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Landauer's conductance formula and its generalization to finite voltages
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We recast the expression for tunneling current to show that the energy averaging due to a finite

voltage is statistically independent from the energy averaging due to finite temperature. The energy

averaging takes the mathematical form of convolutions. Convolving the standard Landauer con-
ductance formula in energy with a voltage windowing function averages the conductance over an

energy range equal to the applied voltage, just as the independent convolution with the Fermi-Dirac
probability density function averages the conductance over an energy range equal to the tempera-
ture. We illustrate the effects of voltage broadening versus ordinary thermal broadening of the con-
ductance using a quasi-one-dimensional ballistic conductor as a model system, as in the recent ex-

periments of van Wees et al. [Phys. Rev. Lett. 60, 848 (1988)] and Wharam et al. [J. Phys. C 21,
L209 (1988)].

I. INTRODUCTION

Since Landauer's original work' relating electrical
conductance to the transmission probability through a re-
gion of elastic scatterers between two temperature baths,
his formula has been extended to the case of multiple
quantum channels, ' extended to include inelastic
scattering within the sample, applied to many different
experimental geometries, ' and derived from linear-
response theory. ' A review of the two types of Lan-
dauer formulas, discussing the different measurement
conditions under which each applies, is given in Refs. 6,
8, 9, and 10. References 6, 8, and 10 review the higher-
dimensional analogs of these two types of Landauer for-
mulas. The extension of Landauer's formula to finite
voltages has also been investigated. "'

The main goal of this paper is to express the effects of
energy averaging due to finite voltage and finite tempera-
ture on the electrical conductance mathematically in
terms of convolutions. This objective is important be-
cause convolutions are a very natural way to incorporate
random processes leading to a broadening of energy lev-
els, as is the case with the energy level broadening due to
elastic and inelastic scattering in a normal dirty metal ~

'

We show in Sec. II that to generalize the zero-voltage and
zero-temperature Landauer conductance formula to finite
voltage and finite temperature, one merely convolves it in
energy with both a voltage windowing function and a
thermal smearing function, respectively. These two con-
volutions show that the effect of finite temperature is to
average the conductance over a region kz T near the Fer-
mi level, while one effect of finite voltage is to average the
conductance over an energy range e V near the Fermi lev-
el, as previously mentioned in Refs. 11 and 12. By prov-
ing that the difference in Fermi functions characterizing
electrical conduction can be written as a convolution of

two separate functions, one function depending only on
the applied voltage and the other depending only on tem-
perature, we show in this paper that voltage broadening
and temperature broadening are statistically independent.
We apply this convolution broadening method to a
quasi-one-dimensional ballistic conductor to understand
the qualitative similarities and differences between volt-
age broadening and ordinary thermal broadening of the
conductance. By emphasizing that electrical conduction
necessarily occurs at finite voltages, we gain additional
insight into the physical mechanism responsible for the
quantum contact resistance in one-dimensional ballistic
conductors. In Sec. III we examine Landauer's formula
in the classical diffusive limit in one dimension, showing
that it reduces to the standard Drude conductance result.
We show that one also obtains the quantum contact resis-
tance from the Drude-Sommerfeld conductance formula
in the limit that the mean free path grows to its upper
bound of the device size.

A subsidiary goal of this paper is to examine the rela-
tionship of Landauer's conductance formula to previous
treatments of electron tunneling at finite voltages. In the
tunneling limit, by which we mean many parallel quan-
tum channels with no scattering between them, we show
in Sec. IV that the finite-voltage Landauer formula
reduces to many well-known treatments of electron tun-
neling at finite voltages. ' ' ' However, even in this
well-known tunneling limit, we can gain physical insight
into the shape of the current density versus Fermi energy
in different spatial dimensions by noting that, because the
tunneling Hamiltonian is separable, we can obtain the
tunneling current density in two spatial dimensions by
convolving the one-dimensional tunneling current with
the one-dimensional free-electron density of states, re-
peating this process to obtain the three-dimensional tun-
neling current density.
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II. LANDAUER'S FORMULA IN ONE DIMENSION

Our model for a quantum conductor in one dimension
is a potential U(x, V) between two thermal reservoirs as
in Fig. 1, where U depends both on position x and the ap-
plied voltage V. The potential U(x, V) depends on the
applied voltage because electrons reAected from a scatter-
ing obstacle pile up on one side of the obstacle, as em-
phasized in Ref. 1, leading to a density gradient and
nonuniform electric field concentrated around the obsta-
cle. These density and potential gradients in turn
inAuence the tunneling potential so that U(x, V) must be
determined self-consistently, and our treatment totally
neglects such effects. We emphasize that the self-
consistent determination of U(x, V) is the central issue in
any specific calculation of tunneling currents. An ap-
proximate method to self-consistently determine the tun-
neling potential at finite voltages, but which still assumes
a uniform electric field, is given in Ref. 11. In this paper
we will seek results which will not depend strongly on the
exact shape of the tunneling potential, as long as the elec-
tron tunnels through some U(x, V).

