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Thermal resistance of silicon point contacts
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We investigate thermal transport on microcontacts established between two silicon wedges. The
measurements are carried out with a variable contact radius of 0.3—2 pm at temperatures from 2 to
300 K. The measured thermal resistance is used to calculate the contact radius with an accuracy
better than 50%. Comparison of electrical and thermal transport indicates the existence of a tunnel
barrier between the contact legs. Electrical measurements are therefore unreliable to determine the
contact size.

I. INTRODUCTION

Measurements on structures with small geometrical di-
mensions are an important tool of current solid-state
research. Point-contact spectroscopy provides informa-
tion about the interaction of electrons and low-energy ex-
citations in solids. Transport measurements on point
contacts give insight into microscopic transport mecha-
nisms. Whereas the electrical resistance of metals and
metallic alloys has been studied quite extensively by
point-contact spectroscopy, ' other transport properties,
such as thermoelectric power or heat conductivity,
have only scarcely been investigated. Recent measure-
ments on silicon microcontacts showed a large decrease
of the thermoelectric power when the contact area was
reduced. This behavior was interpreted as a reduction
of the phonon-drag part of the thermoelectric power due
to phonon boundary scattering. Earlier measurements on
silicon point contacts proved ballistic transport of charge
carriers by investigation of asymmetric Joule-heat pro-
duction.

In this work, we present for the first time measure-
ments of the thermal resistance of silicon point contacts.
Electrical and thermal resistance of the contact are mea-
sured simultaneously and compared with each other.
Measurements are carried out with variable contact load
in the extended temperature range from T=1.5 to 300
K. For evaluation of our point-contact data we need ex-
act values of electrical and thermal conductivity of the
sample material, which strongly depend on doping level
and crystal perfection; therefore we cannot solely rely on
literature parameters, but have to measure the electrical
and thermal conductivity as a function of temperature by
ourselves. These measurements are also included in this
paper.

Measurements of thermal resistance on point contacts
provide useful information about heat transport under
conditions of boundary scattering. The thermal resis-
tance can in addition be used to calculate the area of the
point contact. In this paper we shall mainly concentrate
on the latter point, which is of special importance, be-
cause the contact area is the most important parameter
for interpretation of transport measorements on point
contacts.

The contact area is usually calculated from the electri-
cal resistance of the point contact, assuming that the
resistance is determined solely by contact geometry.
Our measurements of current voltage characteristics and
thermopower, however, suggest that electrical tunneling
takes place between the two contact legs. This type of
transport leads to an additional resistance, which falsifies
the calculation of the contact area. As long as the tunnel
resistance is small compared with the geometrical resis-
tance, tunneling can be ignored. If the tunnel resistance
becomes large, which occurs especially at small contact
sizes, then rather severe errors will result. In moderately
doped semiconductors heat is almost completely trans-
ported by phonons, which are much less sensitive to tun-
nel barriers than electrons. Calculating the contact area
from thermal resistance thus mainly avoids the problems
of imperfect surfaces. Comparison of the contact areas,
determined from electrical and thermal resistance, pro-
vides information about surface perfection and surface
purity. Such investigations are only possible at semicon-
ductor point contacts. In metals, where heat transport is
mainly carried by electrons, electrical and thermal resis-
tance are similarly aA'ected by tunnel barriers.

A brief introduction into the theory of electrical and
thermal transport on microcontacts is given in Sec. II. In
Sec. III we describe the experimental arrangement for
measurements on bulk samples and point contacts, re-
spectively. The main results are presented and discussed
in Sec. IV, and conclusions are drawn in Sec. V.

