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Analytic solutions of the efYective-mass equation
in strained Si-Si& „Ge„heterostructures applied to resonant tunneling
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The tunnel current in the valence band of Si-Si& Ge double-barrier structures is calculated
within the framework of the three-band effective-mass equation including the spin-orbit split-ofF
band and the built-in strain. We present analytic solutions of the effective-mass equation in each
bulk constituent and use them to calculate the transmission coefficient and tunnel current via a
transfer-matrix technique. Though the tunnel current originates only from incoming heavy-hole
states, these are strongly mixed into light-hole (LH) and spin-orbit split-off (SO) states, and several
resonances in the tunnel current are even dominated by outgoing LH or SO states. An estimate is
done to compare the calculated resonant bias values with experimental results.

I. INTRODUCTION

Lattice-matched semiconductor heterostructures have
been extensively investigated' and significant progress in
understanding the electronic structure has been real-
ized. ' Fortunately, it turned out that the restriction to
lattice-matched materials for realizing heterostructures
without misfit defects is not necessary, as long as the lay-
ers under consideration are suSciently thin, so that the
lattice mismatch can be accommodated by built-in biaxial
elastic strain. Consequently, Si and Si& „Ge alloys
become extremely attractive candidates for lattice-
mismatched semiconductor heterostructures.

The extensive work on resonant tunneling through
lattice-matched double-barrier heterostructures has been
followed by much experimental research concerning reso-
nant tunneling in the valence band of lattice-mismatched
Si-Si& Ge double-barrier structures. ' ' However, a
theoretical description, including the built-in strain and
the spin-orbit split-off (SO) band, which for Si lies close to
the heavy-hole (HH) and light-hole (LH) bands, has not
yet been developed.

In this paper we calculate the tunnel current in the
valence band of Si-Si, Ge double-barrier structures,
within the framework of the six-component envelope-
function approximation. ' '' The Luttinger-Kohn Ham-
iltonian, ' including the spin-orbit split-off band and the
built-in strain, ' can be decoupled into two independent
3 X 3 blocks' by a unitary transformation similar to that
used in Ref. 20. This Hamiltonian is the starting point of
our calculations.

In Sec. II we present the analytic solutions of the
effective-mass equation in the bulk and use' them in Sec.

III to calculate the transmission coe%cients through the
Si-Si, Ge„double-barrier structures via a transfer-
matrix technique. ' The tunnel current is derived in
Sec. IV and the results are compared with experi-
ment. ' ' Finally, in Sec. V we summarize the results
and conclusions.

II. ANALYTIC SOLUTION
OF THE EFFECTIVE-MASS EQUATION

The three highest valence bands (doubly degenerate) of
Si and Si, „Ge are described by the 6X6 Luttinger-
Kohn Hamiltonian. ' This Hamiltonian incorporates the
heavy-hole (HH), light-hole (LH), and split-off (SO)
bands. Since the spin-orbit splitting b, for Si (h, =44
meV) is smaller than or of the order of the confinement
energy and the strain parameter S, the SO band must be
retained. The 6X6 Hamiltonian matrix can be decoupled
into two independent 3 X 3 matrices ' by a unitary
transformation similar to that used in Ref. 20.

The lattice constants of the pure elements Si and Ge
are mismatched by about 4%. However, for thin layers
composed of Si and Si, Ge„alloys the lattice constants
parallel to the interfacial plane adjust so that perfect
matching of the two materials is obtained. To compen-
sate for this strain, the lattice constants perpendicular to
the interface adjust independently for the two materials
to minimize the elastic energy. ' The inAuence of the
lattice deformation on the electronic properties is de-
scribed within the concept of deformation potentials by
additional terms S in the effective-mass Hamiltoni-

4, 5, 6, 18

In summary, the Hamiltonian matrix, including the
HH, LH, and SO bands and the strain, is'
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bands. The LH and SO states are coupled by the strain
S. This coupling becomes important for materials with
small spin-orbit coupling 5 such as in the case of Si
(b, =44 meV). For the interpretation of the resonances in
the tunnel current, it is essential to notice that for k~~&0
all states are mixed via the k~~ terms in the off-diagonal
elements of H.

