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The molecule of polyacetylene is contemplated as a typical quantum many-body system with

quasi-one-dimensional structure. Its description is usually accompanied by a puzzling yet quite gen-

erally accepted belief that ther& is a significant formal {but practically no physical) difference be-

tween the molecules with the linear and cyclic {closed-loop) shapes. Here we shall show that the
formal differences are also insignificant, provided only that we search for the respective electronic
bound states and energies within the framework of the new recurrent technique. Even in the
infinite-molecule limit, the method remains very efficient —its effective Hamiltonians and/or
Green's functions remain simple and become expressed in terms of the analytic continued fractions.
We also extend the formalism to refined distant-neighbor-interaction models. Numerically our ap-

proach proves very reliable —this is illustrated in detail on the simple exactly solvable Huckel Ham-

iltonians.

I. INTRODUCTION

The one-dimensional and pseudo-one-dimensional
solids attract theoreticians by their simplicity as well as
by their interdisciplinary aspects relating quantum chem-
istry to field theory. ' Their typical and comparatively
easily measurable example is the polyacetylene or po-
lyyne molecule. Due to its possible large length, such a
system is even of a purely mathematical interest: It may
be analyzed in the continuum limit, it exhibits a broad
spectrum of the self-localized nonlinear (solitonic and po-
laronic) nonlinear excitations, etc.

For the finite number Xz of the chained components
("sites" or "acetylenes"), the numerical studies may trace
the various deviations from the continuum-limit predic-
tions (cf. Ref. 1 or the recent references as quoted, e.g., in
Refs. 4 or 5). Some of them even follow from the "sim-
plest nontrivial" Huckel Hamiltonian

a, b)

b( a2 b2

with a; =0 and b; = 1, which may be diagonalized exact-
6

Of course, a more realistic form of the matrix elements
in (1.1) is usually needed in practice. Then, Eq. (1.1) may
be interpreted as the Su-Schrieffer-Heeger (SSH) Hamil-
tonian for the electronic states, and it still remains tract-
able by the eKcient numerical techniques. '

A number of very interesting problems arises in con-
nection with the possible solitonic excitations of long
molecules of the SSH type. This is closely related to
their topology, e.g. , the parity of X plays then a role. In
the latter context, a highly relevant situation is represent-

ao bo

o a, b)

bM-2 a~-i bM —
~

(1.2)

(with an "additional" molecule which "glues" both ends
together, i.e., with X„=M+ 1), ceases to be simple from
the purely numerical point of view. In the computa-
tions, its eigenstates and energies are usually constructed
by a general-matrix diagonalization or by some more
complicated algebra (see, e.g., Ref. 10 and references
given therein).

Obviously, the new matrix H, (1.2), remains "very
sparse" and simple. In our notation, we may see that the
new cyclic Hamiltonian describes the linear molecule
simply as one of its possible subsystems. Hence, the nu-
merical complexity of the cyclic problems seems quite un-
satisfactory and forms one of the main motivations of the
present paper.

Indeed, the formal importance of the matrix elements
b~ in (1.2) contrasts sharply with their widely accepted
physical irrelevance. Thus, in what follows, we intend to
show that also the formal difference between the struc-
ture of matrices (1.1) and (1.2) need not be considered
essential. We shall propose (and verify the reliability of)
a method which is recurrent and similar to the Haydock
technique. At the same time, in contrast to the assump-
tions of Ref. 10, we shall be able to treat both linear and
cyclic cases (1.1) and (1.2) simultaneously. Moreover, we
shall also be able to extend the applicability of the under-
lying factorization idea immediately to Hamiltonians of
the generalized SSH type. This will be our main result.

ed by a molecule which forms a closed loop. Unfor-
tunately, the corresponding periodic or cyclic version of
the model,
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In a few final and very simple tests of the related
numerical-precision features, the well-known exact values
of the Huckel spectra will be reproduced.

In detail, the material will be separated into the discus-
sion of the linear (Sec. II) and cyclic (Sec. III) cases, and
the numerical tests and related considerations will be
presented in Sec. IV. Section V is a summary.

