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Phonon&rag thermopower of a twoWsnensional electron gas in a quantizing magnetic Seld
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A formula is developed which gives the phonon-drag thermopower S~ of a two-dimensional

(2D) electron gas coupled to 3D acoustic phonons in a quantizing magnetic field. Evaluation of
the formula with realistic parameter values for a GaAs-Ga, Al]-„As heterojunction in a field of
15 T yields a maximum value of 16.4 mVK ' at 6 K in excellent agreement with experimental
data [for sample 1 of Fletcher et al. , Phys. Rev. B 33, 7122 (1986)].

Recently, very-low-temperature measurements of the
thermopower S of a two-dimensional (2D) electron gas in
a GaAs-Ga„A]~ „As heterostructure have shown strong
evidence of phonon-drag thermopower Ss in zero and
nonzero magnetic fields. ' 4 In quantizing magnetic fields,
the values of Ss are found to be a few mVK ' and are
greater than the predicted values of diffusion thermo-
power Sd by 2 orders of magnitude.

Phonon-drag thermopower arises from momentum ex-
change between electrons and phonons as a result of
electron-phonon interaction in the presence of either a
temperature gradient VT or an electric field E. There are
correspondingly two approaches to the calculation of Ss:
the Q approach and the II approach by Herring. In the
Q approach, the nonequilibrium distribution of phonons is
used to calculate the momentum transferred to the elec-
trons, and thus Sg is calculated. In the II approach, the
electron distribution is calculated in the presence of E
with VT 0 and the phonons in their equilibrium distribu-
tion. Then, the nonequilibrium distribution of phonons re-
sulting from momentum transfer is calculated. The per-
turbed distribution of phonons is used to calculate the en-
ergy flux which they carry and hence the phonon-drag
contribution to the Peltier coefticient H, which is equal to
TSs(8) in consequence of the Kelvin relation. Either
approach should give the same result, but the II approach
is simpler as VT 0.

In this Rapid Communication we calculate Ss using the
II approach and ignore the Zeeman splitting of the spin
states. The electron system considered is a 2D electron
gas in a GaAs-Ga„AI& —„As heterojunction subjected to a
quantizing magnetic field at very low temperatures. For
zero magnetic field Ss is calculated (using the Q ap-
proach) by Cantrell and Butcher and it accounts for the
large thermopower observed in a 2D gas at liquid-helium
temperatures. We model the 2D electron gas as follows.
The electrons are assumed to be con6ned to a thin layer
parallel to the xy plane by a potential well, which is a
function of z. The thin layer of electrons is embedded in a
block of semiconductors of size L~, L~, and L, in the x, y,
and z directions, respectively. The block is assumed to
contain 3D phonons. We consider electron motion in the
presence of a small electric 6eld E along the x direction

and a magnetic induction 8 along the z direction. Then
the carriers drift along the y direction to produce a net
electrical current in the y direction which causes a Peltier
heat flux U» in that direction.

The transport equations for VT 0 are

J cr. E

and

(2)

S»» -II»»/T,

we have

S„-T-'(U, /E) p„, .

(4)

(5)

In writing Eq. (5), it is assumed that, for moderate disor-
der, p„„((p„». Note that for the above situation there are
only two independent coefficients: thermopower S„„S»»
and the Nernst-Ettingshausan coefficient S»„—S„».

In general, there are contributions to U from both elec-
trons and phonons. However, we are interested in calcu-
lating only the contribution due to phonons. To do so, we
assume that 2D electrons interact with 3D phonons. At
very low temperatures we may neglect all but acoustic
phonons of energy hrvq, and wave vector q (q„,q», q, ) in
the sth mode. The U is written as

U -L, (2tt) d q hcvq, vq, g, (q),
where vq, is the group velocity of the phonons,

g, (q) Nq, —Nq, , (7)

in which Nq, is the phonon distribution function and Nq,
is Nq, at thermal equilibrium, which is given by the Bose
distribution at temperature T. We calculate g, (q) by

where J and U are the 2D electrical and heat current den-
sities, respectively, and ~r is the 2D magnetoconductivity.
For the situation described above,

II»» U»/J»

and, using the Kelvin relation,
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(aNq, /at), jf g (q)/r, (q), (9)

where r, (q) is the phonon relaxation time. From Eqs. (8)
and (9) we see that

g, (q) =r, (q)(aNq, /at), ~.

solving the steady-state Boltzmann equation for phonons:

(aN„/at)„+ (aN„/at), .~, =o.
In Eq. (8), the first term is due to the electron-phonon

interaction and the second term is due to other scattering
processes such as phonon-phonon interactions and bound-
ary scattering. Assuming that the latter interactions dom-
inate, we write the second term in Eq. (8) in the relax-
ation-time approximation as

wave function of a simple harmonic oscillator centered at

xp(ky) = —l (ky+m*E/AB), (14)

where l = (h/eB) 't is the cyclotron radius. Note that the
processes involved in Eq. (11) conserve momentum in the
y direction: i.e., k'~ =k~+q~. Using Eqs. (7) and (10)-
(14), we may solve for g, (q) to obtain

g, (q) = [N (hco*, ) N(h—tp„)] ', , (15)
r, (q)

