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We apply the generalized Drude approach to obtain the zero-frequency relaxation time from car-
rier scattering in electron-hole plasmas in semiconductors. To our knowledge this is the first time
this approach has been tested on these kinds of scattering processes. It is found to work quite we11

and lacks the disadvantage of the Boltzmann approach for giving results in only the quantum and
classical limits. Furthermore, the calculations are much simpler than those in the Boltzmann ap-
proach.

Interest in the effects from carrier collisions in'
electron-hole (e-h ) plasmas has increased recently. This
increase has been triggered by experiments' on extremely
dense e-h plasmas created by femtosecond laser irradia-
tion of silicon samples. The experiments have shown a
free-carrier absorption much larger than what is usually
obtained from carrier-phonon scattering. The experi-
ments indicate a relaxation time of the order of 10 ' s,
which is believed to be due to e-h scattering. This in-
spired Combescot and Combescot to investigate if e-h
collisions could occur at this high rate. They used the
Boltzmann approach and found an "exact" solution in
the quantum limit and an approximate one in the classi-
cal limit. The Boltzmann approach is, apart from being
very complicated, unable to produce results in the inter-
mediate regime, where the maximum scattering rate is
actually found.

We use an alternative approach, the generalized Drude
approach, which, if it works, is not just simpler and more
physically transparent but can furthermore be used for all
densities and temperatures. This approach has been
shown to work with impurity scattering as well as
with acoustical phonon scattering„but to our knowledge
it has never been applied to e-h scattering. It consists of
three steps. In the first step the high-frequency limit of
the dynamical conductivity is derived within the Kubo
formalism and diagrammatic perturbation theory; in the
second step, this result is compared to the high-frequency
expansion of the generalized Drude expression for the
dynamical conductivity and the relaxation time ~ is here-
by identified (the generalization of the Drude expression
consists of allowing the relaxation time to be frequency
dependent); in the third, and last, step the obtained ex-
pression for z is assumed to be valid at zero frequency.
This is a bold step since ~ was obtained form a high-
frequency treatment.

For simplicity we study a model semiconductor where
the effective masses of the electrons and holes are taken
to be equal and have the value m*=0.3m, . The back-
ground dielectric constant is chosen to be 10.0. These are
typical values for semiconductors. We have refrained
from treating the more complicated situation in silicon
with its many-valley conduction band. However, the

treatment here can easily be generalized to handle that
more complicated situation.

The Drude expression for the real part of the dynami-
cal conductivity and its high-frequency expansion is
given by

2ne ~ 1/~ 2ne 2
1
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where n is the density of each of the components in the
plasma. Comparison with the derived high-frequency
conductivity and identification of ~ gives

Pl 6) high( )r(0) -o 2ne'

Substituting o, by the first term of Eq. (2.30) in Ref. 6,
properly simplified from taking into account the fact that
we are considering a system with two components of
equal mass, we obtain

6nm *m. 0 sinh (Pro'/2)
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where the function a(q, co') is the polarizability from one
of the components. It is the retarded, finite temperature
function and its denominator contains the background
dielectric constant. The parameter P is the ordinary tem-
perature parameter 1/kz T, where k~ is the Boltzmann
constant and T the temperature. The expression is very
simple and to obtain numerical results is straightforward.
However, the calculation is rather time consuming. The
reason for this is that only the imaginary parts of the po-
larizabilities can be obtained analytically. The real parts
have to be found numerically from the imaginary parts
with the use of the Kramers-Kronig dispersion relations.

The numerical room-temperature results are displayed
in Fig. 1. For comparison, we have also included the
classical and quantum limits as obtained from the
Boltzmann approach. The result for the quantum limit
given in Ref. 2 has been slightly corrected. The quantum
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limit is the limit when T/T~, where TF is the Fermi tem-
perature, goes to zero. This can be achieved in two ways;
either T goes to zero or TF goes to infinity. The result for
the quantum limit given in Ref. 2 is valid if the limit is
approached according to the second alternative, i.e., if TF
or equivalently the density goes to infinity. However, one
has to reach very high densities before the limiting ex-
pression is a good approximation. In Ref. 2 the authors
have assumed that the integrands in their Eq. (21) vanish
before the upper integration limits are reached and have
replaced those limits with infinity. We have redone their
derivation of the quantum-limit result without this re-
placement. The so-obtained quantum-limit result is what
we have included in the figure. In the notation of Ref. 2
the corrected expression reads