II. THEORETICAL BACKGROUND

The present standard model for point contacts is a cir-
cular orifice in a specular rejecting, isolating plane. The
electrical resistance according to this model is well
known. There are two limiting cases, depending on the
Knudsen number IC =l, /a, where l, is the mean free
path of the carriers and a is the contact radius. For
K ((l (the so-called "Maxwell limit" ) the macroscopic
transport theory is valid, and solving Poisson's equation
yields

for E «1,1
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where cr is the electrical conductivity. For the Knudsen
limit K &&1, ballistic transport of charge carriers takes
place, and the electrical resistance is determined by sta-
tistical calculation analogous to kinetic gas theory

4KR= for E )&1 .
3770 0

(2)

Equation (2) is obtained under the condition that I, is in-
dependent of energy. An interpolation formula between
the two limiting cases is given by Wexler under the sup-
position of elastic and isotropic scattering:

y(E) + 4K
2' Q 3&0 Q

(3)

where y(X) is a slowly varying function with y(0) =1
and y(ao )=0.694.

The thermal resistance of the point contact consists of
electronic and phononic parts 8' and 8'z. In first-order
approximation the two parts are independent of each oth-
er, and the total thermal resistance becomes

8' 8,
8 +8; (4)

y(SC) 4'+ with K=—,
2Ka 3&Ka a

(6)

where K denotes the lattice thermal conductivity and / is
the mean free path of the phonons. In our .experiments,
8', always greatly exceeds O' . Therefore the heat Aux
through the point contact is carried nearly totally by
phonons and the electronic part of the thermal resistance
is negligible.

III. EXPERIMENTAI.

A. Sample materials

Our experiments are performed on high-purity single-
crystalline silicon, which is arsenic doped with a concen-
tration of 1.7X10' cm . This high doping level causes
impurity band conduction. Hence the carrier concentra-
tion is temperature independent, and the electrical resis-
tivity is governed by impurity scattering. This conclusion
is confirmed by our measurements, which shows the elec-
trical conductivity to be almost independent of tempera-
ture. The point-contact resistance can thus be measured
even at low temperatures, which would not be possible
with purer samples because of freezing out of the charge
carriers.

The electronic part 8; can be calculated from the electri-
cal resistance R using the Wiedemann-Franz law

R
TL

where T is the temperature and L =2.45 X 10 V /K
the Lorenz number. Relation (5) is valid even if the con-
tact is covered by an isolating layer and electrical con-
duction takes place by tunneling. In analogy to Eq. (3)
the phononic part of the thermal resistance is '

B. Bulk measurements

The measurement of electrical and thermal conductivi-
ty follows conventional techniques. " The specimen is a
polished bar with a quadratic cross section of 0.7 mm
and a length of about 30 mm. It is cut from the crystal
described in Sec. III A with its longitudinal axis parallel
to the (111)crystal direction. The specimen is mounted
with one end connected to a copper heat sink and a small
heater attached to the other. Electrical and thermal con-
nections are made by alloying a thin gold film to the sur-
face of the bar and then soldering onto this film with indi-
um. The absolute temperature is measured by a calibrat-
ed Si diode and the temperature gradient along the sam-
ple by a difFerence thermocouple (0.07 at. lo Fe in Au
versus chromel) T.he ends of this thermocouple are at-
tached to the bar at a distance of about 12 mm. The
thermal anchoring is performed by winding a varnished
copper wire several times around the bar and twisting the
ends together. The ends are subsequently cleaned from
varnish and soldered directly to the thermocouple wires.
Finally, the copper wire is glued to the specimen with GE
7031 varnish. This method achieves good thermal con-
tact and fast response in combination with high electrical
insulation. Since the electrical leads and the thermocou-
ples are fixed at the same position of the specimen, elec-
trical conductivity, thermal conductivity, and thermo-
power can be measured simultaneously. The measure-
ments are carried out between 1.5 and 300 K. Heat
losses by thermal radiation are measured and taken into
consideration. The corrections contribute at most 10%%uo

at room temperature.

