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We present a general theory of the correlation functions for a steady state which is valid for arbi-
trary strengths of an applied electric field, as obtained in high-field transport in semiconductors.
When limiting to the first two moments of the distribution function, we find a closed set of equations
coupling energy and velocity which are amenable to an analytical solution. Thus, the theory pro-
vides an interpolation formula which gives smooth, analytical expressions for the correlation func-
tions. These expressions can be made to fit the computer simulation by using these simulations to
estimate the various parameters. The theory is found to be in excellent agreement with numerical
calculations for a simple model semiconductor performed with an ensemble Monte Carlo technique.

I. INTRODUCTION

Since the work initiated by Green and Kubo, ' the use
of the velocity autocorrelation function has been proven
to be a fundamental tool for the description of the ther-
modynamic state of a physical system. For example, near
equilibrium the velocity autocorrelation function unifies
the physical interpretation of both mobility and
diffnsivity (the Callen-Welton-Kubo Auctuation-dissi-
pation theorem ' ). Furthermore, the analysis of the de-
cay in time of the velocity and energy autocorrelation
functions provides valuable information on the momen-
tum and energy relaxation rate of the system. It is in-
teresting to remark that under linear response in an ap-
plied electric field the two rates, and hence the two corre-
lation functions, are independent of each other.

The aim of this paper is to generalize the above formal-
ism to the case of far-from-equilibrium conditions, when
a high electric field originates hot-electron conditions.
Starting from a first-principles approach, we formulate
the problem within the quantum-mechanical Heisenberg
picture. Then a generalized Langevin equation for the
macroscopic variables of interest is obtained. This, in
turn, enables us to write the equation of motion for the
relevant correlation functions. At this stage we make a
relaxation-time assumption which, by separating the fast
from the slow part of the dynamics (coarse graining in
time), allows us to write the classical counterpart of the
quantum correlation functions. Thus, we succeed in ob-
taining a closed set of coupled first-order differential
equations for the velocity and energy correlation func-
tions which is solved analytically. Because of the high

field, these equations are coupled and the time behavior
of the correlations deviates from a simple exponential de-
cay. Analytical results will be proven to agree quite well
with the numerical simulations performed through an en-
semble Monte Carlo (EMC) technique. Since the theory
correctly recovers the Kubo formalism under linear
response in the applied field, this methodology can be
viewed as a generalization of Kubo formalism under far-
from-equilibrium conditions.

The paper is organized as follows. In Sec. II we define
the physical system and introduce the correlation func-
tions of interest. In Sec. III the generalized Langevin
equation for the relevant macroscopic variables is derived
from first principles. In Sec. IV the theory is applied to
the simple case of a semiconductor with a single spherical
and parabolic band. For this Inodel we succeed in obtain-
ing a closed set of equations for the correlation functions
relating velocity and energy. The analytical results so ob-
tained are compared with an appropriate EMC simula-
tion in Sec. V. Section VI draws the main conclusions of
this work.

II. THE PHYSICAL MODEL

%'e consider a homogeneous ensemble of electrons in a
semiconductor subject to a uniform static field Eo of arbi-
trary strength. The Hamiltonian Ho of the whole system
may be written as

IIo ——a, +II, „+a,i+a
where H, is the electronic Hamiltonian, H, F is the time-
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independent electric field term (assumed to be switched
on adiabatically), H, L is the electron-lattice interaction,
and HL is the Hamiltonian of the lattice variables (usual-

ly limited to those terms representing the phonon field).
We now introduce the set of thermodynamical macro-

scopic variables, P, of the problem. For example, in our
case the usually chosen P 's are P„H„a nd HL (P, be-
ing the total momentum of the electronic system). Their
time variation is governed by two components: a slow
one, which has essentially a thermodynamical character,
and a fast one, which reAects the Auctuations. The com-
pleteness of the chosen set remains a matter of physical
intuition (see Refs. 6—8). As a matter of fact, the physi-
cal plausibility for a proper choice of the macroscopic
variables is that their correlation functions have the
slowest decay time. However, if the set is not complete,
although the following mathematical development keeps
its formal aspect, the introduction of a relaxation-time
approximation will be not valid.

In the steady state, one can always write the density
matrix p of the problem as

p=exp( —X),
where X is an appropriate operator which can be ob-
tained through the far-from-equilibrium Zubarev
method. Following Refs. 10 and 11, it can be proven
that X is the sum of two terms: Xz and Xz. The first
term, having a memory of the past dynamics, carries ulti-
mately the irreversibility of motion while the second
gives the dissipationless part.