II. LINEAR CHAINS

and let us start our discussion from the linear molecules,
with the boundary conditions of the type (2.3),

(Zo) =0 (Z~+i), =0 i =I » . . P . (2.7)

Whenever X~ differs from an integral multiple of p, we
may still set N„=(N —1)p+q (with 0&q &p) and rein-
terpret simply Z

&
as a subvector

(Z)))

A. The notation
(Z))2

(2.8)

Hlq&=El'& (2.1)

The simple SSH Hamiltonians define the energies and
wave functions lg & of electrons in the polyacetylene as
solutions of the Schrodinger equation

(Z, )q

of a smaller dimension. This enables us to rewrite our
difference Schrodinger equation (2.5) in the partitioned
("vectorial" or "matrix") three-term form,

with the self-consistently specified matrix elements of H.
We may also interpret the wave function

l P & as pertinent
to a single difFerence equation

CnZ„ i+ A„Z„+B„Z„+j=0, A„= An, Cn =Bn

(2.9)

c„&n

Ill�

&—+(a„E)&n—lq&+b„& n+ 1 lq& =o,
c„=b„, (2.2)

accompanied by the two alternative sets of the related
boundary conditions

with C1 Bo 0~ BN CN+1 0& and 0 1~2~ ' ' ' ) ¹

The capital-letter coefficients 8, C, and A [notice that
3 = 3 (E) in the new notation] coincide with the subma-
trices of the (N„XN~ )-dimensional matrix

Ai Bi

and

&oly&=0, &N+llq&=0 (2.3)

H —Ej=
C,

(2.10)

&oly&=&~+lip&, &M y&=& —lip&, (2.4)

(1)=b(1) {2)=g 2
C p)=g p

Cn n —1& n n —2» n n —p (2.5)

respectively. In such a formulation, it is easier to discuss
and understand the nature of the most important correc-
tions to the simple SSH model.

For the sake of definiteness, let us pick up just the class
of generalizations which takes into account the long-
range-hopping corrections (next-neighbor or, in general,
pth-neighbor interactions —see, e.g. , Ref. 11). This cor-
responds to the (2p + 1)-term generalization of our
diff'erence Schmdinger equation (2.2),

'~c'& n—pl&&+ . . +c„'"&n —I i)&+(a„—E)& n l@&

+b„'"&n+lly&+. . . +b'&'&n+J lq&=o

CN —1 AN —1

CN AN

entering our Schmdinger equation in its form (2.1).

B. The factorization and solution
of the Schrodinger equation

Let us consider large (finite) or infinite dimensions N~
and small q (not necessarily equal to p). Then, a new and
appropriate method of solving our Schrodinger equation
may be obtained as a suitable generalization or
modification of the construction described in Ref. 12. Its
basic idea lies in a factorization of H —EI of the special
type,

and also of the boundary conditions (2.3) or (2.4).
In the first step, for the sake of simplicity of the nota-

tion, let us reinterpret the set of the components or pro-
jections of the wave function &nip& as a partitioned
column vector

H —EI = U

1/F )

I /F2

1/FN

UT (2.11)

(Zk )1

Here, the partitioned factor matrices U are postulated to
have a simple form with two nonzero diagonals,

(Zk )

(2.6)

1 BiF2 0

B2F3 0

0

(Zk )~

(Zk+i)i

U=
1 BN &FN

(2.12)
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A brief inspection of these formulas, where

1/F; = 3; B—;F;+,C;+„ i =1,2, . . . , N (2.13)

and B&=0 by definition, shows that we must assume an
existence of the (p Xp)-dimensional inversions,

det(l/F;+, )WO, i =N —1,N —2, . . . , 1 . (2.14)