C. Point-contact measurements

The point contacts are established by pressing two
wedge-shaped silicon samples crosswise against each oth-
er. The contact area can be changed by variation of the
pressure, which is adjusted by a mechanical feed in com-
bination with a piezoelectric drive. The wedges are cut
from the crystal described in Sec. III A. The basal plane,
which has an area of about 5 X 3 mm, is perpendicular to
the (111) crystal direction. The cross section is a rec-
tangular triangle. After polishing, the wedges are etched
with CP4 etchant in order to remove surface defects.
Directly before mounting the wedges into the cryostat,
the oxide layer is removed by dilute HF solution. One of
the wedges is connected to a copper heat sink. It is
mounted on a small Cuaep p2 spring in order to compen-
sate thermal expansion. The thermal contact to the heat
sink is made by flexible copper strand. The second
wedge, which is equipped with a small heater, is coupled
to the heat sink via a large thermal resistance. This cou-
pling is done by mounting the wedge on two bars of
glass-fiber-reinforced polyester, which have a length of 10
mm and a cross section of about 0.1 mm .

The whole arrangement is surrounded by a radiation
shield on bath temperature. The absolute temperature is
measured by calibrated platinum and germanium ther-
mometers. For determination of the temperature
difference between the two wedges we use a thermocou-
ple. The thermal resistance W=b, T/Q is determined by
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heating the thermally isolated wedge with constant power
Q and measuring the resulting temperature diff'erence b, T,
which is adjusted to a few percent of the absolute temper-
ature. To account for residual heat losses, we measure
the thermal resistances of the opened and the closed con-
tact 8' and 8;. The point contact resistance F k thus
follows from

Thermal resistance and thermoelectric power as well as
electrical resistance are measured simultaneously. The
electrical resistance is measured with a fixed voltage of
about 20 mV.

IV. RKSUI.TS AND DISCUSSIQN

A. Bulk measurements

We measure electrical conductivity, heat conductivity,
and thermoelectric power of our sample at temperatures
from 1.5 to 300 K. The results are in satisfactory agree-
ment with former measurements, carried out on similarly
doped material. ' ' The electrical conductivity of the
bulk sample is found to be almost temperature indepen-
dent: It ranges from 350 0 'cm ' at T=1.5 K to 230
Q 'cm ' at T =300 K. The electronic part of the heat
conductivity ~, is calculated from the electrical conduc-
tivity using the Wiedemann-Franz law w, =o.TL,. The
heavy doping of our sample renders L as temperature in-
dependent. Inserting the measured values of o. into the
Wiedemann-Franz law, we find that ~, contributes to less
then 0.5% to the entire heat conductivity at all tempera-
tures. We therefore neglect ~, and confine ourselves to
the thermal conductivity of the lattice.

Figure 1 shows the measured thermal conductivity.
We find considerable differences between our data and
the published thermal conductivity of pure silicon, '

which is represented by a solid line in Fig. 1. Whereas at
T =4 K the thermal conductivity of the investigated ma-
terial is about 100 times smaller than that of pure silicon,

the values at T=300 K are nearly the same. These
differences are due to the high doping level of our sample.
At high temperatures, the thermal resistivity is dominat-
ed by phonon-phonon scattering [umklapp ( U) processes]
independent of doping. At low temperatures, U process-
es are negligible and other scattering mechanisms become
important. ' There are mainly two mechanisms which
occur additionally in doped material: scattering of pho-
nons at impurities and scattering by charge carriers.
These two contributions can be distinguished by their
temperature dependence Thermal resistivity due to
impurity scattering is proportional to T, scattering by
charge carriers varies with T . Boundary scattering
does not take place, because in the entire temperature
range the phonon mean free path is much smaller than
the size of the specimen. Scattering by charge carriers
therefore is dominant at low temperatures. Impurity
scattering becomes important at intermediate tempera-
tures before the onset of U processes. We observe a T
law for the thermal conductivity of our sample at temper-
atures below 20 K. For T & 5 K we, however, find devia-
tions from the T law which are not yet explained. Simi-
lar deviations have also been observed by other authors. '

