
Q'

(Sa)

(Sb)

(Sc)

q; =(Q„;,Qy, ,q„),
q=(Q. , Qy,

—q. ),
k=(Q, Q, k, ),

(Sb)

(5c)

k2 e c02yc2 Q2where q, =co /c —Q, and
Q= (Q, Qy, 0).

The transmitted electric and magnetic fields are
decomposed into s (E„and 8„)and p (E~, and B,) polar-
ized components:

F=E—(n E)n,
K=B—(n B)n .

(9a)

(9b)

We choose as an additional boundary condition the con-
tinuity of

Now we proceed to establish the boundary conditions
which have to be fulfilled at the interface z =hg(x, y).
Two of them follow from Maxwell's equations; they are
the continuity across the interface of the tangential pro-
jection of E and B,

(6a)
Cx = (n e& E)n, (9c)

(6b)

(6c)

which corresponds to the continuity of the normal pro-
jection of the conduction-electron current.

Of the nine continuous Geld components appearing in
Eqs. (9) only five are independent. Choosing the x and y
components of F and K, the z component of Cx, and using
Eq. (S), we write the continuity conditions in matrix form
as

and g R(Q', p)W(Q', p)e'O ~A(Q') = l(p)e
Q'

(10a)

(6d)

Similar expressions can be written for the incident
which has to be solved for the amplitudes of the rejected
and transmitted waves
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&„(Q')

S,(Q')

A(Q') = &„(Q')

&,(Q')

&(Q')

(10b)

R(q p) y R(jk)(q~)gj ( )gk( )h j+k
j,k

w(q', p)=y w'"(Q )g/(p)h',
l

)
—y ~(jk)gj (p )gk(p )hj + k

j,k

(1 la)

(1 lc)

Here p =(x,y), the five-dimensional vector l(p) character-
izes the incident fields, the 5X5 matrix R(Q', p) depends
on the local orientation n of the surface while the matrix
W(Q', p) has the information on the height hg(p). Expli-
cit expressions for I, R, and W are given in Appendix A.

Now we perform an expansion of all quantities in Eq.
(10a) in powers of h

A(q ) =y A'-'(Q )h - . (11d)

Notice that we extracted from R(Q', p), W(Q', p), and
I (p ) all the shape-dependent information, so that
R{j")(Q'), W'"(Q'), and I{~") are independent of the sur-
face profile. Substituting Eq. (11) in Eq. (10a) and taking
a Fourier transform, we obtain

Q' j,k, l, m )0

gjk/(Q Q~ )R(i k) (Q~ )W()/(Ql)A( m)( Q~ )hj +k+1 +~ y gjk0(q Q )[(jk)h j+k
j,k

(12)

where we defined the Fourier transform through

E(Q)=—— fE(p)e 'Q'/'d p,1

with A the area of the nominal (z =0) surface, and P (Q) is the Fourier transform of

g'"'(p) =P (p)g~(p)g'(p) . (14)

Now we equate the coefficients of equal power of h in both sides of Eq. (12) and noticing that W' '(Q')=1 and that
p (Q' —Q) =5Q Q, which corresponds to the conservation of the parallel projection of the momentum at a fiat surface,
we solve Eq. (12) for A'"'(Q) iteratively,

A(n)( ) [R(00)(q)]—1 y gjko(q Q )[(jk) g y gjkl(q Q~)R(jk)(qi)w(/)(Q~)A(n —j—k —l)(q~)
0&j&n Q' j,k, 1~0
k=n —j n ~ j+k+l &0

(15)

Notice that in order to solve the problem to an arbitrary order in h, it is only necessary to invert the 5 X 5 matrix
R' '(Q). This is equivalent to solving the problem of dispersion of light incident with a parallel wave vector Q upon a
fiat surface. Furthermore, since p-polarized and longitudinal waves are uncoupled to s-polarized waves at a Aat surface,
the problem is further reduced to the separate inversion of the 3 X 3 submatrix which corresponds to the electric field in
the plane of incidence, and the 2 X 2 submatrix which corresponds to the electric field normal to the plane of incidence.
Analytic expressions for these inverses are readily obtained.