Vice versa, once our assumption (2.14) is satisfied in a vi-
cinity. of some eigenvalue, we may immediately conclude
that the simple equation

and with the given parameter E determining the energy.
In the computations, the appearance of a singularity in

the inversion 1/F~F may prove to be a nuisance even
for p =1. In the p ) 1 cases, we may get rid of it very
easily, via a rearrangement of the matrix H. One of the
simplest possibilities lies in mere repartitioning of the
vectors Z —it preserves both the existence and form of
our factorization (2.11). For the sake of definiteness, we
shall diminish the dimension of Zz to some integer r &p,

det[1/F, (E)]=0 (2.15)

defines the values of the binding energies numerically.
The numerical location of an arbitrary root of the secu-

lar equation (2.15) generates also the whole sequence F„
at the same energy as a byproduct. This is very
important —we may then divide the whole equation (2.1)
by the (by definition, regular) matrix U from the left and
get

(2.20)

This leaves all the preceding formulas unchanged. We
must only keep in mind that the former parameters X
and q have also changed, reproducing the original total
length

1/F] Z ] N„=(N —2)p+q+r (2.21)

C~ 1/F2 Z2
(2.16)

C~ I /F~ Z~

The first q rows of the new equation will read
(1/F, )Z, =0, i.e.,

of the molecule.
The broader partitioning freedom (2.21) may prove

useful even in the nonsingular cases. In particular, we
would recommend a choice of q = 1 [with variable
r =r(N„)]. Indeed, our secular equation (2.14) acquires
then the explicit scalar form

( A, B,F2C2)Z—, =0 (2.17) E=(II~11~ g (B ),„[F(E)]„(C)., (2.22)

and determine Z, up to an arbitrary normalization
(Z, ),WO.

From the rest of Eq. (2.16), the remaining components
Z„+ &

of the wave function may immediately be obtained
in a recurrent manner. Indeed, the q-dimensional input
set Z, enables us to define the p quantities

This leads to a very natural Green's-function interpreta-
tion of our auxiliary quantity 1/F, and, in an implicit
manner, defines the binding energies as mean values of a
continued-fractional "effective Hamiltonian"
Heff=a B]F2C2.

Z2= —F2B )Z] (2.18)
III. CYCLIC CHAINS

etc.
As long as we keep the dimension p of the k & 1 parti-

tions (2.6) constant, it may happen that also the square
matrices 82,83, . . . remain regular. In such a case, Eq.
(2.9) may serve directly as an alternative and simpler re-
current definition of the remaining Z's.

C. Repartitioning

In a "subset of measure zero" in the space of coupling
constants (which may still be of interest, of course), it
may happen that just for our choice of the dimension X
and energy E, the decomposition (2.11) of our Hamiltoni-
an ceases to exist, i.e., the determinant of 1/F~+& k be-
comes zero at some k (N and our requirement (2.14) be-
comes violated at i =X—k.

Such a phenomenon has a simple interpretation. The
corresponding (kN X kN)-dimensional submatrix of M be-
comes singular and we may find the nontrivial eigenstates
of 0with

A. The nearest-neighbor interactions

In the cyclic SSH model (1.2), the tridiagonal Hamil-
tonian (1.1) becomes complemented by the additional
nonzero matrix elements in the corners. However trivial
such a change may seem, it forces us to treat H as a gen-
eral matrix or, in an algebraic setting, to switch to a
complicated algebra. ' Here, we intend to show how the
recurrent factorization applies to both Eqs. (1.1) and (1.2)
without any difficulties.

In the first step, we shall deal with p =1. Then, the
decomposition of the type (2.11) will only slightly be
modified. In its scalar form,

1/fo

(3.1)

Z] Oy ~ ~ ~ ) ZQ k 0 (2.19)
the enriched structure (1.2) of the matrix H demands the
new structure of the matrix factors, e.g. ,



NOVEL RECURRENT APPROACH TO THE GENERALIZED SU-. . . 12 471

1 deaf) d2f2 d3f3
1 b, f2 0

1

dMfM

0

(3.2)

0 &0

C1

Co

(3.8)

bM ifM—
1

They have the two (scalar) diagonals of preceding section
complemented by the nonzero elements in their zeroth
row.