Let us introduce the following set of correlation func-
tions designed for the steady state

(P;P„),=(P„;P ),

= J da Tr[P e (P„—(P„))e' " J, (3)
o

where Tr is the quantal trace operator and ( ) stands for
ensemble average. Equation (3) differs from the ones
which were previously used' ' by the appearance of X
in place of Xz. Let us stress that Eq. (3) corresponds to
the evaluation of correlation functions of macroscopic
variables for the steady nonequilibrium state. Their form
comes from the fact that, first, we want the involved den-
sity matrix to be that of the steady state, and second, we
want their expression to be obtained through analytical
continuation from the equilibrium state. We notice that
the first requirement is absolutely essential if we want to
compare the theory with any experimental and/or nu-
merical result. In Refs. 10 and 12, looking at the evalua-
tion of the macroscopic variables (or their mean values)
in a transient regime, the initial condition of which being
the equilibrium, use has been made of the correlation
functions associated with Xz to be able to separate the
dissipative from the nondissipative part of the motion.
However, these correlation functions appear in the re-
sults only through the kernels of the integrals of the
theory; one does not use them for any direct fitting with
numerical data. In Ref. 11 use has been made of the
correlation functions associated with X~ because they are
an essential step of the expansion of any mean value cal-

culated through Eq. (2). Then, one uses mathematical
techniques coming from the equilibrium-state problem to
evaluate these correlation functions. In short, the corre-
lation functions defined by Eq. (3) are the quantal coun-
terparts of the classical ones for a steady nonequilibrium
state one can obtain by EMC techniques. It is natural to
extend the aforementioned works" ' by introducing the
operator II, defined such that (for any quantal operator

II,X=T [pX]+g (X;P;),((P;P), 'J; (P —. (P ) ) . (4)
I)J

Here, and in the following, we shall take P to be the
column matrix whose elements are the individual P 's.
Thus, all the equations involving P without an index
have to be interpreted as having matrix products and
sums. Notice that II„ for the steady state considered
here, is time independent. It is an easy task to check that
H, is a projection operator such that

(sa)

(Sb)

(5c)

III. THE LANGEVIN EQUATION
FOR THE MACROSCOPIC VARIABLES

LOX = [Ho, X]

S(t —s)X=UO(t —s)XUO(t —s) . (8b)

From Eqs. (8) it is easily found that the operator S(t —s)
obeys the following equations:

as(t —s) =iS (t s)LO, —
at

S(0)=1 .

(9a)

(9b)

Equation (7) can be given the following convenient form:

dP (t)
=iS(t)II,L P (0)+iS(t)(l —II, )L P (0) (10)

dt

in which the first term is the projected motion on the

We now want to derive a Langevin equation for our set
of macroscopic variables, the P 's, starting from the
Heisenberg equation. This can be written as ()ri= 1)

dP (t) =i Uo(t —s)[HO, P (s)]UO(t —s)
dt

(because P 's do not depend on time explicitly), where
[Ho, X] has the meaning of a quantal commutator and
Uo(t —s)=exp[ i (t —s—)HO], with 0 ~s ~ t, is the usual
time-evolution operator associated with the Hamiltonian
Ho of Eq. (1). By using superoperator technique, Eq. (6)
becomes

dP (t) =iS (t s)LOP (s), —
dt

where S (t —s) and Lo are defined by
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Go(t s—) =exp[i (t —s)LO(1 —II, )] (1 la)

and satisfying

aG, (t —s) = iGO(t —s)Lo(1 —II, ),at

Go(0)=1 .

(1 lb)

(1 lc)

It is easily stated that Go(t —s) obeys the following prop-
erty:

(1—II, )G (t —s)(1—II, )=(1—II, )G (t —s) . (12)

From Eqs. (11) it is possible to derive a relation linking
S(t —s) and Go(t —s) (see the Appendix):

P (t)'s, see Eq. (4). The aim of the following is to show
that the second term bears all the memory part of the dy-
namics as well as all its fluctuating component.