For calculating the radii of our point contacts, we need
the mean free paths of electrons and phonons. The pho-
non mean free path l is calculated by means of the well-
known kinetic formula of heat conduction

&——Cvlp (8)

where C is the lattice specific heat per unit volume and U

is the mean sound velocity. Values for C and U are taken
from the literature. ' The phonon mean free path cal-
culated by Eq. (8) does not account for details of the pho-
non spectrum. It represents a mean value about all pho-
nons, weighed by their contributions to thermal conduc-
tion. Such an average value is thus well suited for calcu-
lation of the thermal resistance of the point contact. For
the calculation of the electron mean free path /„we use

30—

ne l,
fPl U

(9)
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FIG. 1. Thermal conductivity vs temperature. The solid line
denotes the thermal conductivity of pure Si measured by
Glassbrenner and Slack (Ref. 15}.

where n is the carrier density and U is the average elec-
tron velocity. Because of the high doping level of our
sample we have to replace v by the Fermi velocity UF.
The calculation of vF is carried out within an impurity
band model given by Brody. ' According to this model
we obtain EF -150 meV and Uz =+2EF Im *=2.3 X 10
m/s, where the effective mass m * is approximated by the
free-electron mass. Obviously, Eq. (9) is rather simplified
and yields only approximate values of /, . However, for
E « 1, the inaccuracy of l, will cause no noticeable mis-
takes in the calculation of the contact radius, since l,
affects only the Knudsen part of the electrical contact
resistance. Figure 2 shows the mean free path of elec-
trons and phonons calculated by Eqs. (8) and (9).
Whereas /, is almost temperature independent, l is
roughly proportional to T
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FIG. 2. Electron and phonon mean free path vs temperature.
The values are calculated from the measured electrical and
thermal conductivity using Eqs. (8) and (9).

B. Point-contact measurements

We investigate the electrical and thermal resistance of
the point contact as a function of contact size. The mea-
surements are carried out at various temperatures be-
tween 5 and 300 K. From the measured electrical resis-
tance we calculate the contact radius a, via Eq. (3). The
radius a, is determined from the thermal resistance of the
contact using Eq. (4). Since a, is represented implicitly
by Eq. (4), calculations are carried out by numerical zero
determination. The mean free paths of the carriers,
which enter into calculation, are obtained from Eqs. (8)
and (9), respectively. By means of the two contact radii
a, and a„we compare electrical and thermal resistance
of the point contact directly with each other. This com-
parison is shown in Fig. 3, where a, is plotted versus a, .
The presented curves are all measured at the same con-
tact. Though the shape of the curves remains unaffected,
the measured data depend considerably on the position of
the sample surface, where the point contact is estab-
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FICx. 3. Contact radius a, calculated from thermal resistance
vs radius a, calculated from electrical resistance. The solid
lines represent the relationship expected for a perfect surface
a, =a, and the actual dependence a, -(a,), respectively.

lished. Assuming a perfectly clean surface without any
defects, we expect a, and a, to coincide. This relation
a, =a„which is represented by a solid line in Fig. 3, ac-
tually deviates strongly from the measured data.
Whereas at large contact dimensions, a, and a, are
roughly equal, at small dimensions, a, is much larger
than a, . For the smallest measured contact, a, is nearly
30 times a, . Another important feature, seen in Fig. 3, is
the weak temperature dependence of the calculated con-
tact radii. All curves, which belong to temperatures from
1.5 to 300 K, agree within 50%. We thus find a universal
empirical law for the relation between a, and a„given by
a, -(a, ) '.