Electrons deep inside the two reservoirs are assumed to
have a Fermi-Dirac distribution shown in Fig. 1. We as-
sume the effect of an applied voltage between the two
reservoirs is to create an imbalance in the electrochemical
potentials deep inside the reservoirs equal to the applied
voltage. This results in a current'

I(p, V, T) =e fU+(E)T(E, V)N+(E)

X [f(E —(p+eV), T)

f (E —p, T—)]dE,
where U+(E) is the group velocity for electrons moving
in the positive x direction, N+(E) the density of states
for electrons of both spins moving in the positive x direc-
tion in a one-dimensional free-electron gas, f is the Fermi
function, T the temperature of both reservoirs, and

T(E, V) the transmission coeKcient through the potential
U(x, V). By enforcing time reversal symmetry and
current conservation during tunneling, it is possible to
show that the current transmission probability through
the potential U(x, V) is the same from left to right as
from right to left, i.e., T(E, V)=T~, (E, V)=T,&(E, V).
While Eq. (1) is intuitive, it is also possible to derive it us-
ing the transfer Hamiltonian method and Fermi's golden

12, 14

The product of the group velocity and the electron
density of states in one dimension is a constant given by

0+(E)N+(E) =
dk

1 1 1

~
I dE/dkl

The Fermi function in Eq. (1) can itself be expressed as a
composite probability function

f (E —p, T)= [1 0(E ——p)] — (E, T)
dE

where (3 denotes a convolution in energy, 0 is the unit
step function, and

d= IO(E —p) —8[E—(p+eV)]I — (E, T)
dE

is the thermal smearing function or Fermi-Dirac proba-
bility density function. The convolution (3 of two func-
tion A (E) and B (E) has its usual meaning,

A (E)B (E)= f A (E E')B(E')d—E'

= f A (E')B(E E')dE' .— (5)

The difference of Fermi functions in Eq. (1) can therefore
be written as

f(E (p+e—V), T) f (E —p, T)—

p. +eV
OO| ) P).~

ee
00 jp. .
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e~e+oeoee

Right

reservoir

(6)

Equation (6) shows that the difference of Fermi functions
in Eq. (1) can be expressed as the convolution in energy of
two independent functions, one of which depends only on
the applied voltage and the other which depends only on
the temperature. Equation (6) therefore separates the
effect of finite voltage on the electrical current from the
effect of finite temperature.

Our expression for the current now becomes

Xp

FICx. 1. Model for a one-dimensional quantum conductor:
An elastic scattering potential U(x, V) located between two
thermal reservoirs. p& and p& are the electrochemical potentials
in the left and right ideal conductors, respectively. An applied
voltage V creates an imbalance between the electrochemical po-
tentials p~ =p+ e V in the left reservoir and p, =p in the right
reservoir. Note that plop& and p,&p2.

I(E, V, T)= T(E, V)s W(E, V)s — (E, T)

2p
T(E, V) . (7)

Equation (7), where W(E, V)=[9(E+eV)—8(E)], is our
interpretation of the finite-voltage Landauer formula in
one dimension in terms of convolutions. T(E, V) is the
energy averaged transmission coefficient. After carrying
out the convolutions we set E =p. We display Eq. (7)
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graphically in Fig. 2. At this point we ignore the last two
convolutions shown in the figure. If both e V and kz T are
small compared with any structure in the transmission
coefficient T(E, V), Eq. (7) reduces to the well-known re-
sult

e VI (E)= T(E)V =
mA' R,

(8)

W (E,Vj

—
)E (E,Tj

I (E,V,T) = —'5 T(E,V) s S
-eV 0 =E

g lo

lcm'

-E

FIG. 2. Eft'ect of finite temperature and finite voltage on the
tunneling current displayed graphically as independent convolu-
tions. Energy averaging due to finite voltages is included in the
voltage window 8'(E, V), while the energy averaging due to
finite temperature results from the thermal smearing function
—df (E, T)/dE. The two convolutions with the one-
dimensional free-electron density of states relate tunneling
current density in three dimensions to the one-dimensional tun-
neling current.

which is Landauer's conductance formula in one dimen-
sion. Here R, is the total resistance of the electron mov-
ing from one contact to the other. This formula was also

. obtained explicitly in Ref. 12 in a discussion of tunneling
in one dimension between two thermal reservoirs.