Following a previous work, ' we introduce the opera-
tor Go(t —s) as a single-time Green's function given by

dP (t)
=iS(t)II,LOP (0)

dt

+i ds'S s' HL 1 —II, 6 t —s'P 0
0

+(1—II, )G,(t)P (0), (15)

P (t)=g a„P„(t) .
n

As an example, for the chosen P 's and in an isotropic
effective-mass situation, the dissipationless motion is
given by

where P stands for iLoP
Equation (15) is the "generalized Langevin equation"

appropriate to our system. The first term is the projected
motion on the P (t)'s, the second term bears the memory
of the past, and the last term describes the Auctuations in
a "Langevin way, " since both its mean value and its
correlation with the P 's at time t =0 are zero [see Eqs.
(5)].

Usually the P 's are such that the dissipationless
motion (H, I =0) is described by equations of the follow-
ing type:

S(t —s)=G (t —s)+i f ds'S(s' —s)L II,G (t —s') .
S

(13)

P, =eN, F,
H, = FP, ,

HI =0,

(17a)

(17b)

(17c)
By integrating Eq. (13) by part and using Eqs. (9) and
(11),we obtain

S(t)(1—11, ) =(1—II, )G,(t)

+i f ds'S(s')II, L (1—II, )G (t —s'), (1—II, )P (0)=(1—II, )P t (0), (18)

where e is the electron charge, N, is the total number of
electrons, and I is the carrier effective mass.

Being in the framework of Eq. (16), with the aid of Eq.
(5), we can write

which, when substituted in Eq. (10), gives

(14) where P I =i[H, t P ] is the part of P restricted to
H, t only. Using the definition of II, and Eqs. (12) and
(18), Eq. (15) becomes

dP (t) = y (P.;P, ), [(P;P), I;, '(P, (t)- &P, »
dt

I,J

—f ds'g [G (t —s')P;(1—II, )P; ],[(P;P), '); (P.(s') —&Pj ))+(1—II, )G (t)P (0),
I,J

(19)

where we have used the property (LOX; Y), = —(X;Lo I'), .
/

Coming from first principles, Eq. (19) can be seen as a starting point for a set of coherent approximations. The easier
way of doing it is to go into a relaxation-time paradigm. To do that, one has to suppose that the kernels of the integral
in Eq. (19) are rapidly varying functions whose ultimate effect is to select the value of the macroscopic variable at time
s'= t. '"' This can be supported by the fact that, the P 's being supposedly a complete set of macroscopic variables, all
the slow parts of the dynamics are taken away from Go(t —s'). Thus the possible failure of the relaxation-time ap-
proach could come from an incomplete choice of the P s or, in other words, from the impossibility of decomposing the
time scale into a slow and fast component.

Within the relaxation-time approach, Eq. (19) reads

dP (t) =g a, (P, (t) —&Pj &)+(1—11,)G,(t)P, (0), (20)

where
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a =g (P;P;), [(P;P), [, ' —J ds'[Go(t s—')P L, (l —II, )P;t ],[(P;P), ');
0

(21)

By recalling the stochastic nature of the last term in the right-hand side of Eq. (21), Eq. (20) recovers the usual
Langevin equation when rn =j =1 and P& =P, . It is the one we want to use for describing the evolution of our relevant
correlation functions. For example, using Eqs. (5) one gets

(P (t);P, ),=pa, (P, (t);P, ), .
d
dt

(22)

IV. EQUATIONS OF MOTION FOR A CLOSED
SET OF CORRELATION FUNCTIONS

( vu a 1 lkvu a120vF.dt

d
dt

d
„. ((),U

— aii0, u
—ai24„dt

(24a)

(24b)

(24c)

Taking for simplicity a single spherical and parabolic
band model semiconductor, then four correlation func-
tions, which couple velocity and energy fluctuations, can
be taken as a complete set. These can be written in ma-
trix notation as

NUU(t) PUE(t) &5u 5u(t) & &5u 5E(t) &

P„(t) P„(t) & 5e 5u(t) & & 5c, 5e(t) &

According to Eq. (22), the set in Eq. (23) is found to
satisfy the following closed system of coupled first-order
differential equations:

where the coe%cients a;~ (which depend on the external
field but not on time) describe the microscopic properties
of the physical system.

At equilibrium (F=O) the diagonal terms a» and azz
coincide with the momentum and energy relaxation rate,
respectively. [This is the reason for keeping explicitly the
negative signs in Eq. (24).] The off-diagonal terms a, 2

and a2, are zero at equilibrium when, as known, the re-
laxation of momentum and energy are independent. Un-
der hot-electron conditions these rates are no longer in-
dependent and the off-diagonal terms describe the cou-
pling between them. Indeed, as we shall see in the next
section, under high fields the sign of the a;. coefficients
will depend on the thermodynamic state at hand and the
general nonexponential decay in time of the correlation
functions does not allow for a proper definition of a ve-
locity and energy relaxation rate. A microscopic deter-
mination of the a; coefficients remains a formidable
problem which has not yet been considered.