The weak temperature dependence and the magnitude
of the measured electrical resistance indicate the ex-
istence of a tunnel barrier between the two contact legs,
which affects the transport of electrons through the con-
tact. This interpretation is supported by the measured
current voltage characteristics, showing a considerable
nonlinearity and asymmetry, especially at small con-
tacts. A tunnel resistance is thus generated, which adds
to the resistance originating from the geometrical con-
striction of the point contact. The tunnel resistance
falsifies the calculation of the contact radius from electri-
cal resistance, feigning a size a, smaller than the actual
radius. Thus we use the radius a„calculated from
thermal resistance, as a more reliable measure of the con-
tact size. The accuracy of the calculated a, values is dis-
cussed in the following paragraphs. The tunnel barrier
can be regarded, - in first-order approximation, as poten-
tial barrier of uniform thickness and height. The electri-
cal resistance of the contact thus becomes

+Rt = +tU 2oa ~a 2
(10)

Herein R, denotes the electrical resistance, originating
from the geometrical constriction of the point contact,
according to Eq. (1). The second term R,„represents the
tunnel resistance. The tunnel resistivity p,„ is defined as
lim& oV/j, where. V is the voltage drop across the bar-
rier and j represents the resulting current density.
Equation (10) qualitatively agrees with the measured
data, since at large contacts R, exceeds R,„, and a,
represents the actual contact radius. At small contacts,
the resistance is dominated by R,„,and a, becomes small-
er than the actual contact size. Qualitatively, however,
there are considerable differences between Eq. (10) and
the measured relation R —1/a ', which is easily deduced
from Fig. 3 using Eq. (1). To our opinion, these
differences are mainly due to the high mechanical pres-
sure at the point contact, which afFects the resistivity of
the tunnel barrier.

In fact, we know little about the nature of this barrier.
The sample surface is covered by an oxide film, which has
a thickness of about 12 A, corresponding to an oxidation
time in air of 1 h. With a barrier height of 3.2 eV at the
Si/Si02 interface this oxide film (total thickness 2X12
A) provides a tunnel resistivity p,„=6.6X10 Qcm .
The actua1 tunne1 resistivity of the contact, as calculated
from Eq. (10), amounts to 2 X 10 0 cm (p,„(10
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0 cm . The very large difference between the actual and
the calculated value of p,„indicates that the oxide film is
badly damaged at the contact surface. This statement is
supported by experiments in ultrahigh vacuum, on sam-
ples cleaned by ion bombardment and analyzed by Auger
spectroscopy, which show no significant differences be-
tween the electrical properties of clean and oxidized sam-
ples. The oxide film can thus not be the only source of
the increased contact resistance. Since the effect of ad-
sorbed gases is proved experimentally to be negligible, we
believe, that surface states and defects, which trap charge
carriers, strongly affect electrical conduction at the con-
tact. Such states are partly generated by the high contact
pressure, which ranges up to 2X 10 N/cm, thus exceed-
ing the hardness of silicon, which amounts to 1.13X10
N/cm . Possibly, the oxide film also contains single con-
ducting regions, which provide a direct connection be-
tween the contact legs.

Another effect which affects the contact resistance is
the pressure dependence of the electrical conductivity of
the sample material. This effect is neglected in our calcu-
lations. At constant carrier density —as in our sample-
the conductivity of silicon increases with pressure. For
the maximal contact pressure of about 2X10 N/cm we
roughly estimate the conductivity to be six times the
value at atmospheric pressure. ' The pressure depen-
dence of the contact resistance is very difficult to calcu-
late, since the pressure is position dependent. A simple
calculation, however, indicates that the effect can be es-
timated using a mean pressure, which is half the max-
imum pressure at the center of the contact. According to
this approximation, the actual values of a, are somewhat
smaller than the values calculated for zero pressure. The
differences, which are increasing with pressure, amount
to less than a factor of 2.

Similar differences between electrical and thermal
resistance, though smaller in magnitude, are observed on
metallic point contacts. These differences are interpret-
ed by oxide films and phononic heat transport. In metals,
however, electrical and thermal conduction are both
affected by tunnel barriers, since heat conduction is main-
ly carried by electrons. Reliable determination of the
contact size is thus very difficult.