Equation (7) has a simple physical interpretation: The
convolution with the voltage window W(E, V)
= [0(E +e V) —0(E)] implies that the electron beam near
the Fermi surface contributing to conduction is not
monochromatic; it has a width in energy of eV. The box-
like shape of W(E, V) as shown in Fig. 2 argues that the
electron beam near the Fermi surface has a uniform prob-
ability to have any energy between the electrochemical
potential in the right contact and that energy plus eV.
Equivalently, the average tunneling electron near the Fer-
mi energy has a variance about its mean energy of
AE=eV due to the applied voltage. ' The convolution
with df IdE is ju—st the standard thermal broadening of
the conductance. Just as thermal broadening of the con-
ductance makes it necessary to average the zero-
temperature conductance over an energy range kz T near
the Fermi level, finite voltages require averaging the con-
ductance over an energy scale eV near the Fermi level.
The separate convolutions imply that thermal broadening
and voltage broadening are statistically independent.
Note also that the phase coherence time ~v=6/eV intro-
duced by the nonmonochromatic electron beam at finite
voltages is analogous to the better-known phase coher-
ence time at finite temperatures ~z-=A/k~T, both times

being set approximately by the variances of W(E, V) and
—df (E, T)/dE, respectively.

Equation (8) predicts that a conductor having perfect
transmission T(E)=1 has a contact resistance of
R, =h/2e . This result seems contrary to one's intuition
from the Drude formula as well as from Landauer's origi-
nal formula, ' which gives the device resistance Rd as

h R(E)
2e' T(E) (9)

where n (EF )=N (EF )e V is the carrier density near
the Fermi level. As the Fermi level is raised, the Fermi
velocity increases but the carrier density decreases.
Equation (2) tells us that, in one dimension, these two fac-
tors exactly cancel each other for all energies. The con-
tact resistance in Eq. (8) is then a consequence of the
seemingly fortuitous cancellation in Eq. (2). We wish to
propose a heuristic explanation for Eq. (8), which does

Here R (E) is the reflection coefficient so that
T(E)+R (E)=1. Biittiker discusses the assumptions
necessary to obtain Eq. (9). Both the Drude formula as
well as Landauer's original formula, Eq. (9), assert that a
length of perfect conductor has zero resistance. ' It is
now understood ' that whether one obtains Eq. (8) or (9)
in an actual experiment depends on how the resistance is
measured. Connecting two weakly coupled voltage
probes to the ideal conductors in Fig. 1, which measure
the electrochemical potentials p, and p2 as defined in Ref.
18, one obtains the original Landauer formula

Vd=(pi —p2)/e =IRd=I(h/2e )(R/T),

which is Eq. (9). Landauer's original formula for Rd cor-
responds to the standard four-probe geometry for
measuring resistance, in which the voltmeter is only
weakly coupled to the sample one wishes to measure and
no current Aows into the voltmeter. If, on the other
hand, one wishes to obtain the resistance using a two-
probe geometry, which measures the electrochemical po-
tentials IM+ e V =

p& and p =p„one obtains

V, = V=(p& —p„)/e =IR, =I(h/2e )(1/T)

which is Eq. (8). In this case the voltmeter is the reser-
voir, which is strongly coupled to the system one wishes
to measure. Due to the incoherence introduced by the
reservoirs in Fig. 1, the total resistance R, is simply the
sum of the device resistance Rd plus the contact resis-
tance R„ i.e., R, =Rd+R, . That R, is in fact a contact
resistance associated with the introduction of the two
reservoirs in Fig. 1 was explained by Imry' in terms of
the efFusion of a gas through a small hole, and by
Buttiker ' who emphasized that carrier motion from one
reservoir to the other was essential to obtain the contact
resistance.

