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Methods to measure the charge of the quasiyarticles in the fractional quantum Hall effect
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We propose various experimental circumstances in which the longitudinal resistance of a two-
dimensional electron gas in a high transverse magnetic field depends, in a simple and characteris-
tic way, on the charge of the quasiparticle excitations. We propose that experiments of this sort
could be used to directly measure the charge of the quasiparticle excitations which carry the dissi-
pative part of the current. While it has been persuasively argued by Laughlin that the Hall con-
ductance itself measures the quasiparticle charge, the connection is indirect, since the Hall
current is carried by the condensate, not by the quasiparticles.

INTRODUCTION

One of the most remarkable features of the theory ' of
the fractional quantum-Hall effect is that it predicts the
existence of quasiparticles with fractional charge In p.ar-
ticular, for the incompressible state corresponding to a
value of the Hall conductance ctH (e /h)(n/m), for
which the density of electrons per flux quantum v n/m,
the quasiparticles have charge e* e/m where e is the ele-
mentary quantum of charge and m is an odd integer. To
date, there has been no direct experimental verification of
this prediction of the theory. Laughlin constructed a re-
markable argument in the context of the integer
quantum-Hall effect which is based on the notion that if
the center-of-mass motion of the electron gas can
equivalently be described as if an integer number of
quasiparticles were transported from one side of the sam-
ple to the other, then the Hall conductance can be shown
to be e e/h times an integer. Thus, it seems clear that the
observation of a Hall plateau at a fractional multiple of
e /h implies the existence of fractionally charged quasi-
particles. While this argument is compelling, the infer-
ence is indirect. In the Hall plateau region the entire
current is carried by the collective motion of the electron
gas; it is important to the entire scheme that there be no
quasiparticle component to the current. Thus, the Hall
conductance measures the properties of the condensate,
not the properties of the quasiparticles. Recently there
was also an interesting experimental observation that in
the middle of the Hall plateau corresponding to filling fac-
tor v (n/m) flux quanta per electron, the longitudinal
conductance obeys an Arrhenius law with temperature
and has a prefactor, inferred by extrapolating to infinite
temperature, which is equal to (e/m) /h. This was taken
as evidence that the quasiparticle charge is e/rn. Howev-
er, this inference is again indirect and there is presently no
theoretical understanding of why this experiment should
measure the charge of the quasiparticle.

In this paper we propose several experiments which
would directly probe the charge of the quasiparticle exci-

tations. The experiments all probe one-particle properties,
so they should not depend on the statistics of the quasipar-
ticles. Thus, we imagine that on length scales that are
large compared with the quasiparticle radius (basically,
the magnetic length), the quasiparticles can be treated as
point particles which satisfy an effective Schrodinger
equation with charge e*, so long as we only consider one
quasiparticle in a simply connected region of the two-
dimensional electron gas. (If the region is not simply con-
nected, the quasiparticle wave function may not be single
valued. 5)

In the high magnetic field limit we can use semiclassical
methods to determine the spectrum of single quasiparticle
states. So long as the characteristic length scale of the
potential is large compared to the magnetic length, this
method should be very accurate. The classical equations
of motion for the guiding center coordinates are vortex dy-
namics, and hence, the particles move along equipoten-
tial contours with a speed proportional to the magnitude
of the gradient of the potential. The eigenenergies of
bound states can be determined from the Bohr-Sommer-
feld quantization condition which implies that successive
orbits enclose one more eA'ective Aux quantum,

hc/e*, than the previous orbit

R
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where Az is the area enclosed by the pth classical orbit
(i.e., the area enclosed by the corresponding equipotential
contour). Among other things, this implies that there are
semiclassical bound states associated with orbits which
enclose local maxima in the potential as well as those
which enclose local minima. Tunneling amplitudes be-
tween diA'erent semiclassical eigenstates can be computed
easily and accurately by studying trajectories for imagi-
nary time dynamics in complex space. The result is al-
ways of the form
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where R is the shortest distance through the classically
forbidden region between the two classical trajectories, 1 is
the magnetic length, (0) R,

2+i 8=go,

to is a dimensionless prefactor which depends weakly on
the form of the potential, f is a number of order one which
depends on the shape, but not the magnitude of the poten-
tial in the classically forbidden region, and 8 is a
Aharonov-Bohm phase associated with the tunneling path
which we expect to be zero in all the cases that we consid-
er in this paper.