Is q +Vs q

where

h roq, = li coq, [1+(E/Bv, ) (qy/q )],
and

The rate of change of Wq, due to electron-phonon interac-
tion is, in the Born approximation,

(aN„/at), =g[P', (a' a)f, (1 f,)—
ua'

1., (q) =(2~/l )g I v. ..(q) I'
aa'

x (f, —f,)h(E, —E, —hcoq, ) .

Here

(17)

y (x,y, z) =(Ly) exp(ikey)e (z)y„[x xp(ky)],

(12)

and

E, E, +eExp(ky)

=E +(n+ ' )Aco +eExp(ky),

(13a)

(13b)

where a represents the set of quantum numbers (m, n,
k~) with m and n denoting non-negative integers. In Eqs.
(13) we have dropped a term proportional to E . In Eqs.
(12) and (13), k~ is a wave number in the y direction and

(z) is the normalized wave function of the mth electric
subband with energy E . Finally, p„ is the normalized

—Pq, (a a')f.(1 —f. )],
where Pq, (a'~ a) is the transition rate at which an elec-
tron goes from state e' to state a by emitting a phonon,
Pz, (a~ a') is the transition rate at which an electron
goes from state a to state a' by absorbing a phonon, and f,
is the distribution function for electrons in state o;.

The transition rates can be evaluated by using the one-
electron wave function y, (x,y, z) and eigenvalue E, for
the 2D gas in crossed electric and magnetic fields. For an
isotropic eff'ective mass I we have, for electrons with
charge —e and cyclotron resonance frequency co, =eB/
teal

2

I V...(q) I

'=
I V, (q) I

' „y.(r)e'q'y. (r)d'r, (18)

in which r = (x,y, z) and I V, (q) I represents the
strength of electron-phonon interaction. To calculate
g, (q) to first order in E, we write

NP(@cod ) NP(hcpq ) 2 G(Pha~q /2)
Bp Acoq,

(19)
in Eq. (15), where P=(ktiT) ' and G(x) =(x/sinhx) .
Then the f,'s in Eq. (17) may be replaced by their
thermal equilibrium values given by the Fermi-Dirac dis-
tribution functions f, , and E„may be replaced by E, [as
defined in Eqs. (13a) and (13b)] both in f, and in the
Dirac 8 function. From Eqs. (6), (15), and (19) we then
have

I.,EU- —
3 d q(q/q )q~G(PAcvq, /2)

X
I, (q)

(2o)r, (q)+, '(q) '

which, using Eq. (5), gives a general expression for S~.
The evaluation of I, (q) is simplified when all electrons

are in the lowest Landau level (n =n'=0) and the lowest
electric subband (m =m'=0). Replacing the Dirac 6
function in Eq. (17) by a Lorentzian Aq with width y we
obtain

sinh(ph cpz, /2)
1,(q) =(I- L,/hl ) I V. (q) I 'exp( —qP'/2) IF(q. ) I

'&q „E h
'2 E E +& (21)

2

IF(q. ) I

'=
J"~'( )e"'d (22)

where q~ =(q, q~), EF is the Fermi level, Ep=Aco, /2, with v, denoting the velocity of sound for mode s. Assum-
ing that the magnetoresistivity of the 2D gas is given by
the classical formula

(23)
p y=B/n e,

we find from Eq. (5) that Sg is

(24)
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klan L, r, (q)
q'dq (1 —v')G(Ph, roq, /2)

4z n, e"

where n, is the electron concentration per unit area,
v=cosO, and 0 is the polar angle of q. Note that the
quantum-Hall effect is ignored in Eq. (24). It may be
readily taken into account in more exact calculations.

To compare Eq. (25) with the experimental data of
Fletcher et a/. ,

' we evaluate the integral with the follow-
ing simplifications. The electron-phonon interaction is as-
sumed to be due to unscreened piezoelectric and deforma-
tion potentials. Explicit formulas for

~
V, (q) ~

are given
in Ref. 8 for this case. The phonon scattering is supposed
to be dominated by boundary scattering so that z, (q)
=L/v„where the phonon mean free path L and v, are
both independent of q. Fang-Howard-Stern variational
wave functions are used to calculate

~ F(q, ) ~
and the

Fermi level is obtained by solving the equation

n, -„ f'(c)D(e)de,
where

D (~) = ( I /re ') () /rr )/l (~ Zf ) '+ )
'—

l

(26)

(27)

is the density of states per unit area. We consider sample
1 of Fletcher et al. ,

' when 8=15 T, and set m*/ma
=0.067, v~ =5.14&10 cms ', v, =3.04&10 cms
the static dielectric constant x; =12.9, the mass density
p =5.3 g cm, and the piezoelectric constant h ~4

=1.2&10 Vcm '. For sample I Fletcher et al. ' give
n, =1.78 x 10' ' cm, L, =0.036 cm, and estimate
L =0.03 cm.