The contact resistance implied by Eq. (8) follows from
the argument in Eq. (1) that the current is simply a prod-
uct of the carrier charge, velocity, and density. For small
temperatures and voltages this gives

2

I=evF n (Ez;)=evF+[N+(Ez)eV]= V,



LANDAUER'S CONDUCTANCE FORMULA AND ITS. . . 1459

not rely on Eq. (2), and which emphasizes the way in
which current is drawn out at, a contact.

To gain further insight into the contact resistance and
make a plausibility argument for Eq. (8), introduce the
times

I= = T(E)V and I= = V
~, +~d vrA ~A

(10)

T' he time ~d corresponds to the original Landauer formu-
la Rd while the time ~, corresponds to the contact resis-
tance R, . If the conductor is in the classical diffusive
limit, the time ~d is proportional to the time for a classi-
cal particle to diffuse across the conductor. '

We can now make a plausibility argument for Eq. (8).
We consider a single quantum ballistic channel having
unity transmission so that the resistance Rd is negligible,
i.e., ~d —+0. That the conductance of the perfect wire by
itself is infinite one can understand simply from the
Drude formula, in which an impulse function electric
field excites a current which flows forever without decay-
ing. Our emphasis must be on understanding the resis-
tance R„which we do by arguing for the time ~, as fol-
lows: Consider the case of zero temperature. Far away
from the interface between the device and the reservoir,
the right contact must be described by a Fermi function
having a single current-carrying state at the electrochem-
ical potential p„. As the right contact rapidly draws out
an electron at energy p„another electron can occupy
that energy level. It cannot, however, do so instantane-
ously. When the average tunneling electron near the Fer-
mi surface reaches the right contact, it must dissipate on
average an amount of energy AE =e V in that contact.
Even if inelastic scattering processes occur on very rapid
time scales in the contact, there is a limit imposed by the
uncertainly principle for the rate at which energy can be
dissipated into the thermal bath, namely 1/hr=b, E/fi.
The time h~ to dissipate an amount of energy AE =e V
into the contact should be the same order of magnitude
as the time ~, to equilibrate with the measurement reser-
voir. This equilibration step will limit the current How
because, if the electron is out of equilibrium with the
measurement reservoir, the reservoir cannot detect the
electron. Therefore, only one electron of charge e can
Aow across the device every A/eV sec. Imposing this
rate-limiting process in the contacts, we argue that the
electrical current even in this ballistic case is

which define the effective time of an electron in the device
7 d and the contact ~, . One obtains for these times

2~Pi 2~A' 1 —T(E)—'Ty and 'Td =.V ' ' .V T(E)

be transported into the right contact even in a perfectly
ballistic device. Since the rate-limiting step for the
current occurs in the contact, not in the device itself, the
conductance formula (7) is independent of the length of
the device as T(E )~ 1. The contact resistance is also
plausible from the perspective that the voltage sources,
which inhuence only the electrochemical potential deep
inside the reservoirs, have no way of knowing that an
electron has, in fact, transited the device until it comes
into equilibrium with a Fermi function inside the reser-
voir. While the above argument is only heuristic, we be-
lieve it can be placed on firmer mathematical grounds by
analogy with the onset of resistance in narrow supercon-
ductors via "phase slips. "

The factor of T(E) which enters into Eq. (8) can also
be understood from an energy dissipation viewpoint:
Only those electrons which in fact transit the device dissi-
pate energy and wind up contributing to the resistance.
We also note that the analog of Eq. (9) at finite voltages
has been suggested in Ref. 11 to be
I/Vd =(2e /A)(T/R ), where T is simply the energy
averaged transmission coefficient defined in Eq. (7) and
T+R =1.

Consider now a quasi-one-dimensional ballistic wire
described by the separable potential U (x,y, V)
= U, (x, V)+ U (y), where U (y) is a confining potential
which quantizes the electron energies perpendicular to
the direction of transport. The separable Hamiltonian
implies that there is no scattering between the different
subbands created by the confining potential U~(y). Equa-
tion (7) therefore generalizes, as we show in Sec. IV, to
simply a sum over all the possible paths for electrons to
transmit between the left and right contacts:

I(E, V, T)= g T, (E, V)e W(E, V)e — (E, T)
l

where the sum is over all occupied subbands. For a
ballistic quasi-one-dimensional wire with U (x, V) =0, we
have

T;(E, V)=()(E —E;)

at moderate voltages. Here E, is the subband energy for
quantized motion perpendicular to the direction of trans-
port. The limiting case of this formula at zero tempera-
ture is when the thermal smearing function becomes a 5
function so that