In the bulk the components of the wave vector k are
good quantum numbers and the solutions of the
effective-mass equation,

H( —iV)F=EF,

k, is the wave vector along the growth direction, kI~ the
magnitude of the wave vector in the interface plane, 0 the
angle between the direction of k~~ and the [100] direction,
and the y's the Luttinger parameters of the material.

For k~~
=0 the HH state remains decoupled from the

LH and SO states and the strain S splits the HH and LH

can be taken to be of the form

F(r)= fe'~ ~

where f= (f„fz,f3 ) is an eigenvector of the Hamiltoni-
an matrix (1). An explicit form of the eigenvectors is ob-
tained with a Gauss algorithm:

( A —S E)(D —E) (F +—+2S—+i &3/28)(F +&2S+i &3/28 )

—(C+iB)(D E)+ &2—C+ —8 (F+&2S+i&3/28)
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(F +&2S+iv—'3/28)( A ~ +S E)+(C+iB)—&2C+ 8
2

&2C+ —8 (A —S E)+(C+iB)(F—+&2$+i&3/28)

s= —(F+&2S+i&3/28)( A+ +S E)+(C+iB) &—2C+
2
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(&c)

In deriving the eigenvectors, the linear equation system has been arranged so that the results are purely HH-, LH-, or
SO-like (corresponding to the nomenclature h, 1, and s, respectively) in the limit of infinite spin-orbit coupling b, and
vanishing in-plane wave vector k~~.

In the case of a heterostructure, the potential V(z) breaks translational symmetry along z; however, k and k remain
good quantum numbers. The potential V(z) is a constant in each layer, and for each energy E and in-plane wave vector
k~~ the bulk secular equation gives six values of k„which are denoted +kI, , +kI, and +k, . In the barrier the energy E is
replaced by E —Vo, where Vo is the band offset.

The potential V(z) mixes the bulk solutions (4) and (5) with different values of k„and the general solution in each
layer of constant potential is a linear combination of them, e.g. , in layer b (see Fig. 1):
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F(r)=[b&h(+k&)e " +b21(+k&)e ' +b3s(+k, )e

+b~h( k—
k )e " +b~l( —ki)e ' +b6s( —k, )e * ]e

F( )
i(k~x+ky&)

(6)

The stationary states of a heterostructure are derived by imposing appropriate boundary conditions' ' at each inter-
face, which enforce the continuity of the envelope function and the conservation of the probability current. In the ap-
proximation that the periodic part of the Bloch functions are equal on both sides of the interface at z, the boundary
conditions are I

F(z) continuous at z (7a)

PF(z) continuous at z (7b)

The matrix P is derived by integrating the effective-mass equation across an interface and its explicit form is

(y, —2y2)(8/Bz) —&3y,k,

(y, +2y, )(a/a )

—&3/2y k~~
—2&2y (a/a )+(3/&2)y k~~

&3/2y, k
~~

—2&2y (8/8 )
—(3/&2) y ik

~~

y i(B/Bz)

(8)

In the case of a quantum well (Si-Si, Ge -Si) the sta-
tionary states are derived from a linear equation system
consisting of 18 coefficients that is constructed by use of
Eqs. (6)—(8) at the two interfaces. In each Si barrier three
coefficients vanish by the condition of vanishing envelope
function at infinity. Hence the subband dispersion E (k~~ )

is determined in implicit form by the condition of a van-
ishing coefficient determinant, which is of order 12.

However, the emphasis of this paper is on resonant
tunneling, and therefore it is the transmission coefficient
through double barriers that is calculated in the following
section.

III. TRANSMISSION COEFFICIENT
VIA A TRANSFER-MATRIX TECHNIQUE

The transfer-matrix technique has been applied exten-
sively to calculate the transmission coefficient through
double-barrier structures, ' and the extension to the
j =

—,
' valence bands has been presented.

