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Classical wave propagation in periodic structures
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We considered a muffin-tin periodic potential ( —8 inside the spheres and zero outside). Using
the augmented-plane-wave method we systematically studied the location of gaps for positive en-

ergy and for various values of 8 and the sphere radius a. Our results are applicable to the prob-
lem of classical-wave propagation in composite media and relevant to the problem of optical local-
ization.

The question of classical-wave localization (CWL), in
particular, light localization, ' has received considerable
attention recently both experimentally and theoretical-
ly. 9 " In spite of this, no proof exists that CWL does
indeed take place in systems characterized by a positive
definite random dielectric function. In a recent paper
Soukoulis et al. 'z demonstrated numerically that CWL
does take place in a lattice model. This numerical work,
together with approximate calculations based on the
coherent-potential approximation (CPA) and the poten-
tial-well analogy' (PWA), provided for the first time
strong evidence that CWL is possible in a composite sys-
tem consisting of spheres of radius a and of dielectric con-
stant e2 embedded randomly into a medium of dielectric
constant e~ (e2 & e~). Drake and Genack' reported mea-
surements recently of the optical diff'usion coefficient in a
system of close-packed titania spheres strongly suggesting
that the critical regime very close to localization has been
reached for the first time.

These recent developments indicate that a clear experi-
mental demonstration of optical localization is imminent.
As a result it is quite important to find out which are the
optimum and/or the more easily realizable values of the
parameters for achieving optical localization or CWL.
The relevant parameters are the following: (a) The vol-
ume fraction x, i.e., the percentage of space occupied by
the spheres; for periodic arrangement of the spheres (of
equal size) x can reach up to 74%, while for a random ar-
rangement x ~ 63.7% provided that there is no overlap of
the spheres; (b) the ratio p—= e2/e~ ~ 1; and (c) the fre-
quency to [in units of c/ (a~)e' l. The dependence on the
frequency is highly nonmonotonic because of resonances
in the scattering from a single sphere (Mie resonances).
For each spherical harmonic I there is an infinite number
of resonant frequencies cot, (l=s,p, d, . . . for l=0, 1,2,
. . . ; n =1,2, 3, . . .). The higher the ratio e2/e~, the more
pronounced the resonances are. There is also a near de-
generacy between col+2 „and col „+~. The numerical re-
sults and the CPA-PWA treatment show that the single-
sphere resonances persist in strongly influencing transport
quantities even for rather high values of x, which for the
CPA-PWA approximate results can reach up to the
close-packed limit.

It must be pointed out that the high-x regime cannot be
easily studied by the numerical technique of Ref. 12 be-
cause the range of this technique cannot exceed the sec-

ond Mie resonance, ' while for high x the most important
resonance seems to be the sixth. On the other hand, for
the approximate CPA-PWA methods, which have given
very interesting results in the high-x regime, ' we have no
way of systematically estimating their accuracy.

Thus, there is a great need for an independent reliable
way to check existing results and methods. We can reli-
ably calculate wave-propagation quantities if the spheres
are placed in a periodic arrangement such that their
centers form a periodic lattice. If the wave is a scalar one,
we can then employ one of the standard techniques for
band structure in solids [such as the augmented-plane
wave' (APW)j to calculate the position of the gaps and
other relevant quantities. One may ask himself what is
the connection between the gaps in a periodic system and
the ranges of localized states in a random system. Al-
though we cannot claim that there is complete coincidence
between the two sets, nevertheless, we point out that both
the gaps and the regions of localized states are due to the
same physical mechanism, namely, destructive multiple
scattering interference. The interconnection of gaps (in
periodic systems) and regions of localized states (in ran-
dom systems) becomes more obvious if we start from a
periodic arrangement of the spheres and gradually intro-
duce some disordering process regarding their positions.
For weak disorder, it is well known that the bands will be
practically unaffected by the disorder, while tails of local-
ized states will be developed in the gaps. Thus, in this
case of weak positional disorder, as described above, the
regions of localized states will practically coincide with
the positions of the gaps. Let us point out also that at very
high x (approaching the close-packed limit) there is very
little room to move the spheres around out of their period-
ic position; thus, at high x we are close to the above-
mentioned weak positional disorder. We also point out
that John and co-workers' have proposed the periodic ar-
rangement of the spheres as a starting point followed by a
weak disordering process in order to achieve optical locali-
zation in relatively low x. Their calculations, based on the
Korringa-Kohn-Rostoker method, ' gave an optimum x
around 0.12, in disagreement with earlier estimations.