The analytical solution of Eqs. (24) in normalized form
is given by

d a 214 a220dt
(24d)

P„„(t)= [azi[coocosh(coot)+(A, —a»)sinh(coot)]+[(A, —a») —coo]sinh(coot) J,
CX2]COp

e
P„,(t) = [coocosh(coot) —[(A, —a~ &

)+a2i]sinh(coot)] ),

[a2& [coocosh(coot ) + ( A,
—a

& i )sinh( coot ) ]+ [(A,
—a

& i ) —coo]sinh( coot )J,
~zi~p

(25)

p„(t)= [ coocosh(coot) —[(A, —a„)+a2, ]sinh(coot) ]J,
6)p

where A, = —,'(aii+a22), coo= —,'(ai] —agp) +ai2a2],
P= &5u 5e&Z&5u'&; ~= &5u 5&er'& 5s&; a„=a„iP;
u2, =+2,y. We notice that A, and cop are two frequencies
which characterize the main features of the time evolu-
tion of the correlation functions. As a matter of fact, A, ,
which is always real, is responsible for a damping, while
cop, when imaginary, determines an oscillatory behavior.

V. COMPARISON WITH AN ENSEMBLE
MONTE CARLO SIMULATION

The analytical results in Eq. (25) can be made to fit
computer simulations by using these simulations to esti-

mate the various parameters. Accordingly, we have per-
formed an EMC calculation for a simple Si-like model
semiconductor with FR~&111&.' To this end, the a;.
coeKcients as well as the values of P and y have been tak-
en from the values of the correlation functions and their
derivatives at t =0 as obtained through the EMC simula-
tion and then inserted in Eq. (25).

We have considered here scattering with acoustic and
nonpolar optical (or intervalley) phonons. In the calcula-
tion we have taken 10 and 4X10 particles finding a
good coincidence of the numerical results within a max-
imum uncertainty of about 5%.

To check the reliability of the functional form given by
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Eq. (25), we have prepared the EMC simulation for the
two following cases of interest.

A. Quasielastic regime

1.0.

0.6

S I I

IELAST IC REG IME

T% 300 K

-1
F = 50 kVcm

1.0

0.6

0.2

-0.2

REGIME

~300 K

~5 kVcm

(s)
I I

2.0 t

ytical

0.0

—1.0
0.0 0.2 0.4 0.6

(b)
I

0.8

TIME (p s)

FIG. 1. Normalized correlation functions as a function of
time for the case of "quasielastic regime" at F=5 kV/cm.
Solid curves and points refer to present theory and EMC calcu-
lations, respectively. (a) and (b) refer to autocorrelation and
cross-correlation terms, respectively.

This condition, which corresponds to a carrier momen-
tum distribution function with the even part dominating
over the odd part, is well reproduced at the temperature
of 300 K. Figures 1 and 2 show the time behavior of the
normalized correlation functions as obtained from the
EMC simulation and calculated from Eq. (25) for a typi-
cal low and high value of the electric field. The agree-
ment found is excellent and covers the entire range of
fields here examined, 1~F~200 kV/cm. We have no-
ticed that at the lowest fields the agreement slightly de-
grades because the resolution of the EMC data becomes
poorer, especially for the case of the cross-correlation
functions. At all fields we have found that A, ) ~too~ and
the autocorrelation function of velocity exhibits a faster
decay than that of energy, a well-known behavior associ-
ated to the property of the scattering mechanisms here
considered which relaxes the velocity faster than the en-

ergy. At increasing fields the velocity and energy correla-
tion functions do not follow a simple relaxation-time be-
havior. In particular, starting from fields of 20 kV/cm,
the velocity autocorrelation function exhibits a
minimum, thus going to negative values. This behavior
can be associated to the distinct contribution given to the
velocity autocorr elation function by fluctuations in
momentum and energy. Firstly, proposed on the basis of
intuition years ago by Price, ' this behavior is established
here on firm mathematical grounds on the basis of the
Heisenberg equations of motion.

