
PHYSICAL REVIEW B VOLUME 40, NUMBER 18 15 DECEMBER 1989-II

Ballistic electronic conductance of an orifice
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We rigorously treat the quantum-mechanical ballistic propagation of a two-dimensional
noninteracting-electron gas in a region where the electrons are free except for their interaction with
the boundaries of the region. We compute the conductance of an orifice as a function of its width
and length. The basic global structure of the conductance when the length is large reveals nearly
quantized jumps of 2e /h as the width varies. A closer inspection shows oscillatory behavior be-
tween the plateaus. Both quantization and oscillations are explained in terms of a simple descrip-
tion based on barrier penetration, longitudinal wave resonances, and impedance matching.

Recent experiments by van Wees et ah. ' and by
Wharam et al. on ballistic motion of electrons through
a narrow two-dimensional constriction revealed- the
phenomenon of conductance quantization, i.e., the con-
ductance increases as a function of the constriction width
by integer values in units of the fundamental conductance
unit. A qualitative explanation of this phenomenon was
advanced in Refs. 1 and 2, and additional theoretical
studies have been performed. The purpose of this paper
is to present the results of our exact quantum-mechanical
calculations of the conductance of an orifice of varying
width a and length L, and to suggest a simple explanation
of the structure of the conductance and its dependence on
geometry. The basic quantities we calculate are the
transmission amplitude matrix t, from which the conduc-
tance is evaluated using the linear conductance formula,
G =(2e /h)Tr(tt ). For the case of ballistic motion
through the orifice we show that the calculated conduc-
tance of an orifice indeed approaches quantized values
n(2e /h) as L~~, where the integer n varies with
width a, and we describe the L dependence of this quanti-
zation. For finite L, the transition from the n to the n + 1

plateau is not abrupt but oscillatory; these oscillations are
longitudinal wave resonances. A semianalytic formula is
suggested for the conductance based on concepts of bar-
rier penetration and impedance matching. This simple
formula reproduces the plateaus and the oscillations of
the conductance remarkably well although the locations
of the maxima are slightly shifted. Our methods can be
easily extended to study samples containing impurities
and the efFect of a perpendicular magnetic field.

We study the conductance of an orifice shown in the
inset of Fig. 1. Consider the quantum-mechanical motion
of a particle with mass m and (Fermi) energy E in a pla-
nar region composed of two semi-infinite strips defined by
(
—~&x 00 y b) and(L x(~, 0~y~b) anda

finite narrower strip separating them, defined by
(0 (x ~ L, 0 ~y ~ a) with a (b. We look for a solution
of the Schrodinger equation, —hg„=(2mE/fi )g„, cor-
responding to an incoming initial wave moving from left
to right in a definite channel n, and which vanishes on the
boundaries of the orifice. In the left region the wave
function has the form
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FIG. 1. Conductance (in units of 2e /h) of an orifice of
length L and width a situated between two regions of width b,
6 &a, for a two-dimensional electron gas with Fermi momen-
tum k. The conductance is plotted as a function of ka/m be-
tween 4.75 and 5.25, for kL =1.25, 5, and 25.

40 12 535 1989 The American Physical Society



12 536 BRIEF REPORTS

while in the right region it reads

I /2
N ik (x —a)

itj„(x,y) = — g Tm„e sin
m=1

m~y
b

Inside the orifice the wave function is

1/2

P„(x,y)= — g (u „e ' +yj„e ' )
a

(lb)

momenta k„of Eq. (3) are real (namely n ( [kb/ir]) plus
a finite number of evanescent waves for which the mo-
menta k„are imaginary which is sufficient to guarantee
convergence with desired accuracy. The role of the
evanescent waves within the orifice is even more crucial
as we shall see below. Therefore, we set J) [ka/~] in
Eq. (2) and fix J so that convergence is assured.

In order to evaluate the transmission and reAection
matrices T (X X j())') and R ( j)))' XX) and the unknown ma-
trices u (JXX) and v (JX%), we match the wave func-
tion and its derivatives with respect to x at x =0 and 1.
To this end it is useful to define the matrices

X sin
a (2)

I(N x)v) I '|)mn I ~ K(iv xN) I m mn I

Q(Jx J) tq(fiij I

Here, k =2mEI)rt, and the wave numbers k„and q. are
given by

and the matrix A(N)( J) of overlap integrals
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J
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Thus, the reAection and transmission amplitudes R
and T „(m,n =1,2, . . . , X) are finite-dimensional ma-
trices, the number % contains all channels for which the

Using the completeness and orthogonality properties of
the sine functions, we obtain the following set of matrix
equations for the matrices u and v,

A KA+Q A KA —Q u

(Q —A KA)e' —(Q+ A KA)e
2A K

0

where A is the transpose of A. The matrices T and R
are given in terms of u and v by the equations

T= A(e' qu+e ' qv), R= A(u+v) —I .

Unitarity relations for the reflection and transmission
amplitudes are easily written in terms of the flux normal-
ized amplitudes r „=(k Ik„)' R „and t „=(k I

N

g ( ~(r „~ + ((t „~ ) = 1 for n = 1,2, . . . , N .