By now we have considerable experience in calculating
tunneling amplitudes in model potentials (see discussions
in Refs. 6-8) and, given an analytic form for the poten-
tial, we can easily calculate f and estimate ro. In simple
cases, f is proportional to (U /U~~) '~ where U„„and U~~
are, respectively, the average curvature of the potential in
the directions parallel and perpendicular to the tunneling
path. [Note, for comparison, that the direct overlap of
two localized wave functions a distance R apart are of the
form of Eq. (2) with f= —,'.] Unfortunately, for cases of
interest, we often do not know the precise form of the po-
tential so we cannot compute f explicitly. However, un-
less the potential is very eccentrically shaped, we generally
expect that f- 1, and in particular, if the potential is ap-
proximately constant in the classically forbidden regime,
we expect that f= 4. In Ref. 6, the prefactor to was
computed for a variety of model problems. While, in gen-
eral, to can depend somewhat on the nature of the poten-
tial (for example, in one model considered in Ref. 6
to CL l/R), in practice, over a very wide range of model pa-
rameters, the prefactor varies very little, certainly when
compared to the variation of the exponent; it is usually
sufficient to take to to be a number of order one.

Thus, we find that the areas of bound-state orbits and
the magnitudes of tunneling amplitudes in problems of
known geoinetry are independent of the details of the
external potential, the electron-electron interactions, and
all properties of the quasiparticles other than their charge
e*. We propose to use this feature of the dynamics of
particles in a high field to design experiments to test the
validity of the quasiparticle description of the excited
states of the two-dimensional electron gas in the extreme
quantum limit, and to verify that the quasiparticles actu-
ally have the fractional charge predicted by theory.

We now show that by studying the behavior of the lon-
gitudinal conductance as a function of magnetic field in
narrow Hall channels, one can measure the quasiparticle
charge. We consider two geometries shown in Fig. 1; in
both the conducting channel is sufficiently narrow that
edge currents determine the Hall conductance, so the total
current is the diH'erence between the edge currents on the
two sides of the channel. ' ' The longitudinal resistance
is determined by the scattering rate from the upper edge
to the lower edge according to a Landauer-type formu-
la. '' ' The dashed lines in the figure represent the equi-
potential contours corresponding to the energy of the
highest occupied states, i.e., the chemical potential. We
have considered these two particular geometries because
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FIG. l. (a) Schematic view of a narrow Hall device suitable
for studying the spectrum of quasiparticle bound states by
measuring the resonances in the longitudinal resistivity as a
function of the impurity voltage. The solid lines represent the
edges of the conducting channel. The dashed lines represent
equipotential contours at the energy of the highest occupied
quasiparticle states, and the arrows signify the direction of the
drift of the particle guiding centers. The x marks the position of
the impurity potential which we imagine is produced by a volt-

age probe placed slightly above the two-dimensional electron
gas. R l and R2 are, respectively, the distances from the edges to
the impurity. The magnetic field is directed out of the page. (b)
Schematic view of a narrow Hall device suitable for studying the
tunneling amplitude as a function of the transverse magnetic
field. The conventions are the same as in (a). The dotted line

represents the shortest tunneling path from one side of the bar-
rier to the other.

they are simple to analyze, but similar eA'ects could be ob-
served in other experimental setups.

TUNNELING SPECTROSCOPY OF THE
BOUND-STATE SPECTRUM

In Fig. 1(a), we picture a narrow-channel Hall device,
formally equivalent to one considered in Ref. 14, in which
an "impurity" potential lies roughly half way between the
two edges of the sample. In the present case, we consider
the case in which the "impurity" potential is externally
applied and can be controlled experimentally, for instance,
by placing a voltage probe slightly above the plane of the
electron gas and varying the applied voltage. Since the
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than when they are resonant with a bound-state energy

2.
&min

Tres Tnr exp +f i2 (s)

where R ~ and R2 are the distances from the two edges to
the impurity, as shown in Fig. 1(a), R;„ is the lesser of
R~ and R2, and f= 4 . The width of each resonance is
proportional to its decay rate, hence to exp[ —f(R2;„/
l )]. We see, therefore, that the longitudinal resistance
can be used as a spectroscopic probe of the bound-state
energies; a peak in the resistance corresponds to a reso-
nance with a bound state.