The value of y is estimated to 1.12 meV for sample 1 by
using the self-consistent Born approximation for short-
range scatterers' and then the measured value of the mo-
bility: 2.26x10 cm V 's ' at 4.2 K. However, by tak-
ing this value we find S~ values 2-3 times smaller than the
experimental values. Moreover, the T dependence of Sg
does not agree with the data. We have, therefore, varied y
to obtain better agreement between theory and experi-
ment with regard to both the magnitude and temperature
dependence of Sg. We find that @=0.4 meV provides a
good fit. This value, which is less than half that calculated
above, is believed to indicate that long-range scattering
mechanisms are important in GaAs-Ga„AI~ „As hetero-
structures, which confirms the observations made by Ob-
loh, Von Klitzing, and Ploog. "

We have used the deformation potential E
~
=11.5 eV in

the calculations, which is larger than the value of 7.0 eV
accepted in bulk GaAs. ' However, this value is reason-
able in view of the fact that in GaAs-Ga Al~ — As hetero-
structures the observed low-T energy-loss rate is best
fitted by E~ =11.5 and 16.0 eV for unscreened and
screened electron-phonon interactions, respectively. ' It
can be noted that the study of the low-T energy-loss rate
isolates the scattering of electrons by acoustic phonons
from other scattering mechanisms. Moreover, the study
of the other transport properties in these structures have
established that E ~

—11-16eV. '

With the above parameters we find excellent agreement

Sy = —(kg/e) ln2/(n+ 2 ), (28)

15-

iO-

FIG. 1. Comparison of the calculated temperature depen-
dence of Ss (curves 1-3) with experimental data (points) for a
GaAs-Ga All — As heterojunction at a magnetic Aux density of
15 T. (1) Piezoelectric scattering alone, (2) deformation-
potential scattering alone, (3) piezoelectric and deformation-
potential scattering combined. Parameter values are given in

the text.

between calculated values and experimental values of Sg.
It can be seen from Fig. 1 that both piezoelectric and
deformation-potential scattering are important in the tem-
perature range of interest. Piezoelectric scattering dom-
inates over deformation-potential scattering for T below
3-4 K. The small departures between calculated and ex-
perimental values at high T may be due to our neglect of
phonon-phonon interactions in calculating the r, (q). At
higher T, phonon-phonon interactions are expected to de-
crease r, (q). We suggest that this is the reason why the
experimental points fall below theoretical curve (3) at the
highest temperatures considered. Finally, we note that for
the parameter values considered, I, (q) «r, '(q) in Eq.
(25) so that Sg is proportional to L, as is found experimen-
tally. '

There are a number of corrections to be considered in a
more refined calculation. Ss calculations with B 0 show
that the screening of the electron-phonon interactions is
important ' and reduces Sg by almost 50% in GaAs-
Ga„A1~ —„As structures. ' If we take E~ =16.0 eV and
scale by 65%, for example to account for the screening,
the calculations are again in agreement with the experi-
mental results. We should also substract a small term
from the measured S to allow for diffusion thermopower
Sd before comparing the measurements with calculated
values of Ss. For an unbroadened Landau level, the max-
imum value of Sd is'
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which gives 120 pVK ' for Landau-level index n=0.
This value is smaller than the experimental data by 2-3
orders of magnitude. Moreover, calculations made with a
broadened Landau level further reduce Sd by 30-50%. '

Finally, it is important to notice that the magnitude and
behavior of Sg, when 8 is large, are determined by the
strength of the electron-phonon interaction and the posi-
tion of EF with respect to Landau level. EF is strongly
influenced by y, which we have assumed to be constant.
In reality, it depends on the scatterers, the magnetic field,
and the temperature.

To summarize, we have given for the first time a simple

theory of phonon-drag thermopower for a 20 electron gas
in a magnetic field coupled to 3D phonons. There is excel-
lent agreement between the theory and experimental data
for GaAs-Ga„A1& —„As heterojunctions at liquid-helium
temperatures. In the quantum limit the theory requires a
number of small corrections which will be discussed in a
more extensive paper dealing with the dependence of Sg
on 8, which has been set equal to 15 T here so as to put
the system in the quantum limit. As 8 is decreased, suc-
cessive Landau subbands are populated and the resulting
oscillations of S~ which have been observed are contained
in the general formulas of Eqs. (25), (17), and (18).
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