We evaluated Tr(tt ) as a function of orifice (dimen-
sionless) length kL and width ka, for kb =50, where
k =kz, the Fermi momentum (for the experiment report-
ed in Ref. 1, the electron density was 3.56X10' m
which yields k+=0.015 A '). In the numerical calcula-
tions, it was tempting to consider using only open chan-
nels in the orifice (i.e., J = [ka/n. ]). We tried the former
and found, that the nearly exact quantization occurs also
for very small I.. This indicates that the inclusion of
evanescent waves is crucial to obtaining the correct re-
sult. We checked for convergence in the number of basis
states used, i.e., adding additional evanescent waves in

the wide regions and in the orifice did not significantly
affect the results. In all calculations, unitarity was main-
tained to 13 digits.

In analyzing our results, we address the following
points. (1) Does the simple model proposed above repro-
duce the observed conductance? (2) Is there a simple ex-
planation for the quantization? (3) What is the role of the
geometry of the constriction?

In Fig. 1 we plot the conductance as a function of the
dimensionless parameter ka /m. (which counts the number
of channels with real momenta in the orifice) in the range
4.75(ka/~&5. 25 for kL, =1.25, 5, and 25. For small
orifice length, the conductance is monotonic and the step
structure is very weak. In the limit of zero length (a
Sharvin point contact, studied by Haanappel and van
Der Marel ) there is hardly any quantization. As the
length increases, two interesting features appear. To the
left of the step, as ka/~ approaches an integer from
below, the conductance is nearly quantized at 4 units, to
within four digits. When ka/m exceeds an integer value
(5 in this case), an oscillatory structure is observed with
several well-defined resonances (justification for identify-
ing these oscillations as resonances is presented below).
These resonances initially have large amplitudes and
small widths, but as ka/m increases towards the next in-
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teger, they become broader and their amplitudes diminish
such that the near quantization at 5 units dominates. To
the best of our knowledge, these resonances have not
been observed experimentally. This may be due to exper-
imental resolution and to thermal averaging. Experimen-
tal observation of these resonances would help confirm
the validity of the model.

We propose the following simple explanation for the
quantization and the resonances. For each mode j in the
orifice (j= 1,2, . . . , J) with wave number q there is a
mode m (j), m (j)= [j (b/a)], in the wide domains whose
wave number k

~ ~
is closest to q . Mode m (j) on the left

excites mode j with a degree of excitation determined by
the impedance matching between the two waves. Sirni-
larly, to the right of the orifice, mode j excites the mode
m (j). What we have then is transmission through a bar-
rier of length I. such that the wave number outside the
barrier is k

~ ~
and inside the barrier it is q (i.e., a plane

wave having wave number k (-) penetrates through a
"potential" barrier having height V given by
2m V~. /iii =k

~~~
—

q~ ). The transmission coe%cient for
this penetration is

(k
~ ~

—
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Figure 2 compares this expression with the exact solution
for kL =100 in the range 4.99(ka/n &5. 1. The reso-
nance structures obtained using this expression is very
similar to that of the exact solution both in amplitude
and in width, but are shifted somewhat in position. This
shift is due to the imperfect matching implied by the ap-
proximate formula (10). The exact solution seems to have
an effective length slightly larger than that of the approx-
imate solution. If the later is increased, the peaks move
to the left [q L =(n + —,

' )m. implies that a is a decreasing
function of L] and the comparison improves substantial-
ly. This technique is known in reactor physics as the "ex-
trapolated length" method, in which one solves the
Helmholtz equation in a box, but due to neutron leakage
from the walls the wave function not strictly zero on the
walls. One then identifies the solution in the actual box
with the solution in a somewhat larger box whose wave

For q~. (0 replace qj by ~qj ~
and sin by sinh to obtain the

tunneling transmission coefficient. The expression for the
conductance just incoherently sums the contributions
from all modes in the orifice. Therefore, we suggest the
following approximate formula for the conductance:
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FIG. 2. Conductance (in units of 2e /h) of an orifice of
length L and width a situated between two regions of width b,
b &a, for a two-dimensional electron gas with Fermi momen-
tum k. The conductance is plotted as a function of ka/m be-
tween 4.99 and 5.1 for kL =100. The exact solution (squares) is
compared with the approximation Eq. (10) (circles).

function does vanish on its walls; the extrapolated length
is therefore always slightly larger than the original
length. Since the exponents in the exact solution [see Eq.
(6)] appear with the actual length L, the shift of the posi-
tion of the resonances is hidden in the complex
coeScients uj and U, Eq. (2). The identification of oscil-
lations with resonances in this context is now self-evident.
When the product of the wave number and the length
equals half an integer times m, the longitudinal waves in
the orifice resonate.

Rote added. After completion of this work a
manuscript by Szafer and Stone on the same topic ap-
peared. They obtained similar results. Our explanation
of the quantization and oscillations in terms of a simple
description, based on barrier penetration, longitudinal
wave resonances, and impedance matching, assumes that
the orifice channel couples to only the channels nearest it
in transverse wave number in the wide region. Reference
8 couples to a band of channels in the wide region and
then obtains an effective one-dimensional problem. The
present explanation works well for the wide-narrow-wide
geometry considered here.
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