We have as parameters that we can readily vary the
strength of the impurity potential V and the transverse
magnetic field 8. (In general, it is not easy to change the
concentration of electrons keeping other parameters
fixed. ) In practice, we cannot expect to predict the spec-
trum of bound states, since the "impurity" potential is
likely to be quite complicated. However, we can predict
how the bound-state spectrum will change as we change
from one Hall plateau to another. For a given impurity
potential, let A~(e*/e, B&/8) be the area enclosed by the
pth quantized orbit of a charge e* quasiparticle in a mag-
netic field 8, where 8~ is a reference magnetic field, which
we choose to be the magnetic field corresponding to exact-
ly one full Landau level Bi =pro where p is the density of
electrons per unit area. From Eq. (1), it follows that A~
obeys the following scaling equation:

e* 8~ ee'8 A, (1,1),

or, for 8 i/8 = (n/m ) = v, and the expected value of
e */e (1/m ),

A, — =A„(1,1) .m'm

Conversely, if we hold the magnetic field fixed and vary
the impurity potential, we can define V~(8~/8) to be the
magnitude of the applied potential at which the pth reso-
nance in the scattering amplitude occurs. Since all poten-
tials are electrostatic in origin, all energies are scaled by a
factor of e*. However, the resonant tunneling measures
the energy of the bound state relative to the chemical po-
tential for quasiparticles at the edge (i.e., the energy to re-
move one quasiparticle from the edge), so an additional
factor of e* does not occur in the resonance condition. It
therefore follows from Eq. (7) that if the quasiparticles

presence of the impurity caused only a weak perturbation
on the current-carrying edge states, there is very little in-
teredge scattering; the longitudinal resistance is thus
small and proportional to the interedge scattering ampli-
tude, T.

It was shown in Ref. 14 that, as is usual with resonant
tunneling, the tunneling amplitude is much smaller when
none of the bound states of the impurity are at the same
energy as the edge states,

R 2+R 2

T„„—exp —f

have the expected charge, then
r

v, -v„,(1) .
m

(s)

from which it follows that the energy absorbed in a transi-
tion between two bound states satisfies the relation

1 nEp, —Epm'm
1 n

m m

[E„p(1,1) —E„~-„(1,1)] .
m

(IO)

While the observation of such a scaling law would be quite
spectacular evidence of fractional charge, we generally ex-
pect the matrix elements for such a transition to be rather
small and so the effect may be hard to observe. One could
also, in principle, deduce e from the magnitude of the
scattering amplitude off resonance since 1 depends on the
quasiparticle charge according to Eq. (3). However, this
dependence is more simply explored in the experimental
geometry in Fig. 1(b).

THE MAGNITUDE OF THE TUNNELING MATRIX

In Fig. 1(b) we show a second experimental geometry
in which a variable potential barrier is placed across the
conducting channel. Samples with this geometry have al-
ready been studied in Ref. 15. We consider the case in
which there are no classical trajectories at energies less
than or equal to the energy of the edge states which cross
the barrier, so almost all quasiparticles are refiected at the
barrier. The contours corresponding to the highest occu-
pied quasiparticle states are shown as dashed lines in Fig
1(b). The resistance is therefore large and the conduc-
tance is proportional to the square of the transmission
coefficient through the barrier. Because the tunneling am-
plitude falls so rapidly with distance, the transmission
coefficient will be dominated by tunneling through the
point in the barrier where the two classical trajectories
have their closest approach, as shown by the dotted line in
Fig. 1(b). Thus, according to Eq. (2), the tunneling am-
plitude will be a Gaussian function of the distance across
the barrier at the point of closest approach, R, divided by
l, where l depends on the quasiparticle charge according
to Eq. (3). Notice that the transmission does not depend
on the particle effective mass or on the magnitude of the
barrier, just on the geometrical factor R and the charge
e*. (In particular, f does not depend on either e*, which
merely effects the magnitude of the potential, or on 8.)

Observation of this scaling relation would be a direct
confirmation of the fractional charge of the quasiparticles.

