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Correlation between electronic structure and local ordering
in hydrogenated amorphous silicon
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Nonparametrized calculations of the electronic structure of hydrogenated amorphous silicon are
presented. The method of calculation is based on the cluster Bethe-lattice approximation. The
Hamiltonian matrix elements and the equilibrium atomic distances are obtained via ab initio cluster
calculations. The calculations are performed for isolated and clustered Si-H units in the silicon
Bethe lattice. A two-peak structure in the hydrogen-related electronic density of states is found for
dihydride and trihydride bonding. A three-peak structure in the density of states is found for
difterent clustered arrangements of monohydride units. The position and assignment of the struc-
ture in the density of states is in qualitative agreement with ultraviolet-photoemission-spectroscopy
data. It is shown that the finite-cluster calculations produce spurious structure in the density of
states, and therefore they are not suited to obtain reliable densities of states. The charge transfer to
hydrogen is found to be 0.16, 0.15, and 0.11 electron for the monohydride, dihydride, and trihydride
configurations, respectively. The need for a nonparametrized calculation in infinite systems is dis-
cussed.

I. INTRODUCTION

In the last 15 years there has been continuing interest
in the study of the electronic structure of hydrogenated
amorphous silicon from both experimental and theoreti-
cal points of view. ' Better and more realiable prepara-
tion techniques as well as better methods of calculation
have led to an overall understanding of the main features
found in the electronic spectra of a-Si:H. Nevertheless,
some subtle details still remain, and the interpretation
based on theoretical calculations is in some cases con-
tradictory. In Fig. 1 we reproduce the ultraviolet photo-
emission spectra (UPS) of samples prepared in two
different ways. The different hydrogen-related peaks are
labeled. The hump at —3 eV is a silicon p-like peak.

Cluster calculations support the idea that the origin
of the three-peak structure in the annealed samples
[curve labeled (b) in Fig. 1] is due to single Si-H units,
whereas other authors identify these peaks as being due
to local ordering such as sixfold rings of bonds or cluster-
ing of hydrogen atoms. ' The two-peak structure in the
nonannealed samples [curve labeled (a) in Fig. 1] has been
interpreted as being due to electronic-correlation effects
at the hydrogen atom by some authors. Others claim
that this structure is due to the presence of the dihydride
and trihydride units.

We believe that some of these discrepancies are due to
the fact that the calculations are performed for either
finite systems or else using parametrized tight-binding
Hamiltonians in infinite systems. To try to clarify the is-
sue, we have developed a method that deals with infinite
systems and a nonparametrized Hamiltonian such that its
matrix elements depend on the specific atomic configu-
ration. A realistic basis-function set is used, and the
Hamiltonian matrix elements as well as the equilibrium
atomic distances are obtained from ab initio calculations

performed in large enough clusters of atoms. The
transferability of these interactions to continuous struc-
tures is well justified as will be shown below. The advan-
tage df such a method is that there are no adjustable pa-

-'t 2
I

9

ENERGY (eV)

I

0= EF

FIG. 1. UPS spectra of hydrogenated amorphous silicon
{Ref. 1). Curve (a) stands for a glow-discharge sample deposited
at a substrate of 250 C. Curve (b) refers to a sample sputtered
with hydrogen at a substrate temperature of 350'C. Similar re-
sults are obtained by annealing (at 350 C) the sample corre-
sponding to curve (a) (see Ref. 1).
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rameters, and the variation of the Hamiltonian matrix
elements for different atomic configurations are included.
We hope that with this method we can provide a unifying
picture of the electronic structure of a-Si:H.

This paper is organized as follows. In Sec. II we de-
scribe the method- of calculation and discuss its applica-
bility to pure silicon. In Sec. III the method is applied to
different configurations of hydrogen bonded to the silicon
Bethe lattice. The results are compared with experimen-
tal data. Also, the vibrational modes of the different
atomic arrangements are calculated. In Sec. IV the re-
sults are compared with other calculations. Finally, in
Sec. V the conclusions of our work are drawn.

II. METHOD OF CALCULATION

where P& is the projection operator on the wave functions
of angular momentum / and 8'& has the form

W((r ) =exp( ar )gC, Ir '—
, (2)

where the coefFicients C; and n,- are obtained from molec-
ular calculations.