0.2
(s)

2 ' 0

1 ~ 0

A nalyt ical
0 EMC

0.0

—1.0
0.0 0.2 0.4

(b)-
i I I I

0.6 0.8

TIME (p s )

FIG. 2. Normalized correlation functions as a function of
time for the case of quasielastic regime at F =50 kV/cm. Solid
curves and points refer to present theory and EMC calculations,
respectively. (a) and (b) refer to auto correlation and cross-
correlation terms, respectively.

The peculiar form of the cross-correlation functions is
analogous to that given in Ref. 18 for the case of Si at 77
K. Its interpretation is related to the energy dependence
of the scattering mechanisms, which in our case always
leads to an increase of the scattering rate with increasing
energy. Therefore, when considering the velocity-energy
correlation function, we argue the following. If initially a
positive fluctuation of velocity occurs, at a later time, due
to the large absorbed power, a positive fluctuation of en-
ergy is likely to occur; for the same reason an initial nega-
tive fluctuation of velocity will lead to a negative Auctua-
tion of energy. Thus, the initial slope of (5u 5s(t) ) will
always be positive. On the other hand, when considering
the energy-velocity correlation function, we find that if
initially a positive fluctuation of energy occurs, at a later
time, due to the increased efficiency of the scattering, a
negative fluctuation of velocity is likely to occur; for the
same reason an initial negative fluctuation of energy will
lead to a positive Auctuation of velocity. Thus the initial
slope of (5E5u(t)) will always be negative. At later
times, the zero-property tendency of the correlation func-
tions will imply a maximum for (5u 5E(t) ) and a
minimum for (5e 5u(t) ).

For a better understanding of the correlation decay
rates, Figs. 3 and 4 present the spectral functions
g;~. (cu) = jo P;~(t)exp(input)dt at a typical field value of 50
kV/cm. Figure 3 reports the diagonal components g„
and g„. The real part of g,„shows a maximum associat-
ed with the negative region of P„, and then goes to zero
with a typical Lorentzian shape. As discussed above, this
maximum can be related to the correlation between ener-

gy and momentum fluctuations which originates because
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FIG. 3. Spectral density of (a) velocity and (b) energy fluctua-
tions as a function of angular frequency for the case of quasi-
elastic regime at F =50 kV/cm. Solid and dashed lines refer to
the real and imaginary part, respectively.

FIG. 4. Spectral density of (a) velocity-energy and (b)
energy-velocity fluctuations as a function of angular frequency
for the case of quasielastic regime at F =50 kV/crn. Solid and
dashed lines refer to the real and imaginary part, respectively.

1 e
+11

&m Pm
(26a)

of the far-from-equilibrium conditions (hot electrons). At
low frequencies both kinds of fluctuations concur in
determining g,„. However, at frequencies co) 1/r„r, be-
ing the energy relaxation time, the contribution of energy
fluctuations tends to disappear. Since this contribution
(usually called convective ' ) is, in our case, negative, g„
exhibits a maximum. At higher frequencies the region
cu) 1/r, r being the momentum relaxation time, is
reached and g„will tend eventually to zero. The real
part of g„shows a decay to zero faster than g„because
of a larger value of the energy with respect to the
momentum relaxation time. The imaginary parts of g„„
and g„are reported in the same figure for completeness.

Figure 4 reports the off-diagonal components g„and
g„. We notice that the real part of g„decays to zero
similar to g„while the real part of g„achieves a max-
imum and then decays to zero similar to g„. These simi-
larities are found to be present in the whole region of
electric fields examined. Again, the imaginary parts of
g„and g„are reported in the same figure for complete-
ness.

Figure 5 shows the dependence on electric field of the
a," coeKcients. The diagonal terms are both positive and
satisfactorily agree (see solid and dashed lines in the
figure) with the expected momentum and energy relaxa-
tion rates which, within the balance equation approach,
are given, respectively, by

CX22
7

(26b)

where p and (E & are, respectively, the chord mobility
and the average carrier energy at the given field obtained

310 I I l I I III I I

QUASIEI AS
I $/ l I I )II

T I C R EG I M E

10 2
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+-(X„(lo
& oC» (~0"
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0 OC 11 (10

�
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1

)
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~ ~

, , l. „I I I I

1 10 10
F(kv cm )

FIG. 5. Set of n;, coei5cients as a function of the electric field
for the case of quasielastic regime. Different points refer to
EMC calculations; the solid and dashed lines refer, respectively,
to the momentum and energy relaxation rates evaluated within
an electron temperature model [see Eqs. (26a) and (26b) of text].
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k~T,((»)') = (27a)

((& )') =
—,'(k, T, )',

(5v 5E) =
—,

I
vkde, ,

(27b)

(27c)

where Ud is the drift velocity and the factor —,
' in the last

expression comes from the assumption that the momen-
turn relaxation time is inversely proportional to the
square root of the energy.