I(E, V, T=O)= +8(E E, )e W(E, V) . —

e e e
(12)

We can carry out the convolution to obtain

8(E E, )e W(E, V)—
which is the same order of magnitude as Eq. (8). This
contact resistance corresponds to energy dissipation in
the reservoirs, since no energy can be dissipated by elastic
scattering in the sample. For the electron to dissipate an
amount of energy e V in the reservoirs requires some time
~, =2M/eV, which limits the rate at which current can

0, E(E;—eV

E —(E; —eV), E; —eV&E &E; .

eV, E)E;
We sketch the current in a ballistic quasi-one-
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III. CLASSICAL DIFFUSIVE LIMIT
OF LANDAUER'S FORMULA
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FIG. 3. Ballistic contact resistance in a quasi-one-
dimensional quantum wire illustrating the effects of finite volt-
ages and finite temperature. The conductance is shown versus
the electrochemical potential p in the right contact. The finite
width of the steps in conductance is inversely proportional to
the phase coherence time introduced by finite voltage or finite
temperature.

dimensional wire with several subbands versus the elec-
trochemical potential p in the right contact in Fig. 3.
The conductance 6 is defined as the current divided by
voltage, even at finite voltages. These steps in the ballis-
tic conductance have been observed ' and explained us-
ing formalisms similar to the one in this paper as quan-
tum contact resistances. The conductance at finite volt-
ages, given by the dashed line in Fig. 3, shows initially a
linear dependence versus Fermi energy instead of a step
at zero temperature. We also show the effect of finite
temperature on the conductance in Fig. 3 for comparison.
Both finite temperature and finite voltage smear out the
sharp steps in the zero-temperature conductance. The
maximum slope of these steps in the conductance versus
Fermi energy occurs at conductance values half-way be-
tween the plateaus, and is given by

We are interested in the case with there are n scatterers
randomly distributed in one dimension between two
reservoirs as in Fig. 4. We consider the diffusion of clas-
sical particles down the chain of scatterers. Evaluating
Landauer's formula for this case requires evaluating the
transmission probability of a classical particle down a
chain of n identical scatterers. This can be treated as a
classical random walk down the n scattering sites. The
classical transmission probability T„down the total chain
of n scatterers can be obtained in terms of a recursion re-
lation

1 Tn —1

1 —RiR„
where T„+R„=1 . (19)

The solution of this recursion relation, which can be
motivated from physical arguments involving the addi-
tion of classical resistors in series, is

P1

1

(R, /T, )n+1 (20)

2
1

~A (R, /T, )n +1 (21)

If we chose the scattering centers to be different, with
scatterer a having a transmission coefficient T„etc., we
obtain for the resistance R &D after solving a recursion re-
lation similar to Eq. (19)

where Ti is the probability of a classical particle being
transmitted by a single scatterer. This result has been ob-
tained in Ref. 2, and the special case with T=R =

—,
'

treated in Ref. 23 using a different method. Substituting
this classical transmission coefficient into Landauer's
conductance formula in one dimension, Eq. (8), gives the
diffusive conductance

dG e 1 e ~T
for V=O

dp M 4k~T mA
(17)

Ra Rb Rc'+ + '+. . +1, (22)

at finite temperature and

dG e 1 e &y
for T=O

dp ~A eV ~Pi

which is just the classical sum of the original R /T Lan-
dauer resistance from each scatterer plus the contact
resistance.

If we choose T, =R, =
—,
' for each scatterer, corre-

sponding to the assumption of isotropic scattering in the

at finite voltages. The maximum slope of the steps in
conductance versus Fermi energy is limited by the phase
coherence times ~T and ~z, and is proportional to the
phase coherence time. In a field effect transistor where
the chemical potential is proportional to the gate bias
voltage V, and if the chemical potential were controlled
by such a gate, one could interpret
g =dI/dV =eVdG/dp as the transconductance of the
device. For such a structure, the transconductance
would have a finite maximum value even in the ballistic
transport regime. When the applied voltage is much
greater than the temperature, this maximum transcon-
ductance in the quasi-one-dimensional ballistic wire be-
comes just g =2e /h.