So far we maintained that a, represent the actual con-
tact radius. This is evident, because the thermal resis-
tance is largely dominated by the geometrical constric-
tion of the point contact. The oxide film, being much
thinner than the mean free path of phonons, hardly
affects thermal conduction. Some effects may neverthe-
less falsify the calculation of a, . The high contact pres-
sure may modify the thermal conductivity of the sample
in the vicinity of the point contact. Additionally, the cal-
culation of a, is carried out under several simplifying
conditions, as, e.g. , circular shaped contact area and uni-
form mean free path of phonons. These conditions are
actually not fulfilled. To check the accuracy of the calcu-
lated a, values, we measure the temperature dependence
of the thermal resistance at constant contact load, i.e., at
fixed contact size. The measurements are carried out at
temperatures from 2 to 50 K. Within this temperature
range, the measured thermal resistance varies by more

than two decades. Because of the fixed contact size, as-
suming Eq. (4) to be valid, we expect a, to be independent
of temperature. Figure 4 shows the measured results, ob-
tained for three different values of contact size. We ob-
serve a weak decrease of a, with increasing temperature,
which amounts to less than 40% of the value at T =2 K.
In view of the used simplifications, this agreement is very
satisfactory.

As second approach to determine the size of the point
contact, we calculate the contact radius from the force,
which is applied to the contact legs. As mentioned in
Sec. III, one of the wedges is mounted on a small
CuBeo O2 spring. From the distance of the wedges and
the spring resilience, we calculate the contact force. Mi-
crographs of our samples, made by scanning electron mi-
croscopy, show the sample edges to be approximately cy-
lindrical shaped, with a radius of about 4 pm. If two
cylinders of radius r are pressed crosswise against each
other, a spherical contact area arises. The radius of this
area is

1/3

a =1.13
I'r

where F is the contact force, and E denotes Youngs
modulus of elasticity. Equation (11) is valid under the
condition of elastic deformation. The mechanical pres-
sure P at the contact is given by

p — (02 2)1/23F
2~a

(12)
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R =520G &o
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FIG. 4. Contact radius a, calculated from thermal resistance
vs temperature. The curves refer to different values of contact
pressure.

where x is the distance from the center of the contact.
The pressure thus reaches its maximum P =3I'/2ma at
the center of the contact x =0 and vanishes at the con-
tact edge x =a. We use contact forces of about 0.001 to
0.2 N, corresponding to pressures of 3.3X10 to 1.9X10
N/cm . Comparing the relation between contact radius
a, and contact force obtained from experiment with Eq.
(11), we achieve good correspondence. This result addi-
tionally confirms the calculated a, values. For forces
exceeding 0.2 N, we find a considerably stronger depen-
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dence of contact radius upon load than in Eq. (1 1). Addi-
tionally, the measured data become nonreproducible,
presumably due to mechanical destruction of the contact
region.

V. CONCLUSIONS

In the present work, we measure for the first time the
thermal resistance of silicon microcontacts. Comparison
of electrical and thermal transport indicates the existence
of a tunnel barrier between the contact legs, which affects
electrical conduction. Calculation of the contact radius
from electrical resistance thus yields values smaller than
the actual geometrical contact size. This discrepancy
causes important consequences for any simple-minded
conversion of electrical resistance to contact size, as has
hitherto been practiced. The problem can be overcome
by calculating the contact size from thermal resistance,
because in moderately doped silicon heat transport is al-
most completely carried by phonons. The error in calcu-

lating the contact radius from thermal resistance
amounts to less than 50%. Measurements of thermal
conduction thus represent an improved method to deter-
mine the size of semiconductor microcontacts. Addition-
ally, comparison of electrical and thermal resistance pro-
vides information about the contact surface. New mea-
surements on weakly doped silicon, which are presently
carried out, show even more pronounced differences be-
tween electrical and thermal conduction. We also per-
form measurements to investigate the structure of the
tunnel barrier separating the contact legs. These mea-
surements will be discussed in a subsequent publication.
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