The excellent agreement between the data of the simu-

from the EMC calculations and (s&&) = —',k&T, kII being
the Boltzmann constant and T the equilibrium bath tem-
perature.

The off-diagonal terms a, 2 and o,2, have to be odd in
the field since changing the field direction implies the
change in the sign of velocity and its time derivative but
not of energy and its time derivative. In particular, the
term a2, is found to be negative and to exhibit a substan-
tial linear dependence with the electric field. On the con-
trary, the term o.&2 is found to be positive and to exhibit a
linear dependence up to fields of 10 kV/cm; then, in con-
comitance with the Battening of +22, it reaches a max-
imum and eventually decreases.

Figure 6 reports the initial values (t =0) of the correla-
tion functions as a function of the electric field. Here,
EMC results are compared with analytical calculations
obtained within an electron temperature model which
should approximate well the quasielastic regime. Ac-
cordingly, by assuming ( e ) =—,'klI T„T, being the elec-
tron temperature, it is found that

1.6 I I I I I

STREAMING —MOTION REGIME

0 ~ 8 T=77 K

F =10 kVcrn

0.0

—0.8 cc (a)

1.6

0.8

A nal y t ical

~ 0 EMC

0.0

—0.8
0.0

I I I I 1 I

02 04 06
TIME {ps)

{b)

0.8

lation and the analytical results further confirms that the
physical system is really well described in terms of the
quasielastic regime at any field.

B. Streaming-motion regime

Under this condition the odd part of the distribution
strongly prevails over the even part, and the shape of the

FIG. 7. Normalized correlation functions as a function of
time for the case of "streaming-motion regime" at F =10
kV/cm. Solid curves and points refer to present theory and
EMC calculations, respectively. (a) and (b) refer to autocorrela-
tion and cross-correlation terms, respectively.

10 I I I I IIIII I I I I I III) I I I I I III I I I
~ I IR
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FIG. 6. Initial values (t =0) of the correlation functions for
the quasielastic regime as a function of the electric field. Points
refer to EMC calculations, curves to analytical expressions eval-
uated within an electron temperature model [see Eqs. (27a),
(27b), and (27c) of text].

FIG. 8. Normalized correlation functions as a function of
time for the case of streaming-motion regime at F =20 kV/cm.
Solid curves and points refer to present theory and EMC calcu-
lations, respectively. (a) and (b) refer to autocorrelation and
cross-correlation terms, respectively.
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of angular frequency for the case of streaming-motion regime at
F=20 kV/cm. Solid and dashed lines refer to the real and
imaginary part, respectively.

distribution function becomes needlelike. To this pur-
pose, the optical phonon coupling has been arbitrarily in-
creased (by a factor 5) with respect to the previous case
and the lattice temperature lowered at 77 K.

Figures 7 and 8 show the time behavior of the correla-
tion functions as obtained from the EMC simulations and
calculated from Eqs. (25). The agreement between the
simulated and calculated values should be considered sa-
tisfactory. (We remark that in this case the calculated
values are quite sensitive to small variations of Il', y, and
of the cc;J coefficients. ) The wavy behavior of the correla-
tion functions is associated to the streaming character of
the distribution function which now describes a quite or-
dered motion of the carriers. Indeed, the carriers at rest
move up to the optical phonon energy and then repeat
again this path after emission of an optical phonon. In
this case we find that A, ( ~coo~ at all fields and, in

agreement with the expectations, the relationship
co0=2irF(2e marco, ) '~, fico, being the optical phonon
energy, is verified by the simulation with an accuracy of
15%%uo.

The periodicity in time of the correlation functions is
better evidenced by their spectral functions which, apart
from irrelevant details, all exhibit the characteristic
features as reported in Fig. 9 for the case of g,„(co). Here
the characteristic frequency coo is clearly identified by the
peak in the real part of g„(co).