In this paper we report results based on a systematic
study of bands and gaps in periodic configurations of
spheres (in the results reported here the periodic lattice
was fcc; however, we made calculations for the bcc struc-
ture as well with similar results). We studied the elec-
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tronic problem, where the potential inside each sphere is
—8 (b ~ 0, and measured in units of A /2ma, where a is
the radius of each sphere), the potential in the interstitial
region between the spheres is taken as zero. The quantity
x is.given by the ratio a /rws, where rws is the so-called
Wigner-Seitz radius. For fixed 8 and x (or equivalently
a) we have scanned the positive energy E (measured in
units of fi /2ma ) semiaxis to find the gap positions
(parallel solid lines in Fig. 1). We have employed the
APW technique. As is shown in Fig. 1, for a given x (i.e.,
a) there is a strong dependence of our results on b, the
depth of the potential well of each sphere. This behavior
can be interpreted in terms of the resonant scatterings
from a single sphere. These resonances are, in turn, asso-
ciated with those values of b for which a new bound state
appears in the single potential well. These values of 8',BI„
are given as solutions of the equation ji t(ki„a) 0
(l ~ 1) where b&„A kp/2m and ji is the spherical
Bessel function. For l 0, ko„a (2n —1)n/2. The expli-
cit results are as follows: for s waves (I 0), Bo„2.47,
22.21, 61.69 for n 1,2, 3, respectively; for p waves
(l 1),8~„9.87, 39.48, 88.83 for n 1,2, 3, respectively;
for d waves (l 2), b2„20.19, 59.68 for n 1,2, respec-
tively. These b values are in close correspondence with
the values of 8 in Fig. 1, for which gaps appear for high
positive values of the energy. An independent check of
these resonance assignments can be made by omitting the
corresponding partial wave in the APW calculation. We
then find that the corresponding gap disappears, proving
that the appearance of gaps for positive high energy is due
to strong resonant scattering by each sphere. It is rather

' surprising that the single-sphere scattering is the dom-
inant factor in determining the gap favoring values of b'

even for values of x so high as to approach the close-
packed limit (x =0.74). A possible explanation for this
dominant role of the single-sphere scattering may be asso-
ciated with its spherical geometry. Indeed, the spherical
scatterers, as opposed, e.g., to the cubic scatterers, cannot
form new well-connected shapes by clustering together.
Thus, new cluster resonances cannot appear easily. This
geometrical effect is also related with the fact that non-
overlapping spheres cannot form percolation channels
even in the close-packed limit of x =0.74, while for other
geometries a percolation channel opens up for x =0.15.
It must be pointed out that the persistence of the dom-
inant role of the single scatterer even for very high x
makes the CPA approach more reliable.

Our results for the muffin-tin electronic problem are
directly applicable to the scalar-wave equation V u
+ro eu/c 0 by observing that each E,8 point in Fig. 1

is mapped to an ro, p (=e2/e~ ) point by the equations'
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Thus, the absolute threshold contrast p for which a fre-
quency gap (or CWL in the corresponding weak disorder
case) just appears, is obtained from Fig. 1 by drawing the
minimum slope straight line through the origin which in-
tersects a gap segment [straight lines s 1, pl, p3 in Figs.