When comparing Eq. (3.1) with its linear-molecule
p =1 analogue, we may immediately see that the re-
current specification of the auxiliary sequence f, remains
unchanged for the positive subscripts i )0. Thus, it
remains for us to guarantee that the factorization (3.1)
reproduces also the matrix elements of H with the zero
subscripts (provided that we rename also bM as cp). This
is done easily —we set dM =bM and define

1/Fp

1/F1
(3.9)

with the new factor matrices

1~FM

where A„=A„and C„=B„,. Also, we may change the
uppermost-row indices in the other formulas of the
preceding section and, in particular, in the factorization
requirement (2.11),

dk = bk fk+ )dk—+„k=M —1,M —2, . . . , 2 . (3.3)

The simplicity of this formula (which defines d s as prod-
ucts of b's and f's) is a consequence of the fact that most
matrix elements in the first row of 0 vanish. Vice versa,
the nonzero values of bo and ao imply that we must re-
quire that

82F3

1 D1F1 D2F2 D3F3
1 B1F2 0

1

DMFM

0

(3.10)

d, = b, f2d2—+bP

and, finally,

(3.4)
Obviously, we reobtain recurrences (2.13) complemented
by the supplementary initialization

M
1/fp=ap E —g d —fj . (3.5) DM CO (3.11)

1/fp=0 . (3.6)

The components of the wave functions are to be generat-
ed from the difFerence Schrodinger equation (2.9). This
will be discussed in the following subsection.

To summarize, in the cyclic p = 1 case, Eqs. (2.13) may
be complemented by the definitions (3.3)—(3.5), and all of
the formalism (based on the factorization of H EI)—
remains essentially the same. In particular, the energies
follow again from the transcendental equation of the type
(2.15),

and

D1 ——D2F2C2+80 . (3.13)

At p =1, they degenerate to the scalar equations of the
preceding subsection.

The slightly modified expression now defines the quan-
tity Fo, of course,

and by the further recurrent formulas

Dk = —Dk+ 1Fk+1CI, +1, k =M —1,M —2, . . . , 2

(3.12)

B. The generalized cyclic model with p & 1

M
1/Fp= Ap —g D F D

j=1
(3.14)

In the case of the generalized SSH Schrodinger
difference equation (2.5), the periodicity requirements
read

(3.7)

In the partitioned notation, such a condition induces
again the nonzero (p Xp)-dimensional submatrices into
the corners of H. As a consequence, we recommend the
"maximal" partitioning with q =p and with r =r (Nz ).

Having in mind the results of the preceding subsection,
it is sufficient again to return to the partitioned (capital-
letter) denotation in the Hamiltonian

In comparison with Sec. II, the latter equation represents
the only significant complication appearing in our for-
malism after the imposition of the periodic boundary
conditions. Tlie new definition of the p-dimensional
"model-space" wave-function components becomes more
complicated than Eq. (2.17),

M
Ap —g D F DZp=0 . . (3.15)

j=1

As an explicit model-space restriction of the full
Schrodinger equation, it displays also the change in the
effective-interaction interpretation of the matrices F in
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U '(H EI)Z—=

1/Fo

1/F i
U Z=O,

the cyclic case.
We are coming to the climax of our construction: As

long as each row of our partitioned recurrences (2.9) con-
tains three terms and there is no truncation similar to
(2.7) anymore, we must proceed in full analogy with the
linear molecule again. We divide our Schrodinger equa-
tion (2.1) by U from the left,

This formula describes the whole exact and complete
spectrum of energies. In what follows, we shall use it in
our numerical tests.

B. Periodic boundary conditions in the same example

The closed-chain analogue of the preceding tridiagonal
(in fact, two-diagonal) exactly solvable Hiickel model of
the polyacetylene satisfies just the different boundary con-
ditions. We employ an alternative form of the general
solution

z„=cU„(y) —d U„1(y ) (4.5)

(3.16)
and postulate (2.4), i.e.,

z~+1 —zo) zM =z
1 (4.6)

and identify the first p rows of this new equation with the
model-space equation (3.15). The second p rows read

As long as U, (x)=0 and U 2(x)=UO(x)=1, we may
write immediately

Z, =—F,D, Zo (3.17)

and defines the second set of Z's. Of course, the rest of
Eq. (3.16),

Zk = —F~Dk Zo —FI, CkZk i) k =2, 3, . . . ) M

c =cUM+1(y) dUM(y)

d =cUM(y) —dUM, (y) .