Figure IO shows the dependence with electric field of
the a; coefficients. They all exhibit a linear dependence
with the electric field and, both a2, and a&& have been
found to be negative. The fact is that now a&& can no

0. 2 1 10
I I ~ I I I I ~ )

50

F (kv cm )

FIG. 10. Set of n;~ coefficients as a function of the electric
field for the case of the streaming-motion regime. Different
points refer to EMC calculations; the lines evidence the linear
dependence with the electric field.

longer be interpreted as a momentum relaxation rate
since, in its ideal form, the streaming-motion regime does
not have a truly thermodynamic behavior. This regime
falls into the category of what is called "deterministic
chaos. "' Indeed, for FAO the fixed point of the distribu-
tion function has the needlelike shape previously dis-
cussed whatever the strength of the electric field is. This
fixed point, however, never has a Boltzmann shape (the
velocity distribution no longer having any Gaussian char-
acter), which implies that the motion does not corre-
spond to ordinary thermodynamics. In fact, the field
drives "deterministically" the electron gas into a state
which looks thermodynamical being characterized by a
given shape of the distribution function.

The initial values (t =0) of the correlation functions
are now expected to be independent of the electric field.
Their values are reported in Table I together with the
theoretical values obtained from Eqs. (27) with
kiiT, =—,'A'co, and vd=(i)ico, /2m)' according to the
streaming-motion model. The agreement is good for
((5v) ), while for the other correlation functions a more
detailed calculation, accounting for the actual shape of
the distribution function, is needed for a better fit. In any
case, such a comparison confirms that the physical sys-
tem is really well described in terms of the streaming-
motion regime.

TABLE I. Initial values of the correlation functions under streaming-motion regime.

At any field
F=5 kV/cm
F =10 kV/cm
F =20 kV/cm

((&v)')
[10' (m/s)']

0.63
0.68
0.55
0.75

((s.)')
(10 ~i J2)

0.17
0.31
0.33
0.35

&5s 5v )
(10 ' J m/s)

5.5
12
13
15

Theory
EMC
EMC
EMC
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VI. CONCLUSIONS

Within the framework of a quantum Langevin ap-
proach we have presented a general theory of the correla-
tion functions for the steady state in far-from-equilibrium
conditions driven by an external electric field. By making
a coarse graining in time, the slow part of the dynamics is
separated from the fast part, thus going into a
relaxation-time paradigm. By taking velocity and energy
as the relevant macroscopic variables we have succeeded
in giving an analytical solution to the closed set of corre-
lation functions coupling velocity and energy Auctua-
tions. The result is found to generalize the linear-
response theory to the far-from-equilibrium case (hot
electrons).

A numerical simulation based on an ensemble Monte
Carlo calculation performed for a simple Si-like model
semiconductor has provided a significative test of the
analytical theory. Thus we have confirmed the impor-
tance of cross-correlation terms in determining the time
dependence of the correlation functions. In particular,
deviations from simple exponential behavior of the veloc-
ity and energy correlation functions are proven here on
the grounds of a first-principles calculation based on the
Heisenberg equation of motion.
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APPENDIX

We want here to derive Eq. (13) of the main text link-
ing S(t —s) and Gc(t —s). For this purpose, we intro-

duce the operator Sit (t —s) defined by

t)S~ (t —s)

at
as, (t —s)

Bs

Sg(0)=1 .

iL—oStt (t —s),

=iStt (t —s)Lo,

(Ala)

(A lb)

(Alc)

S ( t s)Sit—( t —s ) = 1 .

Now, if we introduce the operator K(t —s) by

K (t —s) =Sz (t —)sGo(t —s),
it is easy to show from Eqs. (11)and (A 1) that

aK(t —s) =iS„(t s)L I—I,G (t —s) .

(A2)

(A3)

(A4)

By integrating Eq. (A4) on s, one gets

K (t —s) —1 =i f ds' S„(t —s)L IoI, G (ot
—s'),

which reads

(A5)

1 Stt (t s)Go(—t —s)—
t=t f ds'S, (t s')L II—,G (t —s') .

$
(A6)

By multiplying Eq. (A6) by S(t —s) and using Eq. (A2),
one gets

S(t s) G, (t —s)— —
t=i ds'S(t —s)S~(t —s')LoII, Go(t —s') .

S
(A7)

Now, it is easily stated that S(t —s)Sit (t —s') =S(s' —s),
and from that and Eq. (A7) one gets Eq. (13) of the main
text.

Since here Lo is time independent, it is clear that
Sz(t —s)=S(s —t). More generally, from Eqs. (9) and
(Al) one can easily prove that
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