At each interface we get from (6)—(8) an equation for
the amplitudes, e.g. , at z =z2 (see Fig. 1)

M 31=M 4c,

where M 3 is a complex 6X6 matrix which contains the
coefficients of b; in (6). Analogous equations at each in-
terface give the transmission amplitudes t as a function of
the incoming amplitudes, included in the vector a:

Z2 Z3 Z4

t=M8 'M7M6 'M5M4 'M3M2 'M &a, (10)

FIG. 1. Valence-band-edge profile for HH in a double-barrier
structure. The regions b and d consist of Si and the regions a, c,
and t of Si& Ge„.

where t=(t„t2, t3, 0, 0,0) and a=(a„az, a3, r„r2, r3) and
the r; are the reAection amplitudes.

Attention must be paid in two cases. First, for E small
compared to the terms containing k~~, S, or 6, the secular
equation gives imaginary or complex values for k, in the
Si, Ge regions. In these cases only bulk solutions that
vanish at infinity must be taken into account in the elec-
trodes. Secondly, for large k~~, the bulk LH dispersion
E(k, ) becomes "camelback"-like, i.e., it has two so u-

tions for ~k, ~
at the same energy. The smaller one has to

be inserted into the s eigenvector. Since the velocity is

proportional to BE/Bk„ the two solutions with the same
sign of k, have opposite velocities, and this must be prop-
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erly accounted for by modifying the assignment of the
components of the t and a vectors: t=(t„r„0,0, 0, t3)
and a=(a i, az, r 3, r i, r 2, a 3).

The transmission coefficient D„ through channel n (i.e.,
HH, LH, or SO) is, for example, in the case of an incom-
ing HH state,

D„= N,
&F;I,, IF; &

where N is a normalization factor. The general formula
for the probability current density is given in Ref. 26 and
its explicit form is

&Flj. IF&= I~I' iy3k~~ i 3(fif~ —fif~)+v'3~2(fif3 —fif3 )+ —(f~f3 f2f3)

—k, [y Ifi I'+y+If21'+yilf31' —2i 2y~(f2f3+f~f3 )] (12)

0
I I 1 'I

I
I I I I

I
I I 1 I

HH2

where y+ =y &+2yz, and e is the amplitude.
An example for the transmission coeKcient as a func-

tion of energy in the case of an incoming HH state is
shown in Fig. 2. In the energy range considered three
HH resonances occur. The third shows up at an energy
larger than the barrier height and is therefore a virtual

one. Already for the chosen value of the in-plane wave
vector, k~l

=0.01 A ', the incoming HH state is strongly
mixed into the outgoing LH and SO channels. Due to
the strain-induced and spin-orbit splitting the transmis-
sion coeKcient for the LH and SO states is only defined
at higher energies, when the corresponding k, in the elec-
trodes become real. With the parameters used in Fig. 2,
the k, in the electrodes become real at about 50 meV for
a LH state and at about 180 meV for a SO state. The first
resonance in the SO channel occurs at an energy slightly
higher than the barrier height. With increasing kll the
effects of mixing increase and the line shapes of the reso-
nances become strongly asymmetric (also see Ref. 28).

IV. TUNNEL CURRENT

o
0

The current density through a double-barrier structure
between two p+-type electrodes in each outgoing channel
n is, at zero temperature,

e minI EF+eU, 0I kII I E)
Jn=

(2~) /iii
dE

dk Ilk llD„.kll(0)
(13)

—10
0 —50
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Energy (rneV)

FIG. 2. Transmission coeKcient of an incoming HH state
through a Si-Si, Ge„double-barrier structure grown on Si
substrate and with x=0.25, as has been used in Ref. 10. The

0
well width is 55 A. For numerical reasons a barrier width of 30
0 0
A has been chosen instead of the 100 A used in the experiment.
The y parameters for Si (y, =4.285, y2=0.339, and y3=1.446)
are taken from Ref. 30, and those for the Sio 75Geo» alloy

(yl =6.559, y2=1.314, and y3=2.507) are derived by linear in-
terpolation between the values for Si (Ref. 30) and Ge (Ref. 31).
The valence-band offset Vo =210 meV is taken from Ref. 32 by
linear interpolation. Since the structure is grown on Si sub-
strate, the Si layers are unstrained and the strain parameter
S=40 meV for the Sio 75Geo» layers is taken from Ref. 33. The
spin-orbit splitting b is, for Si, 6=44 meV, and for Ge, 6=290
meV. In a linear interpolation the alloy value is 6=106 meV.