FIG. 1. Positions of the gaps (solid-horizontal lines) in an fcc
muffin-tin periodic potential ( —8 inside each sphere, zero in the
interstitial region). The quantity x is the volume fraction occu-
pied by the spheres. The energy E and the depth 6' are mea-
sured in units of h2/2ma, where a is the muffin-tin radius. The
thin line passing through the ends of the horizontal lines is a
guide to the eye, roughly indicating the trajectory(ies) of the
band edges for positive E. The symbols indicate the dominant
resonant scatterings responsible for the corresponding gap (see
text).
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1(a)-1(c) respectivelyj. We can also find from our data
and Eq. (la) the threshold value of p for each particular
resonance structure of Fig. 1 (s 1, p 1, s2+d 1, p2,
s3+d2, p3). ' These various threshold values of It, pl„,
are plotted in Figs. 2(a) and 2(b) versus the volume-
fraction x. For each pi„(with the possible exception of
poi) there is a threshold value of x,xI, „above which the
In gap appears for some finite value of It. As x increases
beyond xI„„ the threshold value of p decreases and
reaches a minimum, pI„, for an optimum value of
x,xi„o. As x increases further beyond xi„o, p&„ increases
and approaches infinity for an upper cutoff value of
x,xI„,. Thus the specific gap ln appears only for
xi„, & x & xi„, and for p & pI„(x). For example, for the
p1 gap x~~,&=0.1 and x»,,=0.5; the optimum value
xi', o is approximately 0.3 and the corresponding
minimum value of p ~ ~ is approximately 5. The s 1 gap has
an optimum value of x =0.14 corresponding to po~ =4,
which is the absolute minimum value of p for the appear-
ance of any gap.

We see from Figs. 2(a) and 2(b) that the general ten-
dency is for the lower gaps to appear and disappear for
lower values of x. This is definitely true for the lowest
gap, the s 1, although for higher gaps the situation is more
complicated. It should be pointed out that the p3 gap is
the only one (up to b=100) which persists beyond
x =0.5 all the way to the close-packed limit of x =0.74.
This gap also has a rather fiat minimum of p j 3

(It]3 =5) at x13 o=0.5 to 0.7.
If we compare our present reliable results for the gaps

with our previous CPA-PWA results' for the localized
segments we find a reassuring coincidence. (The CPA-
PWA values for x~„o are 0.2, 0.3, 0.35 vs 0.14, 0.3, 0.32
for the present case for the first three gaps; the corre-
sponding values of Iti„are 6.7, 6.2, 9 for the CPA-PWA
vs 4, 4.8, 6.2 for the present case. ) The main disagree-
ment is with the p3 gap: The CPA-PWA p3 localized
segment does not seem to survive beyond x =0.5 in con-
trast to the present result where it extends to beyond
x=0.74. We have no explanation for this apparent
discrepancy. We only note that the CPA-PWA for the
electromagnetic case show that the localized segments due
to the combined action of the p2 and d2 resonances per-
sist all the way up x =0.75.

In conclusion, we made a systematic study of the fre-
quency spectrum (in particular, the position of the gaps)
for a classical wave propagating in a periodic arrangement
of spheres of radius a and dielectric constant ez embedded
in a medium of dielectric constant e~. Besides the fre-
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quency cu, the relevant parameters are the contrast
p =e24'~ and the volume fraction x (=a /rws). Our re-
sults for the gaps (the main features of which were
presented here) are closely related to the localization re-
gions in a disordered system resulting from the periodic
one by randomizing the position of the spheres. This is
true in particular for the very interesting case of the
high-x regime near the close-packed limit.

Part of this work was done while the authors visited
Ames Laboratory and Department of Physics, Iowa State
University.
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FIG. 2. Each curve represents the threshold value of the con-
trast p for which a frequency gap of a specific type just opens up
plotted against the volume fraction x. The type of the gap (and
consequently the corresponding curve) is characterized by the
dominant resonance (see text and Fig. 1) responsible for its ex-
istence.
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'sWe note also that our data seem to indicate [see, e.g. the

d2+s3 gap structure in Fig. 1(b)] that there may be two
threshold values of p for the same type of gap, i.e., a lower
threshold value of p for which this specific gap opens up for
the first time followed by a higher value of p for which this
gap disappears; and then a higher threshold value of p for
which this gap opens up again. Such a behavior corresponds
to the existence of disconnected closed loops in the band edge
trajectory(ies). Our data, although indicative of the existence
of such behavior, are not so detailed as to establish it beyond
any doubt.