In order to obtain the matrix elements between atomic
orbitals and the equilibrium distance between the atoms,
we have performed total-energy calculations in finite sil-
icon clusters with the surface orbitals saturated with hy-
drogenlike atoms. ' The calculation is done in the
closed-shell Hartree-Fock approximation. ' The Fock-
operator matrix elements are of the form

a„=a;,"+yP„,((i~lkl &
—

—,'(ikljt&),
k, l

where Pk& is the matrix element of the density operator
between orbitals k and l and

P, =2+c,"c,". (4)

Before discussing the case of amorphous silicon, we
will describe how the calculation procedure works in
crystalline silicon. We will assume a basis set formed by
one s and three p atomic orbitals per silicon atom. Each
orbital is formed by four Gaussian functions. The effect
of the core electrons is simulated with the appropriate
pseudopotential' V, of the form"

V, = ZIr —++W((r)P(,

The c's are the coefFicients of the atomic wave functions
in the expansion of the total wave function. (ij lkl &

stands for the double integral given by

(ij lkl &
= J Jp, (r, )p.(r, )lr, rzl—

X Pk(r2

The one-electron part of the Hamiltonian has the form

H""= ,' V' gZ „—I
l
r—r„ l

—. (6)

The calculation is done self-consistently until the stable
electronic configuration for a given distribution of atoms
is obtained. In the finite-cluster calculations the sum in
(6) includes all the atoms, and all the integrals (5) are in-
cluded in the calculation. The total (electronic plus nu-
clear) energy is calculated for different atomic distances
to obtain the stable configuration. We have done these
calculations for different cluster sizes and have found that
the results, as far as charge distributions and equilibrium
distances are concerned, are fairly stable provided the sil-
icon atom we are looking at has four silicon neighbors in
the cluster.

To show how the method works we describe here a
Si~H*,z cluster (H* stands for the hydrogenlike saturator)
such that the silicon atoms are in the tetrahedral
configuration. The equilibrium distance between silicon

0
atoms is found to be 2.39 A which compares well with
the crystalline distance of 2.35 A. We then extract from
the cluster calculation the Hamiltonian matrix elements
needed for the calculation of the infinite system. The
overlap between sp orbitals and the Hamiltonian matrix
elements obtained in this way are given in Table I. The
labeling of orbitals corresponds to Fig. 2. We will as-
sume, throughout this work, interactions only between
nearest-neighbor silicon atoms.

FIG. 2. Labeling of the silicon sp orbitals in the diamond
structure.

TABLE I. Hamiltonian matrix elements in eV between silicon sp orbitals and the corresponding
overlaps (third column). The first and second columns stand for the parameters corresponding to the
Si,H» and the Si8Hl*8 clusters, respectively. The labeling of the orbitals is given in Fig. 2.

(1l~l» = —10.2
&11~12)= —2. 32

& 1lHl6) = —2.42
&2l~l7) = —o. s1
(2lHl8 ) =2. 15

&1lal1& = —1o.s

(1lal s &
= —12.39

&11~16&= —2 42
&21~17&= —o. s7
(21~18)=2.33

&115)=o.5948
& ll6& =0.07531
(2l7 & =o.o4o o4
(2l8) = —0. 1285
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tion has proven to be very useful for tight-binding Hamil-
tonians. ' As indicated above, we will keep only in-
teractions between orbitals in nearest-neighbor atoIns.

We calculate the matrix elements of the Green's func-
tion between the difFerent orbitals in the atoms in the
usual way, taking care of the subtleties introduced by the
fact that we are using a nonorthogonal basis. We
therefore define a dual set of basis vectors l P ) such that

and

T X

NAVE VECTOR k

The matrix elements of the Green's function between
these dual-basis orbitals satisfy the Dyson equation

g(«y, ly;& &y)IH—ly;&)&y;IG(E) y &=fi, . (9)

FIG. 3. Valence-band structure and total electronic charge
distribution of silicon obtained with the parameters given in
Table I. The origin of energies is the top of the band. The small
squares at high-symmetry points indicate experimental values. 0,3