0
The magnitude of the in-plane wave vector is kl~ =0.01 A ' and
the calculation is done in an axial approximation, i.e.,

3 ( y2 +y 3 ) /2 in Eq. (2c). The solid, dotted-dashed, and
dashed lines show the outgoing HH, LH, and SO channels, re-
spectively.

The total current density is the sum over all three outgo-
ing channels n, i.e., HH, LH, and SO.

The Fermi energy EF has been chosen to be 20 meV.
Due to the strain-induced and spin-orbit splitting there
are no occupied incoming LH or SO states at T =0 K.
For E up to the Fermi energy, the LH and SO states have
no real k, in the electrodes. As a result, the whole tunnel
current originates from incoming HH states. Though ex-
perimentally it is only possible to measure the total tun-
nel current, for the interpretation of the resonances it is
of interest to show the tunnel current density for each
outgoing channel individually, as is done in Fig. 3.

Five resonances occur. The first and the third are
HH-like, while the second and fourth is dominated by
outgoing LH states. Since, in the current, states with klI

up to about 0.04 A ' are involved for EF =20 meV, the
incoming HH states are strongly mixed into the outgoing
LH and SO states. At a bias of about 160 mV the bulk
SO band in the right electrode with real k, appears at the
Fermi energy of the electrode and the incoming HH
states get heavily mixed into SO states. The fifth reso-
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TABLE I. Comparison of the calculated bias value U,h„„at
resonances with the experimental values U,„„,of Ref. 10. The
fitted factor 1.64 accounts for voltage drops outside the double-
barrier region.
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nance is even dominated by outgoing SO states.
In Table I we compare the calculated bias values at the

resonances with the maximum of the broad peaks of Ref.
10. The calculated resonance voltages are brought into
reasonable agreement with the experimental values by
multiplying with a fitted factor of 1.64. This factor ac-
counts for the fact that the voltage drops occurring out-
side the double-barrier region contribute to the measured
bias. When considering Table I, one should keep in mind
that the Fermi energy has only been estimated and that
the barriers and the well under bias are each approximat-
ed by one region of constant potential. To our knowledge
all other experiments show only two or three resonances,
and therefore a quantitative comparison taking into ac-
count a fixed scaling function for the bias is less
significant in those cases; nevertheless, the scaling factors
are of the same order, for all experiments analyzed.

V. SUMMARY AND CONCLUSIONS

~ ~ I I I ~ 4 t ~
I

I I I l
I

I I ~ ~

3 (c}

—3 I I l I I I I I I I I I I a I I I I I I

0 100 200 300 400
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FICs. 3. Tunnel current through a Si-Si075Cxeo» double-
barrier structure with the same parameters as in Fig. 2 and with
a chosen Fermi energy of 20 meV. (a) outgoing HH channel, (b)
outgoing LH channel, and (c) outgoing SO channel.

The relevant valence bands of Si and Si, „Ge are de-
scribed by the 6X6 Luttinger-Kohn Hamiltonian, which
can be decoupled into two independent 3X3 blocks by a
unitary transformation. The lattice mismatch between
layers of Si and Si

&
Ge can be accommodated by

built-in biaxial elastic strain, for which the inAuence on
the electronic properties is described by additional terms
in the effective-mass Hamiltonian. The analytic solutions
of the efFective-mass equation are found and, together
with the appropriate boundary conditions at interfaces,
the transmission coe%cient is calculated via a transfer-
matrix technique for three-component envelope func-
tions. For nonzero in-plane wave vector all states are
strongly mixed.

The tunnel current density is calculated and the results
are shown for each outgoing channel individually. Due
to the strain-induced and spin-orbit splitting the tunnel
current originates at zero temperature only from incom-
ing HH states. These states are strongly mixed into out-
going LH and SO channels and several resonances are
even dominated by outgoing LH and SO states. The cal-
culated resonance voltages are brought into agreement
with the experimental values by multiplying with a fitted
scaling factor, which accounts for voltage drops outside
the double-barrier region.