1 2 545 n

L =(n+I ) g

FIG. 4. n randomly positioned scatterers between two
thermal reservoirs in one dimension. The two reservoirs are
also regarded as scatterers so that the mean separation I be-
tween scattering centers is L =(n +1)l, where L is the sample
length.
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conductor, each elastic collision with a scatterer com-
pletely randomizes the particle's momentum direction.
Our form for the classical diffusive conductance, Eq. (22),
suggests that we interpret the contact resistance on the
right-hand side as stating that the thermal reservoirs
completely randomize the momentum direction of the
electron when it enters the reservoir. The reservoir cap-
tures all particles incident upon it, then immediately ran-
domizes their momentum direction due to rapid scatter-
ing inside the reservoir. This assumption is included in
our derivation of the conductance formula (8) by assum-
ing the reservoirs are described by a Fermi distribution.

We now wish to compare Eq. (21) to the standard
Drude-Sommerfeld conductivity expression in one di-
mension,

2 e
0 1D e N(EF )D(Ez ) =e ~ vp&«=2 I, (23)

2e' lt

L mAL
(24)

In order for the diffusive conductance from Landauer's
formula, Eq. (21), to equal the Drude conductance in Eq.
(24), we must conclude that

where l«=vF~« is the transport mean free path at the
Fermi level and D (Ez ) =Uz~« is the diffusion coefficient.
To obtain the conductance in one dimension, we merely
divide by the length of' the sample:

the arrangement of the n scatterers between two thermal
reservoirs as shown in Fig. 4. The reservoirs are regarded
as being two additional scatterers which absorb all car-
riers incident upon them while simultaneously randomiz-
ing the carrier s momentum direction, so they must be in-
cluded in computing the mean free path /. From the
geometry of the scatterers we therefore have for a given
scattering configuration that L =(n + 1)l. The mean free
path in the average configuration of the scatterers is
therefore L =2(n +1)l as in Eq. (26). We see again that
the Drude conductance, given by Eq. (24), and
Landauer's conductance formula, Eq. (8), in the classical
diffusive limit are the same.

The Drude conductance formula and the Landauer
conductance formula can also be made equivalent in the
ballistic limit of no scattering between the thermal reser-
voirs (n =0), if we reinterpret the meaning of the trans-
port mean free path which enters the Drude conductance
in Eq. (24). The standard interpretation of the transport
mean free path /„=vF~« is that ~„ is the scattering time
in an infinite system. In this standard interpretation /«
can increase without bound. If we now reinterpret l«as
the average distance for the conduction electron to ran-
domize its momentum direction in a finite sample, we see
that the longest possible transport mean free path for any
given sample is just the sample length. For the average
sample described by Eq. (24), this argument gives
2l« =2l =L, in which case the ballistic conductance is

l«
2

1

(R /iT, )n +1 (25)

2

Glr =~ (27)

To show that Eq. (25) is correct, consider the special case
of isotropic scattering in the conductor. Here
T& =R

I
=

—,', so that the transport mean free path is equal
to the mean distance between the scatterers, i.e., l«=l.
In that case Eq. (25) becomes

1

L n+1 (26)

In the limit that n becomes large, Eq. (26) implies that
the mean free path is half the average spacing between
scattering centers. We would obtain this result for the
mean free path in one dimension if we average the dis-
tance to collide with a scatterer over a uniform distribu-
tion of all possible starting positions for the random
walk. This statistical average is consistent with the stan-
dard assumption used in deriving the Drude conductivi-
ty, in which we consider an electron executing a random
walk inside an "average" conductor that is spatially uni-
form. We can either keep the scatterers fixed and aver-
age over all possible starting positions for the random
walk, or we can keep the origin of the random walk fixed
and average over all possible impurity locations. Either
way we obtain that the mean free path which should ap-
pear in the Drude formula, Eq. (24), is half the average
spacing between scatterers. Consequently, for large n, Eq.
(26) is correct, so that the Drude conductance is
equivalent to the diffusive limit of the Landauer conduc-
tance. Moreover, even for small n, Eq. (26) can be shown
to be valid by the following argument: Consider again

as before. The contact resistance can be thought of from
this viewpoint as a consequence of the electron's trans-
port mean free path being limited to at most the sample
length.

We can gain further insight into the Drude-
Sommerfeld conductance by considering a quantum par-
ticle moving in a set of potential barriers in one dimen-
sion, with barrier a having a quantum-mechanical
transmission probability T„etc. In computing the total
transmission probability of a quantum particle down this
chain of scatterers one cannot ignore the phase of the
particle. The total transmission coefficient down the
chain will therefore be much more complicated than in
Eq. (22). Biittiker has worked out the general case for
the addition of quantum resistors in series. In the case
where the particle inelastically scatters with probability
one between each elastic scatterer, his results can be writ-
ten very simply as

2

~ R1D
R, +1 +
T.