The ratio of these equations implies that

(4.7)

makes the construction complete. Alternatively, under
the same assumptions as made in Sec. II, Eq. (2.9) could
also be employed for the same purpose.

IV. A TEST OF THE METHOD
ON THE HUCKEL MODEL OF POLYACETYLENE

UM = ( UM+1 —1)( UM 1+ 1), (4.8)

while the rest defines simply the value of c as a function
of d.

After an elementary trigonometric representation of
Eq. (4.8),

sin s =sin s cos t —sin t(1 —coss) (4.9)
In accord with our preceding constructions, a formal

similarity between the linear and cyclic molecules
emerges only after we use the different dimension N„ in
the two cases. The details may also numerically be illus-
trated on the simple Huckel example.

A. The exact solvability

The simplest Huckel N-dimensional Hamiltonian is
given by Eq. (1.1) with bo= 1 and ao=const (say, zero). 6

The corresponding difference Schrodinger equation (2.2)
has the form

j=0, 1, . . . , Nc, Nc = [(M+1)/2J (4.10)

It is necessary to notice that the latter formula defines the
doubly degenerate energies unless j =0 or j =Nz. A
part of the spectrum coincides with the even energy levels
(4.4), of course.

with y =cost and s = (M + 1)t, we obtain our final expli-
cit spectral formula similar to (4.4),

E =2y =2cos[2j~/(M+ I)],

z„—2yz„+ i+z, +~=0 (4.1) C. The numerical tests —energies

[with E =2y in (2.1)] and may easily be recognized as re-
currences satisfied by the Tchebyshev polynomials T„(y)
and U„(y) of the first or second kind, respectively. ' As a
consequence, we just have to match the general solution

z„=a U„(y )+bT„(y) (4.2)

to the boundary conditions (2.3). Since To= Uo= 1, we
get a+b =0, i.e.,

z„=a[U„(y)—T„(y)]= by U„,(y)— (4.3)

for y&0. The second boundary condition z&+&=0 im-
plies then simply the following explicit formula:

E=E =2y =2cos[jm. /(N+1)], j =1,2, . . . , N .

(4 4)

The exactly solvable examples always provide a suit-
able testing ground for the new methods. In the present
context and notation, the linear molecules represent
merely a "subsystem" of the cyclic ones (with Zo =0). Of
course, as a special case, they need not be considered sep-
arately. Moreover, their studies are already available-
Sec. II describes just a generalization of the method of
Ref. 12 after all. Moreover, a diagonalization of the p = 1

version of the SSH model [tridiagonal Hamiltonian (1.1)]
represents already a very standard numerical task.
Thus, we shall restrict our tests and attention to the less
standard problem of Sec. III.

An evaluation of the nondegenerate ground-state ener-

gy [j =0 in (4.10)] remains standard; we search for the ei-
genvalue pertinent to our model-space Schrodinger equa-
tion (3.15). For the sake of simplicity, we shall use p = 1:
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TABLE I. The numerical con6rmation of validity of our secular equation (3.6) in the vicinity of the
exact ground-state energy.