12 462 R. WESSEL AND M. ALTARELLI 40

~L. Esaki, IEEE J. Quantum Electron. QK-22, 1611 (1986).
2G. Bastard and J. A. Brum, IEEE J. Quantum Electron.

QE-22, 1625 (1986).
3G. Bastard, Wave Mechanics Applied to Semiconductor Hetero-

structures (Editions de Physique, Les Ulis, 1989).
4P. Voisin, in Proceedings of the Third Brazilian School of Semi

conductor Physics, edited by C. E. T. Gonqalves da Silva, L. E.
Oliveira, and J. R. Leite (World Scientific, Singapore, 1987).

~J. Y. Marzin, in Heterojunctions and Semiconductor Superlat-
tices, edited by G. Allen, G. Bastard, N. Boccara, M. Lanno,
and M. Voos (Springer, Berlin, 1986).

6E. P. O'Reilly, Semicond. Sci. Technol. 4, 121 (1989).
7G. C. Osbourn, IEEE J. Quantum Electron. QK-22, 1677

(1986).
sR. People, IEEE J. Quantum Electron. QE-22, 1696 (1986).
9F. Capasso, J. Mohammed, and A. Y. Cho, IEEE J. Quantum

Electron. QE-22, 1853 (1986).
' H. C. Liu, D. Landheer, M. Buchanan, and D. C. Houghton,

Appl. Phys. Lett. 52, 1809 (1988).
H. C. Liu, D. Landheer, M. Buchanan, D. C. Houghton, M.
D. Iorio, and Song Kechang, Superlatt. Microstruct. 5, 204
(1989).

~2S. S. Rhee, J. S. Park, R. P. G. Karunasiri, Q. Ye, and K. L.
Wang, Appl. Phys. Lett. 53, 204 (1988).
M. Buchanan, H. C. Liu, D. Landheer, M. D. Iorio, T. G.
Powell, D. C. Houghton, and Song Kechang, Solid State
Commun. 70, 19 (1989).

' J. S. Park, R. P. G. Karunasiri, K. L. Wang, S. S. Rhee, and
C. H. Chem, Appl. Phys. Lett. 54, 1564 (1989).

' K. L. Wang, R. P. Karunasiri, J. Park, S. S. Rhee, and C. H.
Chem, Superlatt. Microstruct. 5, 201 {1989).
M. Altarelli, in Heterojunctions and Semiconductor Superlat-
tices, Ref. 5.
J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).

~~G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela (Leningrad) 1,
1642 (1959) [Sov. Phys. —Solid State 1, 1502 (1959)].

U. Ekenberg, W. Batty, and E. P. O'Reilly, J. Phys. (Paris) 48,
553 {1987).

"D. A. Broido and L. J. Sham, Phys. Rev. B 31, 888 (1985).
B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984).
M. O. Vassel, J. Lee, and H. Lockwood, J. Appl. Phys. 54,
5206 (1983).
L. A. Cury and N. Studart, Superlatt. Microstruct. 3, 175
(1987}.
P. Erdos and R. C. Herndorn, Adv. Phys. 31, 65 (1982).

25L. C. Andreani, A. Pasquarello, and F. Bassani, Phys. Rev. B
36, 5887 (1987).

26M. Altarelli, in Application of High Magnetic Fields in Semi
conductors, edited by G. Landwehr (Springer, Berlin, 1982).
J. B. Xia, Phys. Rev. B 38, 8365 (1988).
R. Wessel and M. Altarelli, Phys. Rev. B 39, 12 802 (1989).
C. B. Duke, Tunneling in Solids (Academic, New York, 1969).
J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 {1963).
'J. C. Hensel and K. Suzuki, Phys. Rev. B 9, 4219 (1974}.
C. G. van de Walle and R. M. Martin, Phys. Rev. 34, 5621
(1986).
R. People, Phys. Rev. B 32, 1405 (1985).