0.2 B A

The band structure and charge distribution calculated
with this approximation are shown in Fig. 3. There is a
qualitative agreement with the experimental bands, the
main discrepancy being the narrowness of the calculated
p-like bands. This is due to the restriction to nearest-
neighbor interactions. ' This should be kept in mind
when comparing the a-Si:H spectrum with experimental
data. The calculated valence band is wider than found
experimentally. This can be ascribed to the Hartree-Fock
approximation. The total charge distribution is in agree-
ment with other calculations, although there is a shallow
dip in the charge at the middle of the bond characteristic
of the Hartree-Fock approximation. We obtain an sp
hybridization corresponding to s- and p-orbital occupa-
tion of 1.44 and 2.56 electrons, respectively. These re-
sults are fairly satisfactory. It should be stressed that the
above bands and charge distribution have been obtained
without adjustable parameters and simply by assuming
that the matrix elements between nearest neighbors are
transferable from the cluster calculations. When chang-
ing the size or shape of the cluster, we obtain similar re-
sults to the above. For a Si8H*, 8 the matrix elements are
given in Table I. The calculations with these parameters
are very similar to those reported above. These calcula-
tions show that although the electronic distribution for
the cluster and for the crystal are different (in a cluster
the energy spectrum is discrete, whereas in a crystal it is
continuous), the Hamiltonian matrix elements are rather
similar.

III. RESULTS FOR a-Si:H

To simulate the amorphous silicon network we will as-
sume the Bethe-lattice configuration. This approxima-
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FIG. 4. Density of states and total charge distribution in the
vicinity of hydrogen for the monohydride, dihydride, and trihy-
dride configurations (a), (b), and (c), respectively. The densities
of states have been obtained by adding up the densities of states
of hydrogen and its nearest-neighbor silicon atoms. The dashed
lines represent the pure silicon Bethe-lattice density of states.
The spectra have been convoluted with a Gaussian function of
0.5 eV half-width at half maximum (HWHM). The charge dis-
tributions are plotted in a plane containing one Si—H bond and
the Si—Si bonds in the "crystalline" (110) plane. In the dihy-
dride and trihydride cases there are one and two hydrogen
atoms out of plane, respectively. A and B stand for the peaks la-
beled in Fig. 1.
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TABLE II. Hamiltonian matrix elements (in eV) between silicon sp' orbital and hydrogen s orbital
at the vicinity of the hydrogen atom in the monohydride, dihydride, and trihydnde configurations. The
labeling corresponds to Fig. 5. In the dihydride and trihydride configurations the interaction between
hydrogen atoms is indicated ((1IHI1')).

Monohydride

& 1 IHI 1 &
= —11.64

(2IHI2) = —10.12
& 3IHI3) = —10.09
&1IHI2& = —14.o4
(2IHf3) = —2.31
(3IHI4& = —12.43

Dihydride

11 74
(2IHf2) = —10.11
(3IHI3) = —10.11

&2IHI3) = —2.40
& 31H14& = —12.50
(1IHI1') = —2.53

Trihydride

&21H12& = —10.29

( 1 IHI2) = —14.20
(2IHI3 &

= —2.33
&3IHI4& = —12 46
& 1

I Hl 1'
&
= —2.54

For the Bethe lattice an infinite set of difference equations
can be written and solved to obtain the matrix elements

, ,(E)=&y, IG(E)ly, & . (10)

The local density of states at a given orbital labeled i is
then given by

n;(E) = —( I/rr)lmG;;(E),

where

G;~(E)=gS;kCI J,
k

where S;k stands for the overlap between orbitals P; and
In Fig. 4 we show the results for isolated Si-H units

in the silicon Bethe lattice. The results are for monohy-
dride, dihydride, and trihydride bonding as indicated.
The Hamiltonian matrix elements have been obtained as
indicated above from different finite clusters of atoms.
The equilibrium distance found for the Si—H bond is
1.52 A, whereas the experimental one is 1.48 A. The
Hamiltonian matrix elements for the monohydride, dihy-
dride, and trihydride configurations are given in Table II.
The labeling of the different orbitals is shown in Fig. 5.

p(r) =+P,p, (r)PJ(r), (13)

where

Looking at the densities of states, we observe the fol-
lowing facts. In all three spectra there is a main
hydrogen-related peak below the p-like silicon peak at ap-
proximately 4 eV below the the valence-band edge. This
peak corresponds to that found experimentally' at
around —6 eV (labeled 3 in Fig. 1). Its position in the
calculation is higher in energy due to the narrowness of
the silicon p-like bands due to the lack of second nearest-
neighbor interactions. In despite of this error in the ab-
solute position we find a shift of approximately 0.6 eV
when going from the monohydride to the polyhydride
configuration in agreement with the experimental re-
sults. ' This shift is essentially due to the change in the
matrix elements obtained in the cluster calculations. In
the polyhydride configurations we obtain a second
hydrogen-related peak (labeled 8) at approximately —11
eV, again in fair agreement with the experimental data
for nonannealed samples' (see Fig. 1).