Dimension
of the model

M

48
49
50

Deviation
e =e(m)

0.0009
0.0005
0.0003

0.000003
0.000 003
0.000 003

E=1—e

55
41
33

3.3
3.3
3.2

Q (E)= &0'/fo(E)
E=l
0.000 45
0.0021
0.000 78

—0.000 77
—0.000 24
—0.000 27

E =1+e
—55
—41
—33

—3.4
—3.3
—3.2

In contrast to the purely tridiagonal case (to the evalua-
tions encountered within the framework of the so=called
Lanczos method ), we have a number of terms now which
are summed in the formula (3.5) for 1/fo. Thus, we have
performed the first test, with the results shown in Table I.
The quantity E = 1 represents the exact energy value for
all M, and we display the numerically obtained values of
the "secular determinant" Q(E)=10000/fo at the exact
E =1 and at neighboring points. The inspection of our
results recovers that Q(E) remains practically linear in
the intervals shown in the Table I. The sensitivity to the
"errors" in the energy remains very satisfactory for all di-
mensions M of the model, and the computations also
remain extremely quick.

In our model, the excited energies are mostly doubly
degenerate. In such a case, the standard numerical algo-
rithms fail, and the matrix p ) 1 forms of the present for-
malism must a priori be recommended even for an
analysis of the tridiagonal models. ' Nevertheless, an in-
teresting phenomenon has been encountered during the
corresponding numerical test: In an attempt to demon-
strate a failure of the p = 1 formalism at the degenerate
energies, we succeeded at the odd dimensions M only.
For the even dimensions M, very surprisingly, the p =1
prescription still worked and gave us the pattern of re-
sults similar to the nondegenerate situation. The sample
of these results may be found in Table II.

An explanation of the above phenomenon is rather

straightforward and will be given in the following subsec-
tion.

D. The numerical tests —wave functions

A specific feature of the periodic boundary conditions
(3.7) lies in a possibility of an arbitrary movement (up and
down) along the "infinite" vector (2.6). Once we fix any p
"initial" components Zo by solving our model-space
Schrodinger equation (3.15), we may generate
Z&, Zz, . . . , Z~ in a recurrent manner, from Eqs. (3.17)
and (3.18). This is a procedure which employs the auxili-
ary sequence E„(E)at the numerically determined energy
E. The corresponding error in energy will be projected
then also into our wave functions. Thus, a nice simul-
taneous test of precision may be based on a verification of
periodicity of the resulting Z„s, say, via the formula

CoZm+ AoZo+BoZi =0 (4.1 1)

In the present p = 1 Hiickel example with the variable
dimension M, we have computed the numerical value of
the right-hand-side zero, i.e., of the three-term sum in
(4.11). The p =1 results have a structure sampled here in
Table III. %"e may add the following comments.

(a) For the nondegenerate ground states, the recurrent
procedure and Eq. (3.15) are stable. Hence, we display
just the results obtained for the "questionable" first excit-

TABLE II. The unexpected numerical applicability of our secular equation (3.6) near the excited en-

ergy levels (4.10) for even dimensions M.

Dimension
of the model

M

Exact value
of the energy

X =X(M)
g (E)= &&'!fo(E)

E=X

2
4

18
20

—0.500
0.309
0.946
0.956

First excited state (j =1)
27
17
4.4
3.9

0.088
0.098
0.035
0.028

—27
—16
—4.3
—3.9

18
20

—0.986
0.989

Tenth excited state (j =10)
4.2
4.1

—0.16
0.16

—4.5
—3.8
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ed states (j = 1) and variable M.
(b) The change of normalization from (A) to (B),

(A) zo=l,
(B) z, =1 and z0=0,

is equivalent to a transition to the linear-molecule subsys-
tem with the dimension TV=M. It proves impossible
whenever the energy ceases to be degenerate. These cases
are marked by an asterisk —"large" means O(10 ) in
Table III.

(c) As a particular consequence of the above remark,
we may interpret also the double degeneracy of energies
as a reAection of simultaneous existence of the two possi-
ble normalizations. The singularity appears at k =N —1

and we get 1/f, =0 with p =1 at the exact energy. In
principle, the factorization must be "regularized" by a
repartitioning.

(d) As a result of a repartitioning of H EI with —p =2,
our secular equation (2.15) would acquire a (2 X 2)-
dimensional determinantal character. For even dimen-
sions M, the double (numerically difficult) zero of 1/fo
"decays" into the two simple zeros in a product represen-
tation of the determinant of 1/Fo with p =2. This is also
an explanation of the numerical success of Table II. We

may notice also that the pair of wave functions has a
good precision for even M.