As an aside, it should be noted that it is possible, in
principle, to imagine another type of spectroscopy in
which for fixed impurity potential and magnetic field one
looked directly at photoinduced transitions between
different bound states. Let E~(e*/e, Bi/8) be the energy
of the pth bound state. Then,

e*Ep, =e*Vpe 8 8
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Again, by comparing the magnitude of the tunneling
current at diH'erent values of the magnetic field with the
barrier held fixed, we can determine the quasiparticle
charge. For instance, if T(B~/B, e /e) is the tunneling
amplitude for fixed barrier voltage as a function of 8 and
e*, then

ln T
e*

8' e
e

e*

(

8 IntT(I, I)l, (11)

or for 8~/8 n/m and e /e -1/m,
(

l (12)

DISCUSSION

All of our conclusions are based on a very simple pic-
ture of the excitation spectrum of the electron gas in a

Thus, by measuring the conductance as a function of 8 in
the parameter region where the transmission coefticient is
small, one can obtain a measure of the eH'ective magnetic
length, and hence of the quasiparticle charge. This pro-
cess is siinilar to the process studied in Ref. 16 which can
deterinine the bulk critical current.

high magnetic field. We have simply assumed that the
low-energy excitations can be well represented as few
quasiparticle states and that the quasiparticles satisfy the
same sort of Schrodinger equation as the bare particles,
but with fractional charge. We have ignored possible
complications that could arise if there is more than one
species of quasiparticle (as there would be for nonin-
teracting electrons in a situation in which excitations from
more than one Landau level are relevant in the center of
the channel). More importantly, we have also ignored
possible complications that could arise due to the mul-
tivaluedness of the many quasiparticle wave functions
which occur due to their presumed fractional statistics. It
is our feeling that this is justified for the single quasiparti-
cle states relevant to the present discussion.

ACKNOWI. EDGMENTS

S.A.K. was tenuously supported by National Science
Foundation Grant No. DMR 87-06250. V.L.P. is thank-
ful to A. L. Talapov for discussions. S.A.K. acknowl-
edges the hospitality of the Landau Institute where this
work was initiated.

On leave from Department of Physics, State University of New
York at Stony Brook, Stony Brook, NY 11794.

'R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
2See discussions in The Quantum Hall E+ect, edited by R. E.

Prange and S. M. Girvin (Springer-Verlag, New York, 1986).
sR. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
4R. G. Clark, J. R. Mallett, S. R. Haynes, J. J. Harris, and C. T.

Foxon, Phys. Rev. Lett. 60, 1747 (1988).
sS. A. Kivelson and M. Rocek, Phys. Lett. B 156, 85 (1985).
sJ. K. Jain and S. A. Kivelson, Phys. Rev. A 36, 3476 (1987);

Phys. Rev. B 37, 4111 (1988).
7S. Kivelson, C. Kallin, D. P. Arovas, and J. R. Schrieff'er, Phys.

Rev. B 36, 1620 (1987), Appendix C.
sH. A. Fertig and B. I. Halperin, Phys. Rev. B 36, 7969 (1987).
9S. A. Trugman, Phys. Rev. B 27, 7539 (1983).

'oB. I. Halperin, Phys. Rev. B 25, 2185 (1982).
' 'J. K. Jain and S. A. Kivelson, Phys. Rev. B 37, 4276 (1988).
' P. Streda, J. Kucera, and A. MacDonald, Phys. Rev. Lett. 59,

1973 (1987).
'3M. Butticker, Phys. Rev. Lett. 62, 229 (1989); J. K. Jai»nd

S. A. Kivelson, ibid 62, 231 (.1989); P. Streda, J. Kucera,
and A. MacDonald, ibid 62, 230 .(1989).

'4J. K. Jain and S. A. Kiveson, Phys. Rev. Lett. 60, 1542
(1988).

' S. Washburn, A. B. Fowler, H. Schrnid, and D. Kern, Phys.
Rev. Lett. 61, 2801 (1988); R. J. Haug, A. H. MacDonald, P.
Streda, and K. von Klitzing, Phys. Rev. Lett. 61, 2797 (1988).

' V. I. Pokrovsky, L. P. Pryadko, and A. L. Talapov, Zh. Eksp.
Teor. Fiz. [Sov. Phys. JETP (to be published)l.