We have also calculated the charge distribution and
the atomic and bond charges in the vicinity of the defect.
The total electronic charge distribution is given by

E
Pj = —(2/m. )lm f C(E)dE .

The atomic charge at atom labeled i is given by

g, =yP,, &y, ly, & .

(14)

The results for the total charge distribution are given in
Fig. 4 and the atomic charges in Table III. The charge

TABLE III. Atomic charges near the hydrogen atom in the
monohydride, dihydride, and trihydride configurations. Si
stands for the silicon atom attached to hydrogen and Qs; is the
total charge of the next silicon atom attached to it.

FICs. 5. Labeling of the silicon sp orbitals and hydrogen s
orbital at the vicinity of hydrogen. The dashed lines represent
bonds pointing out of the plane of the page. . The circle
represents the hydrogen s orbital.

QH

Q, , «

Qs;

Mono hydride

1.16
3.81

4.01

Dihydride

1.15
3.69

4.01

Trihydride

1.11
3.55

4.11
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transferred to the hydrogen atom is in agreement with ex-
periments. Also, the charge at the silicon atom at-
tached to it is in agreement with core-level-shift measure-
ments that indicate that the charge transferred from the
silicon atom is essentially proportional to the number of
hydrogen atoms attached to it.

In order to understand the origin of the three-peak
structure of the spectrum found for the annealed samples
(see Fig. l), we have to restrict ourselves to monohydride
configurations as indicated experimentally. As shown be-
fore [Fig. 4(a)], a single isolated Si-H unit gives rise to a
single-peaked spectrum. We then look at possible
clustered configurations of monohydride units. The re-
sults of the calculation for hydrogen bonded at a micro-
surface formed by seven atoms is given in Fig. 6(a). We
observe the existence of three peaks in fair agreement
with the experimental data (see Fig. l). The reason for
the presence of the new peaks D and E in the spectrum is
the existence of silicon atoms bonded to hydrogen alter-
nating with silicon atoms bonded to four silicon neigh-
bors. This alternating structure opens a "pseudogap" as
in binary compounds. This can be easily checked using
simplified model Hamiltonians like the Weaire-Thorpe
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FIG. 7. Densities of states for two different clusterings of
monohydride bonding. Notice that in both clusterings the hy-
drogen atoms are bonded to nearest-neighbor silicon atoms.
The arrows indicate the position of the UPS observed peaks (see
Fig. 1). The dashed line represents the silicon Bethe lattice.
The spectra have been convoluted with a Gaussian function of
0.5 eV HWHM.
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FIG. 6. Densities of states for three different clusterings of
monohydride bonding. Notice that in all three configurations
the hydrogen atoms are bonded to second-nearest-neighbor sil-
icon atoms. The arrows indicate the position of the UPS ob-
served peaks (see Fig. 1). The dashed line represents the pure
silicon Bethe lattice. The spectra have been convoluted with a
Gaussian function of 0.5 eV HWHM.

FIG. 8. Phonon densities of states for two different
configurations of monohydride clustering. The density of states
of (a) corresponds to the distribution of hydrogen as in Fig. 6(a).
Similar results are obtained for the other clusterings shown in

Fig. 6. The density of states at (b) corresponds to the clustering
of Fig. 7(a). Notice in (a) the peak at 200 cm '. The peak at
100 cm ' in (a) is due to the Bethe-lattice band edge.
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one. ' It is important to notice that if this is the origin of
the double structure in the lower part of the valence
band, it should be independent of the atomic
configuration as long as the alternating structure prevails.
To show this we have performed calculations for other
configurations shown in Fig. 6. We observe again the
three-peak structure at almost exactly the same positions.
Also, for all the atomic arrangements, the peak labeled
C' is about 0.6 eV higher than in the polyhydride case
(Fig. 4), in agreement with experiments' (compare peaks
labeled A and C in Fig. l). Joannopoulos et al. have ar-
gued that peaks labeled D and E are due to the presence
of hydrogenated dimers in the bulk material. We have
therefore performed similar calculations for hydrogenat-
ed dimers and clustered Si-H units such that hydrogen is
singly bonded to adjacent silicon atoms. As in previous
cases, the Hamiltonian parameters are obtained from the
appropriate cluster calculations. The results are shown
in Fig. 7. We obtain a double structure in the lower part
of the spectrum which resembles the UPS curve. Howev-
er, it seems that the structure near the bottom of the
valence band is not an actual peak, but rather a band-
edge feature. It is difticult, however, from these spectra
to assess which atomic configuration is responsible for
the appearance of peaks D and E in the UPS spectrum of
annealed samples.