To illustrate this solution procedure, we choose a simple sinusoidal profile, that is,

z=hg(x, y)=h cos(g p) . (16)

For simplicity, we choose g=(g, 0,0) parallel to Q;, so there is no mixing between s- and p-polarized waves. Using Eqs.
(15) and (16) we find that the amplitudes of the difFracted field are given to zeroth order by

A(0)(Q) —[R(00)(Q)] 1[(00)$
QQ; ~

to first order by

A(1)(q) 1[R(00)(q)]—1Iig[~(10) R(10)(q )A(0)(Q )](fi $ )
i QQ; s

R (Ql )W (Qi )A (Q& )(6Q Q +g+6Q Q g) I

and to second order by

A"'(Q) = —-'[R' '(Q)] 'Ig'[~'"' —R'"'(Q»'"(Q;)](&Q Q +2,—2&Q Q +&Q, Q -2g'

+R' '(Q, )W' '(Q;)A' '(Q/)(5Q Q +2g+2&Q Q +f)Q Q, —2g)

+igR{10)(q,)W")(Q, )A")(Q, )(&QQ „—~Q, Q 2, )

+2igR"0'(Q —g)A'"(Q —g) —2igR" '(Q+g)A"'(Q+g)
+2R{00)(q )W(1)(q g)A(1)(q g)+2R(00)(q+g)w(1)(q+g)A{1)(q+g) I



1574 SHU WANG RUBEN G. BARRERA AND W LU. LUIS MOCHAN

Explicit expressions for R'" '(Q') W'"'Q ), " (Q'), and I'" ' with

Q =(Q,O, O) are given in Appendix B for n =0

b aflats
- r er solution corresponds t th

y urface. Clearly, the poles of R' '( ' sat'
s o e scatterin

e,q, (Q)+k, (Q)+ 1— (20)

Thus fromrom Eq. (18) we can see that the first-
w ic

tions lie outside of the light cone; therefore, the are non-

for exam le
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n-
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'
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IAE"„'(Q;+g)]
IE"'(Q, )l

, '
Q; g)l [lq. (Q;+g)l'(Q;+g)'+(Q +I

p() )(

~lq 'Q )I'&'+&']'"

(23)

R (o)
— R(o) (21)

where R is the reflectance of the rough surface, and R ' '

is the flat-surface reference.
y account contributions upIn our case taking onl into

o secon order we obtain for p polarization

for the first-order fields, and

Ih'E"'(Q, ) I

(gh )' IE,"(Q;)I

g2lp(0)(Q )I
(24)

p„")' =2I 'Re
p(o) (22)

for the second-order specular field h
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in Eq. (23) since the electric field might be a complex vec-
tor without a real direction. The dependence of the first-
and second-order fields on h is divided out in the
definitions of r, and r2, and the scattering wave vector g
is used to generate dimensionless quantities. Notice that
r, is defined for scattering at Q;+g; a similar expression
holds for scattering at Q; —g.

In Figs. 2, 3, and 4 we show local and nonlocal results
for r

&
and r2 as a function of g when the p-polarized light

hits the surface at an angle 0=30 for three different fre-
quencies: co/co =0.4, 0.5, and 0.8. The first-order non-
local calculation shows a dip in Fig. 2 for a value of g
which corresponds to a root of r, . This is not strictly a
zero because the roots are complex due to the finite value
of v. In the local case the zeros obey the relation

e,Q;(Q, +g) —k, (Q, )k, (Q, +g) =0,

2.20

0.60

-1.00
O

O

-2.60

-4.20

SPP+
i~

l

which can be solved analytically and is displayed in the
inset of Fig. 2, together with the roots that correspond to
the nonlocal calculation which were obtained numerical-
ly. Notice that as g —+ oo the local calculation approaches
a finite frequency given by the smallest root of

4 2

—(2sin 8+1) +1=0
COp

(neglecting dissipation); this is not the case in the nonlo-

-1.00 0,00 1,00
log» (gc/ur, )

2.00 3.00

FIG. 3. Enhancement factor r& (dashed) and r~ (solid) as a
function of gc/co~ for a fixed frequency co/~~ =0.5. The corre-
sponding local calculations are shown with dotted-dashed and
dotted lines. The notation is as in Fig. 2. In the inset we show
schematically the processes of SPP excitation at Q;+g or
Q; —g. The surface projection Q; of the incident wave vector is
represented by a dashed line through the origin inside the light
cone (LC) and the nonplanar surface provides the additional
momentum +g.