(e) For the odd dimensions, the "subsystem solution"
remains comparatively good, in spite of the bad quality of
the "genuine cyclic" one. For a good evaluation of the
latter, the p =2 formalism seems necessary.

V. SUMMARY

In a methodical setting, our paper presented a q &p
and r (p generalization of the factorization method of
Ref. 12 and its extension to the nonbanded Hamiltonians
of the polyacetylene type. We have shown also a few re-
sults of computations, but our numerical results should
be read as preliminary: They have to be complemented
by the realistic calculations going beyond their purely
methodical meaning. Nevertheless, in their spirit, many
of the transparent features of the solvable Huckel model
may immediately be transferred to the more realistic situ-
ations. Thus, in the conclusion, we would like to em-
phasize a few physical aspects of such a transfer which
seem relevant from the entirely pragmatic point of view.

(a) A "natural" formal framework of solving all the
polyacetylene-type Schrodinger equations has been found
in the factorization method. In this context, a particular

TABLE III. The test of nonperiodicity of the numerical wave functions. See text for significance of
asterisk.

Dimension
of the model

M

Exact value
of the energy

X =X{M) E=X—e
10 {aozo+boz&+bMzM)

E=X E =X+e

2

5
6
7 )fc

8

9
10
11
12

—0.50
1.00
0.31

—0.50
—0.90
—1.00
—0.94
—0.81
—0.65
—0.50
—0.35

{A) Normalization zo=1
28
41
16
14
12
21
9.3
9.5
7.8
3.7
6.7

0,35
0.000

—0.39
6.2

—0.18
0.000
0.14

—12.0
0.31
0.088
0.38

—27
—41
—17
—15
—12
—21
—9.0
—8.4
—7.2

0.094
—5.9

2
3*
4
5

6
7 )fc

8
9

10
11
12

{B)—0.50
1.00
0.31

—0.50
—0.90
—1.00
—0.94
—0.81
—0.65
—0.50
—0.35

Normalization z, =1 and zo=0
18

large
—5.5

8.9
55

large
74
20

8.9
4.8
2.7

0.23
large

0.13
—0.24
—0.85
large

1.1
0.57
0.35
0.23
0.16

—18
large

5.7
—9.4

—57
large

—73
—19
—8.2
—4.3
—2.4
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emphasis may be put upon an easy transition to the
infinite-molecule limit and, in particular, upon a possible
comparison of results with the predictions of the models
solvable in that limit.

(b) The recurrent character of the presented construc-
tions proves extremely suitable for computations with the
"realistic" Hamiltonians. We might even consider the
unstable systems or systems described by the complex
Hamiltonians. A rather trivial change in the notation
(e.g. , replacing transpositions by the Hermitian conjuga-
tion) as well as in the interpretation (e.g. , employing also
the transposed versions of the formulas) will be sufficient
for that purpose.

(c) The more or less standard imposition of the
different boundary conditions (i.e., a use of the different
Hamiltonian matrices) has been combined with a change
of dimensions. In the cyclic case, this helped us to clarify
a role which is played by an excitation of a subsystem. In

fact, an emergence of the purely computational singulari-
ties finds a natural physical counterpart in an interpreta-
tion of a part of the spectrum. Such an interplay of the
intuitive and computational insight seems quite impor-
tant for future applications.

(d) Up to now, the simplicity of diagonalization of the
linear systems and of the systems without any long-range
hopping and/or p ) l interactions unvoluntarily support-
ed their preferred choice in the quantitative studies.
Nevertheless, in the computational study of solitons, ' a
little bit simpler construction is characteristic, on the
contrary, to the periodic case. We believe that our
demonstration of an easy feasibility of calculations for
both the linear and periodic systems (as well as for the
studies of influence of the p ) l corrections) might en-
courage the further realistic computations concerning the
nontrivial (say, topological, solitonic, etc.) aspects of
solid-state physics and quantum chemistry.
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