+ ~ ~ 0 + 1

Rb R,+1 + +1
b t~c

(28)

The quantum particle picks up the contact resistance
each time it inelastically scatters. Equation (28) was de-
rived for zero applied voltage. In the case of a finite volt-
age, we must average each transmission and reAection
coefticient over the energy dissipated into the inelastic
scatterer. This energy averaging will be of the order of
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the applied voltage divided by the number of additional
inelastic scatterings inside the sample. If the number of
inelastic scattering events increases with temperature,
then the energy averaging due to voltage and temperature
will be related, in contrast to the case where there is no
inelastic scattering inside the device. Another interesting
property of Eq. (28) is that the total transmission
coefTicient decreases linearly with the length of the 1D
chain as expected if the motion is diffusive. It is generally
believed that, for most types of disorder, the resistance of
a 1D chain without inelastic scattering increases ex-
ponentially with the length of the chain. Therefore, it
appears that inelastic scattering processes are necessary
to obtain diffusion in 1D. Equation (28}, if compared
with the Drude conductance in Eq. (24), gives
Matthiessen's rule it,

' =1,
&

' +1;„', where L /2l,
&=(R, /T, )n for the case of identical barriers and

L/2l;„=n +1.

IV. TUNNELING LIMIT OF LANDAUER'S FORMULA
IN TWO AND THREE DIMENSIONS

We consider here the generalization of Landauer's con-
ductance formula to include many quantum channels or
sets of good quantum numbers in the ideal device leads as
described in Refs. 3 and 10. Define the current transmis-
sion probability T;. from channel j in the left reservoir to
channel i in the right reservoir evaluated at a given ener-
gy as

j,left
(29)

Xf&(E —(p+eV))[1 f,(E p)]dE—. (30—)

The current from right to left is similarly

I,&=pe f v, (E)N, (E)T/;(E, V)f,. (E —p)

X[1 f,(E —(p+eV—))]dE . (31)

Here v+ =v and X+ =X =X/2.
Current conservation along with time reversal syrnme-

try give the constraint tlj tjl implying that Tlj Tjl.
The net current is therefore

f TJ(E, V)[f,(E (p+eV)) f,(E —p)]dE . — —
1,J

(32)

Equation (32) reduces to the general result

when all other incoming currents are zero. Here t; is the
current transmission amplitude as defined in the scatter-
ing matrix. ' The current from left to right, in the spirit
of the derivation in Ref. 14, is therefore obtained as

I&, =g e f v/+ ( E)X~+(E)TJ (E, V)

I = g T,,(E, V)e W(E, V)@
e df (E, T)

1,J

where W(E, V) is again the voltage window given by

W(E, V)=[8(E+eV) 8(—E)] .

(33)

Equation (33} shows that temperature broadening and
voltage broadening are statistically independent even in
this multichannel case. Equation (33) reduces at low tem-
peratures and small voltages to the well-known result ' '

eV eV eV
2M . . '' 2m' 'J '' 2vrR

17J 1,J
(34)

where the sum in Eq. (34) also runs over the individual
spin quantum numbers, thus differing by a factor of 2
from Eq. (33). Equation (34) is analogous to the Lan-
dauer formula proportional to T, Eq. (8) describing a
two-probe measurement. References 3, 6, and 10 give the
multiple channel Landauer formula which describes a
four-probe measurement, analogous to the T/R Lan-
dauer formula in Eq. (9).

For a general T;, Eq. (34) allows the possibility that
electrons can scatter between different quantum channels.
We are interested in the tunneling limit of this formula,
for which T;.= T;6; -. The current transmission probabil-
ity takes this form only if the Harniltonian is separable as
8„„~=8(x)+8' (y)+8, (z), thus justifying Eq. (13) in
our earlier treatment of the ballistic quasi-one-
dimensional wire. This tunneling limit corresponds to
the classical addition of resistors in parallel, i.e., there is
no communication between the parallel resistors. Be-
cause there is no scattering between the different con-
ducting channels inside the sample, we only have to sum
over one channel index in Eq. (34), namely,

eV eV2~&" =2.~&'
1&J 1

(35)

Expressing the multichannel Landauer formula, Eq. (35),
in terms of a current density then gives

I
3D

y z

T(E —E (k )
—E,(k, )) .