2.20,
SPP+

3.20

0.60

1.60—
OBMP

c —1.00
C&

O

—2.60

0,00
O

C)

0,44

—1.60

—1.00 0.00 1.00
log» ( gc/QJp}

Re(g)

2,00 3,00 —3.20

FIG. 2. Enhancement factor r& (dashed) and r2 (solid) as a
function of gc/co~ for a fixed frequency m/co~ =0.4. The corre-
sponding local calculations are shown with dotted-dashed and
dotted lines. The wave vectors g such that Q;+g lie on the SPP
dispersion relation, on the light cone (LC), and the root (R) of
the first-order scattered field are indicated. In the inset we show
a schematic plot of the real part of the roots of r& as a function
of cu, the solid line represents the nonlocal case while the dotted
line represents the local oee.

-1.00 0.00 1.00
logic(g c/QJp}

2.00 3.00

FIG. 4. Enhancement factor r& (dashed) and r2 (solid) as a
function of gc/co~ for a fixed frequency co/co~ =0.8. The corre-
sponding local calculations are shown with dotted-dashed and
dotted lines. The notation is as in Fig. 2. In the inset we show
schematically the processes of SPP excitation at Q;+ g or Q; —g
which are possible in the nonlocal case only. The dotted line is
the dispersion curve for local case.
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cal calculation. It can be seen in the inset of Fig. 2 that
for co &0.44co there are roots in both the local and non-
local cases, while for co) 0.44co there are roots only in
the nonlocal case with large value of g. This behavior is
also apparent in Figs. 3 and 4, where the nonlocal results
show dips which are absent in the local case.

One of the most prominent features of Figs. 2 and 3 is
the peak of r, due to SPP excitation at Q, +g, and two
peaks in r2 due to SPP excitation at Q;+g. In the insets
of Figs. 3 and 4 we show schematically these two process-
es. As seen in Figs. 2 and 3, there is a noticeable
difference between the results of the local and nonlocal
calculations for high values of g. However, for small fre-
quencies this difference is negligible around the SPP reso-
nance. On the other hand, at co/ro ) 1/&2 (Fig. 4) there
is no SPP peak at all in the local calculation while in the
nonlocal case the resonant scattering by the SPP can be
seen at large value of g. Since in this case Q,. ((g, the
two second-order peaks at Q;+g lie so close to each other
that they cannot be discerned in the figure.

In Figs. 2, 3, and 4 we can also see one and two discon-
tinuities in the slopes of r, and r2, respectively. They
correspond to values of g such that Q;+g lies on the sur-
face of the light cone.

The structure in Figs. 5 and 6 corresponds to the
features of Figs. 2—4: resonances when the scattered vec-
tors Q;+g satisfy the SPP dispersion relation, slope

2,00
SPP

2,20—
SPP+

Qi g Qi Qi+g

SPP

0.60—

C:

~ -1.00
O

Il
I 'l

I
I il
l 'p

&Sr P*~—
I

—2.60

-4,20—

0.00 0.80 1.60 2,40 5.20

FIG. 6. Enhancement factor r, (dashed) and r2 (solid) as a
function of co/co~ for a fixed grating the wave vector
ge/cop=100. The corresponding local calculations are shown
with dotted-dashed and dotted lines. The notation is as in Fig.
5. In the inset we show schematically the processes of the SPP
excitation at Q;+g or Q; —g which correspond to two closely
spaced values of co. The dotted line is the dispersion curve for
local case.

LC LC

1,00

Qi+g
I

f

I

SPP

0,00

—1,00

-2,00—
Qj 0 /

I
I

i I

tl

R

—5,00
0.00

l

0.80 1.60
M ~Mp

2.40 5,20

FICs. 5. Enhancement factor r& (dashed) and r2 (solid) as a
function of co/~~ for a fixed grating wave vector ge/co~ =0.5.
The frequencies for which the metal becomes transparent (T)
for propagation with wave vectors Q; and Q;+g are indicated.
Otherwise, the notation is as in Fig. 2. In the inset we show
schematically the processes of the SPP excitation at Q;+g or
Q; —g which correspond to two different values of co.

discontinuities when they intersect the light cone, and
dips in the first-order calculations. These processes are il-
lustrated by the insets of Figs. 5 and 6. There are also
discontinuities in Figs. 5 and 6 whenever any of the
reAected waves propagates at the critical angle
O, =arcsin&e, at which the corresponding transmitted
wave changes from evanescent to propagating; these
discontinuities did not appear in Figs. 2 —4 because there
we chose co&~ . Since the scattering wave vector is
small in Fig. 5, the local and nonlocal results are very
close to each other, while they differ considerably in Fig.
6 for which g approaches an atomic scale.