To gain more insight into the relevance of the above-
discussed clustering of Si-H units, we have obtained the
corresponding phonon density of states using the Born
model. Results of the calculation for two representative
clusterings are shown in Fig. 8. It is interesting to note
that whereas the bonding of Si-H units in second-
neighbor atoms reproduces the ir (Ref. 22) and neutron-
scattering observed peak at 200 cm ', the bonding in
nearest-neighbor does not. The existence and the in-
frared activity of this peak has been already discussed.
This is an indication of the more plausible arrangement
of Si-H units probably in micro voids. This type of
monohydride clustering is present in the actual samples
as ir data indicate.

IV. COMPARISON WITH OTHER CALCULATIONS
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tions are shown in Fig. 9. We indeed observe the three-
peak structure in the H-Si4 saturated cluster in agreement
with previous calculations. However, when increasing
the size of the cluster, this structure is washed out with
only the main hydrogen-induced peak remaining as
shown in Fig. 4. This clearly demonstrates the inadequa-
cy of using finite clusters of atoms to reproduce infinite
systems densities of states and stresses again that isolated
Si-H units do not reproduce the three-'peak structure of
the spectrum.

Anda et al. have indicated that the two-peak struc-
ture in the nonannealed samples is due to the electronic
correlation at the hydrogen atom. In our calculation the
electron-electron interaction is incorporated through the
integrals (ij /kl) which are all included explicitly in our
cluster calculations. As indicated above, the single S-H
units give rise to a single-peaked spectrum indicating a
weak point in this interpretation.

Joannopoulos et a/. performed a calculation using a
tight-binding parametrized Hamiltonian including up to
second-neighbor interactions. The results of these calcu-
lations favor hydrogen dimer-type arrangement to ex-
plain the UPS spectrum of annealed samples. Our calcu-
lation, however, tends to support an explanation based on
hydrogen bonded to second-neighbor silicon atoms. It is
very difticult from these calculations to rule out either
type of clustering, the actual sample being probably a
mixture of both.

It has been suggested ' that the hydrogen-related
three-peak structure in the UPS spectrum of annealed
samples is just due to isolated Si-H units. This has been
based on finite-cluster calculations. As seen in Fig. 4, we
do not obtain this three-peak structure. To clarify this
point we have performed calculations of the density of
states for clusters of increasing size up to infinite atoms in
the Bethe-lattice configuration. Results of the calcula-

0.0—15

ENERGY (eV)

FIC». 9. Density of states at the hydrogen atom in the
monohydride phase for different cluster sizes. (a) Local density
of states in the H-Si4 saturated cluster. (b} Local density of
states for the H-Si364 saturated cluster. (c) Local density in the
infinite system H —Bethe-lattice. The spectra have been convo-
luted with a Gaussian function of 0.5 eV HWHM.
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V. CONCLUDING REMARKS

We have performed a detailed calculation of the elec-
tronic structure of hydrogenated amorphous silicon. The
main ingredients of the calculations are the following.

(a) A realistic nonorthogonal atomic orbital basis.
(b) The Hamiltonian matrix elements between the basis

functions are obtained from ab initio calculations in finite
clusters of atoms.

(c) The amorphous network is simulated by a Bethe lat-
tice such that only nearest-neighbor interactions are con-
sidered, and no rings of bonds are included in the atomic
structure.

The calculations we have presented here have provided
us with a unifying picture of the electronic structure of
a-Si:H. The fact that we do not use parametrized Hamil-
tonians, as is usually done, enables us to reach more
sound and realiable conclusions. Also, the use of a realis-
tic, nonorthogonal basis, allows us to calculate charge
distributions as well as charge transfers between the
atoms.

The main results of the calculations are as follows.
(i) For equilibrium distances between silicon atoms as

well as between silicon and hydrogen atoms, the results
are in excellent agreement with experimental data.

(ii) For densities of states, the experimentally found
two- and three-peak UPS structures are unambiguously
assigned to single-polyhydride and clustered-monohy-
dride atomic configurations, respectively. We have found
that to obtain the three-peak structure in the UPS spec-
trum, clustering of monohydride units has to be con-
sidered.

(iii) For charge distribution and charge transfers, the
calculated charge transfer between silicon atoms and hy-
drogen is in excellent agreement with the core-level-shift
experimental results. We find that the charge transferred
from the silicon atom attached to the hydrogen is propor-
tional to the number of hydrogen atoms attached to it, in
agreement with the experimental findings.
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