2M Ly Lz k k gplz

(36)

This limit also corresponds to the usual treatment of elec-
tron tunneling, for which we assume a static potential
having spatial variation only along the x direction. ' ' '
To prove this, note first that the Harniltonian is separable
so that E =E„+E +E,. Furthermore, the eigenfunc-
tions along y and z are plane waves so that E» =A' k» /2m
and E, =Pi k, /2m. The transverse channel index i can be
labeled by i =(k, k, ). Translational invariance along the

y and z directions implies there is no scattering potential
to couple the transverse channels. We enforce conserva-
tion of energy by writing

T,.(E„)=T(E E(k ) E,(k, ))—. —
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Recognizing the one-dimensional identity

2 g~fNg(E )dE
Ly k,

(37)

in the previous section, we note that the multiple-channel
Landauer formula has been applied to consider voltage
Auctuations in small diffusive conductors.

where N &'D'(E) is the one-dimensional free-electron densi-

ty of states including spin
1 j2 1/2

(E)=— — 8(E)1D

the current density now becomes
2

y f f ,'N';-(—E,) ,'N';"(-E, )
spin

X T(E E—(k ) E,(k,—))de dE, .

(39)
Equation (39) can be written as a convolution

J I
3D

Z

2

T(E)S —,'Ni'D (E) —,'Ni'D'(E) . (40)

If we had started from a standard tunneling formal-
ism, ' ' we would have obtained

J»(E, V, T) = T(E, V)e 8'(E, V)e — (E, T)
dE

s 'N '"(E)s i N—'"(E)1D 2
(41)

as the current density at finite voltage and finite tempera-
ture. Equation (41) is shown graphically in Fig. 2. From
Eq. (41) one can obtain any tunneling current at finite
voltage and temperature found in Refs. 12, 14, and 15. A
helpful identity in obtaining these tunneling currents is

1 m
1Nfree(E) 1Nfree(E) —1Nfree(E) g(E)1D 2 1D 2 2D 2 2 A2

(42)

Results analogous to Eqs. (42) and (40) for the density of
states and electrical currents follow for any separable po-
tential. ' Using Eqs. {42) and {40),we see that in the stan-
dard type of quantum-mechanical tunneling calculations
in three dimensions, the quantum contact resistance nev-
er appears. The reason is, of course, that in going over to
a continuum of states we add an infinite number of con-
ducting channels in parallel. For tunneling at finite volt-
ages, Eq. (33) reduces to the standard tunneling current
density at finite voltages, Eq. (41), thus having the correct
behavior in the tunneling limit.

By analogy with our consideration of classical diffusion

V. CONCLUSIONS

Using the Landauer formalism we have examined the
effects of finite voltages on quantum transport, showing
that the finite voltage acts to average the electrical con-
ductance over an energy range equal to the applied volt-
age. This voltage broadening is similar to ordinary
thermal broadening of the conductance, which averages
the conductance over an energy range equal to the tem-
perature. We showed that both thermal and voltage
broadening of the conductance can be expressed as in-
dependent convolutions with known functions, proving,
that voltage broadening and ordinary temperature
broadening are statistically independent. Motivated by
the recent experiments of van %'ees et al. ' and %'haram
et a/. , we examined thermal and voltage broadening of
the conductance using a quasi-one-dimensional ballistic
conductor as a model system. The finite width of the
rises in the quantized steps in conductance versus electro-
chemical potential in these experiments is inversely pro-
portional to the phase coherence time of the electron in-
troduced by either finite voltage or finite temperature.
The quantum contact resistances can be thought of either
as a consequence of the rate limitation imposed by the
uncertainty principle in the device leads or as a conse-
quence that the mean free path is limited at most to the
device size.

We also examined both the diffusive and tunneling lim-
its of Landauer's conductance formula. In the classical
diffusive limit the one-dimensional Landauer formula
reduces to the Drude-Sommerfeld conductance in one di-
mension. In the tunneling limit, the finite-voltage Lan-
dauer formula is equivalent to many previous treatments
of electron tunneling at finite voltages. In this tunneling
limit, we have shown that simply by repeatedly convolv-
ing the tunneling current in one dimension with the one-
dimensional free electron density of states, one obtains
the tunneling current density in two and three spatial di-
mensions.
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