In Fig. 7 (8) we plot r, and r2 versus gc /re~ (co/co~) for
fixed value of co/co~ =0.5 (gc/co =0.5) for the s-

polarized light with the electric field along the grooves of
the grating. In this case there is no mixing between s, p,
and longitudinal waves, the local and the hydrodynamic
results become identical, and there are no SPP resonances
and no zeros in the first-order enhancement factor. The
only structure visible in these figures consists of the slope
discontinuities whose origin was discussed above.

In Fig. 9 we show the normalized change in reAectance
AR /R versus ru/co upon roughening [Eq. (21)] for a sur-
face with microscopic scale roughness (gc/ro =100) il-
luminated with p-polarized hght [Eq. (22)] at the angle
0=30'. Note that the result was scaled with the pertur-
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5,00 0,4

2.00- 0.5—

9c
4)p

1,00

Q

O

0.00

—1,00

0.2—
~ CC

0,1

0,0

lI

I
tl

jl
SI

II
II
tl

I )
IJ

-2.00—
Q.OQ 0,80 1,60

q C~&p
2,40 5.20

-0, 1

0.00
I

0.80 1.60
M~4Jp

2.40 5.20

FIG. 7. Enhancement factors r& (dashed) and r2 (solid) for s-
polarized field as a function of wave vector gc/su~ for a fixed
frequency co/m~ =0.5.

bation parameter (gh ) . The structure in this figure is
closely correlated to that of Fig. 5 except for the peak at
the Brewster frequency coii =co /(1 —tan 9)=1.2'
which arises from the zeros of R ' '. The other large peak
originates from the SPP resonance and its position is
shifted significantly between the local ( =0.71'„)and the

FIG. 9. Differential reAectance of p-polarized light as a func-
tion of frequency co/co~ for a fixed grating wave vector
gc/co~ =100, obtained through a local (dashed) and a nonlocal
(solid) calculation. The positions of the SPP resonance and the
Brewster (8) condition are indicated.

nonlocal ( =0.9'~ ) calculations. Actually, in the local
case this peak is quite insensitive to g while its position is
nearly linear in g in the nonlocal case.

1,60—
gc
QJp

IV. CONCI, USIONS

0.80—

LC+ g

O QQQ

O

—0,80

—1,60—

0.00 0.80 1.60 2,40 5,20
MtMp

FIG. 8. Enhancement factor r& (dashed) and r2 (solid) for s-
polarized light as a function of frequency co/co~ for a fixed grat-
ing wave vector gc/co~ =0.5.

In this work we have used the Rayleigh-Fano method
to study the scattered fields near a rough metallic surface.
Spatial dispersion was accounted for by using a hydro-
dynamic model complemented by an additional boundary
condition. We have derived a formal perturbative solu-
tion to arbitrary order in the amplitude of the roughness
for both nonlocal and local media. Our solution was ap-
plied to gratings and we obtained numerical results to
first and second order. Our results display a very rich
structure which was analyzed in terms of the bulk and
surface modes of the corresponding Oat system. The
most noticeable structure stems from the excitation of the
surface plasmon polariton which becomes possible due to
the nonconservation of momentum along the surface.
The position of the SPP resonance is shifted in the nonlo-
cal calculation with respect to the local results, but its
strength is not modified substantially. This result should
be important in the analysis of surface-enhanced Rarnan
scattering from surfaces with microroughness. We also
found that under certain conditions the first-order
diffracted fields are suppressed. These conditions are
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very sensitive to spatial dispersion. As g increases, non-
local effects become more important, and they must be
incorporated in calculations involving systems whose
roughness profile has characteristic lengths of the order
of interatomic distances, as is the case for certain recon-
structed metallic surfaces. Although not entirely realis-
tic, our hydrodynamic calculation is the first one applied
to metallic surfaces with small-scale roughness. Further-
more, the reAectance change upon roughening which we
calculated to second order could be observed experimen-
tally, for example, as an anisotropy in the reAectance of
reconstructed (110) surfaces of noble metals.
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APPENDIX A

In this appendix we give explicit expressions for the
elements of the matrices R(Q', p), W(Q', p), and l(p)
which appear in Eq. (10a):

R»(Q', p) = n, n Q—' —(1 n~
—)Q„',

R,2(Q', p) =(n„n )Q~+(1 —
n~ )Q„',

R,3(Q', p) =[—n, n q,'Q„'+(1—
n~ )q,'Q' n, n—(Q') ]c/co,

R,4(Q', p)=[ —n~n„g,'(k,'/e, )+(1 n)g—'(k,'/e, )+n, n (Q') /e, ]c/co,

Ri&(Q', p)= —n n~g'+(1 —n )Q' n, n —l,',
R2i(Q', p)=[ —(1 n, )q,'Q—„'+n n, q,'Q'+n, n, (Q') ]c/co,