2T Xx tan x—
1+x+e-h

m m
X —v4/3
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FIG. 1. The scattering rate from electron-hole collisions as a
function of TF/T. The results are valid for an electron-hole
plasma at T=300 K. The solid curve is the result from the
present approach. The dotted curves are the results from the
Boltzmann approach, as obtained in Ref. 2, in the classical and
quantum limits. The quantum-limit result has been modified
(see the main text).

FIG. 2. The scattering rate from electron-hole collisions as a
function of TF /T. Each curve is valid for an electron-hole plas-
ma at fixed density. The dotted, dash-dotted, dashed, and solid
curves are for the plasma densities 1 X 10", 1X10', 1 X 10
and 1 X 10 ' cm, respectively.

within the Boltzmann approach were sound, since those
limiting results agree quite well with our results towards
the classical limit.

In Fig. 2 we give the results for a series of fixed plasma
densities, i.e., Tz is constant and T varies for each curve.
The dotted, dash-dotted, dashed, and solid curves are for
the plasma densities 1 X 10', 1 X 10', 1 X 10, and
1X10 ' cm, respectively. We find from Fig. 2 that the
maximum scattering rate increases with density. This
density dependence is displayed in more detail in Fig. 3.

The e-h plasma in the simple model semiconductor we
have considered here has two components. An e-h plas-
ma in silicon has eight components; six electron com-
ponents and two hole components. Since the con-
duction-band minima are anisotropic, electrons from two
valleys can scatter against each other and contribute to
the type of scattering mechanism considered here.
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From the comparison with the Boltzmann results we
can safely conclude that we calculate the same thing. In
other words our approach is valid. We further notice
that the modified "exact" quantum-limit result from the
Boltzmann approach is correct. The small deviations be-
tween the results are entirely due to the fact that in the
Boltzmann approach Thomas-Fermi screening was used
while we use the full RPA (random-phase approximation)
screening. Gne can also conclude that the approxima-
tions used to arrive at the "approximate" classical limit
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FIG. 3. The maximum scattering rate from electron-hole col-
lisions as a function of density. The results are valid for an
electron-hole plasma in the model semiconductor described in
the text.
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Twenty-five combinations of pairs of plasma components
can take part in the processes. This leads to an increased
scattering rate in silicon as compared to the model semi-
conductor. A factor of 10 is probably a reasonable esti-
mate of this increase. From these considerations we can
conclude that the scattering rate is found to be high
enough to make credible the explanation, that electron-
hole collisions are responsible for the extremely high
free-carrier absorption in the experiments of Ref. 1. This
paper will be followed by a more detailed paper in which
the present treatment is extended in such a way that the
real situation in silicon can be handled.

Possibly, the approach presented here can be of use in
the interpretation of other experiments in the field of
laser excitation of high-density electron-hole plasmas.
Experimentally, this is a burgeoning field, particularly in
III-V materials. ' Also on the theoretical side there is
important activity. Extensive Monte Carlo work'
has been done on electron and electron-hole plasmas as
well as simpler Boltzmann equation work. '

In summary, we have shown that the generalized
Drude approach works well in the case of carrier-carrier

scattering in an electron-hole plasma. It has advantages
over the Boltzmann approach in that it is simpler and
can be used for all densities and temperatures. The
Boltzmann approach can be used only in the quantum
and classical limits. The maximum scattering rate occurs
in the intermediate regime where the Boltzmann ap-
proach fails. We found that the rate of electron-hole
scattering was large enough to explain the very small re-
laxation times found in the experiments of Ref. 1. It
should be mentioned that we kept only the lowest-order
contribution in the perturbation expansion of the high-
frequency conductivity. This corresponds to the Born
approximation. This approximation was also used in the
Boltzmann approach of Ref. 2. The Born approximation
is asymptotically exact in the quantum and classical lim-
its. It is difficult to predict how good this approximation
is in the region between the limits. One should, if possi-
ble, include higher-order perturbation terms to test this.
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