R22(Q', p)=[ —(1—n )k,'Q,'+n n, k,'Q' —n, n„(Q')2]c/co,

R23(Q', p) =(1 nx )Q~—+n~n Q',

R24(Q', p)= —(1 —n„)g~ n~n Q')—,

R25(Q P) 0

R3i(Q', p)=(1 n)Q'+—n n„g',
R3z(Q', p)= —(1—n )Q~ n~n„Q', —

R33(Q', p)=[(1—n„)q,'Q„' —n~n„q,'Q' —n, n, (g') ]c/co,

R34(Q', p)=[(1—n )Q'(k,'/e, ) —n n, g'( k,
'

/e, ) +n, n„( Q') /e, ]c/co,

R»(Q', p) =(1—n„)g' n„n g—
~
—n, n„l,',

R4, (Q', p)=[n„n~q,'Q,' —(1—n )q,'Q'+n, n (Q')2]c/co,

Rq2(Q', p)=[n n~k,'Q,' —(1 n~ )k,'Q—' —n, n (Q') ]c/cu,

R 43 ( Q', p ) = n„n Q~
—( 1 —n) Q

'—
R4(4Q', p)=(n, n )Q'+(1 —n )Q',

R45(Q' p)=0

R5(iQ', p)=n n, g' nn, Q',—

R52(Q', p) = nn, ebg'—+n n, ebg',

R& (Q3', p)=[ „nq,n'Q'+n n, q,'Q'+n, (g') ]c/co,

R54(Q', p) = [n n, k,'Q'+n~n, k,'Q' —n, (g') ]e&c/e, co,

R5&(Q', p) =(n, n, g„'+n n, g'+n, 2l,')eb .
,

(Al)

(A2)
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and

(1—n„)g;S;+[( —n„n )q„Q,c/co+n, n Q; clco]P;

[(1—n )( —q„.g;c lco) —n, n Q; c /co]S, + ( —n n„Q, )P,

( n—~n„Q; )S,. +[(1—n )q„Q;c/co+n, n„g, clco]P;

[( n—„n~)( —q„Q;c/co) n—,n~g; c lco]S;+[(1 n—
~ )Q; ]P;

(n~n, g, )S;+(n„n,q„Q,.c/co n—,Q; c/co)P;

(A3)

APPENDIX 8

In this appendix we give explicit expressions for the elements of the matrices R'" '(Q'), W'"'(Q'), and I(" ' for
Q'=(Q', 0,0) and n =0, 1,2 which appear in Eqs. (17)—(19):

—Q' Q'
—cg 'q,' /co —cQ 'k,' /co

0
0

0
0

0
0

R(00)(QI )— 0

0

0

0

0
0

cg'q, '/co cg'k,'/co@, Q'

—Q' 0
c(Q') /co —c(Q') eb/co@, l,'eb

(81)

R(10)(Q~ )

0 0
—c(g') /co c(g') /co

0 0

0
c(Q') /co

0
0

—c(g') /coe,

0

(82)

0
0

0
0

0
—q,'cQ'/co

0
—ck,'(Q') eb/co@,

0
—Q'eb

0 0
cg'q, '/co cQ'k,'/co

0
0

0
0

0
0

R ( 20 )( Q
I

) 0

0
0

0 —cg'q, 'lco cg'k, '/cog, ——Q'

0 0 0
—c(g') /co c(g') eb/coe, —l,'eb

(83)

W' '(Q')=1,

W'"(Q') =diag( —i(q,'+q„),i(k,' —q„), i (q,'+q„—),i (k,' q„),i(l,' —q„)—},
W' '(Q') =diag( —

—,'(q,'+q„), —
—,'(k,' —q„),——,'(q,'+q„), —

—,'(k,' —q„),——,'(l,' —q„.)2},

(84)

(85)

(86)

~(00)

—cq„Q;S;/co

cq„Q;P; /co (87)

E

cg; P;/co—
0

cQ; S;/co

cQ; P;/co—
0

cq„g;P;/co—
(Bg)
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0
cq„Q;5; /co

I' '= —cq„.Q;P;/co

0

cQ; P; /co

(89)
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