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Excitonic and nonlinear-optical properties of dielectric quantum-well (DQW) structures are in-

vestigated theoretically. A DQW is a quantum well sandwiched by barrier materials with a smaller
dielectric constant and a larger band gap than the well material. The fundamental physics deter-
mining the excitonic properties in a DQW, i.e., exciton binding energy, exciton oscillator strength,
and nonlinear-optical response, are clarified. The most important mechanisms for enhancing the ex-
citonic properties are quantum-confinement effect, mass-confinement effect, and dielectric-
confinement effect. Quantum confinement increases the spatial overlap between an electron and a
hole as a result of the potential well confinement, and it enhances oscillator strength. Mass
confinement is based on the penetration of the carrier wave function into barrier layers with a
heavier effective mass than the well layer. It increases the exciton reduced mass and hence the exci-
ton binding energy. Dielectric confinement arises from the reduction of the effective dielectric con-
stant of the whole system due to the penetration of the electric field into the barrier medium having
a smaller dielectric constant than the well and enhances the Coulomb interaction between the elec-
tron and hole. On the basis of these analyses, the general guiding principles are established for
designing DQW structures with optimum excitonic properties. Various practical examples of
DQW s are examined with respect to the lattice-constant matching, the difference in the dielectric
constant, and the difference in the carrier effective masses. ZnSe is found to be one of the most
promising candidates for the barrier material of the GaAs DQW.

I. INTRODUCTION

Excitons in semiconductor quantum-well (QW) struc-
tures have very sharp peaks in both absorption and
luminescence spectra. Their optical and electrical prop-
erties are very favorable for optical device application,
and many devices using excitonic transitions have been
proposed. ' II-VI semiconductors are one of the most
appropriate types of material for excitonic transitions be-
cause they have a large exciton binding energy and the
excitonic transition can be observed clearly. On the oth-
er hand, III-V semiconductors generally have small exci-
ton binding energy and show a very broad exciton peak
at room temperature.

In the quantum-well structure, the exciton binding en-
ergy is greatly enhanced and the optical and electrical
properties appear very pronounced. However, even in
the limit of two-dimensional confinement, the excitonie
binding energy is enhanced at most up to four times the
bulk value. Thus in the GaAs quantum-well structure,
the exciton binding energy cannot, in principle, be
enhanced up to room-temperature energy. The central
issue of this paper is how the excitonic binding energy
can be enhanced more than that of conventional
GaAs/Al„Ga, „AsQW's.

The exciton binding energy in the bulk semiconductor
is given by

e' pe4
Eb;„d(bulk)=

QB 2E A

where az is the exciton Bohr radius, e is the dielectric

constant, and p is the exciton reduced mass. From this
equation, the exciton binding energy is expected to be
enhanced by reducing the dielectric constant, or increas-
ing the excitonic reduced mass (i.e., efFective masses of
the carriers). In addition, confining the carriers in the
quantum wells should also enhance the exciton binding
energy. The enhancement of the Coulomb interaction in
a thin semiconductor layer sandwiched by insulators was
pointed out for the first time by Keldysh. ' This efFect is
caused by the effective reduction of the dielectric con-
stant due to the penetration of electric field into the bar-
rier medium with a small dielectric constant and is called
the dielectric confinement effect by analogy to the quan-
tum confinement effect. Recently, we considered a quan-
tum well sandwiched by barrier layers with smaller
dielectric constant than the well and called it a dielectric
quantum well (DQW). ' In the DQW structure, the
dielectric confinement effect reduces the effective dielec-
tric constant of the whole system and also the screening
of the electron-hole Coulomb interaction, and hence
enhances the exciton binding energy and the excitonic os-
cillator strength. We discussed the enhancement of the
exciton binding energy and of the excitonic optical non-
linearity using the infinite potential barrier model. Al-
though this model is appropriate for a semiconductor-
insulator interface, the effect of finite band discontinuities
cannot be ignored in general for practical combinations
of semiconductors for DQW's. When the band discon-
tinuities are finite, the carrier wave functions extend into
the barrier layers and the reduction in the efFective dielec-
tric constant of the whole system is more emphasized. At
the same time, a completely new effect emerges on the
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enhancement of the exciton binding energy. We shall call
this effect the mass confinement effect. The carriers feel
the heavier masses in the barrier layers through the
penetrating part of the wave function and this increases
the exciton reduced mass and enhances exciton binding
energy. The potential-well (quantum) confinement and
the dielectric confinement features in DQW's are shown
schematically in Fig. 1. In many cases, the wave function
is well confined in the potential well, whereas the static
electric field induced by a charge is rather extended due
to the long-range character of the Coulomb force. The
mass confinement effect depends directly on the
potential-well confinement, and has a short-range nature.
Thus, the mass confinement effect and the dielectric
confinement effect have rather different dependences on
the well thickness.

This paper calculates the excitonic states in DQW's us-
ing the variational method and taking into account the
finite barrier height. The effects of quantum confinement,
mass confinement, and dielectric confinement on the exci-
tonic and nonlinear-optical properties in DQW s are
clarified for the general case. As a consequence, the guid-
ing principles for designing the DQW structures with op-
tirnum excitonic properties are established.

The paper is organized as follows. In Sec. II, the
method of calculation of the excitonic state in a DQW
structure is presented. In Sec. III, the general features of
the exciton in DQW's are discussed, focusing on quantum
confinement, dielectric confinement, and mass
confinement effects. In Sec. IV, the third-order optical
nonlinearity of the DQW structure is investigated on the
basis of a general theory of optical nonlinearity in a
three-level system. In Sec. V, some practical examples of
DQW's are examined, and GaAs/ZnSe and
CxaAs/Zns Se, , DQW's are found to be very promising
materials for optical devices using the excitonic transi-
tion. Section VI is devoted to a summary of the results
and conclusions.

II. METHOD OF CALCULATION

H"=H"'+H" +H"kin pot self

H'"'=H"'+H'"'+H"'
kin pot self

(2.1)

(2.2)
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In this section, the method of calculation of the exci-
tonic state in a DQW structure is formulated and a for-
mula for its oscillator strength is derived. A schematic
structure of the DQW is shown in Fig. 2. The structure
consists of a single quantum well sandwiched by barrier
layers having a smaller dielectric constant than the well
in order to reduce the effective dielectric constant of the
whole system. Throughout this work, only type-I quan-
tum wells are considered because they can have a large
exciton binding energy. Finite barrier cases are treated in
order to clarify the effect of the effective-mass difference
on the excitonic properties, as well as to make the theory
more realistic.

The excitonic state in DQW structures should be ob-
tained as an eigenstate of the electron-hole two-particle
Hamiltonian. Hamiltonians for the electron, hole, and
the electron-hole (exciton) system are given, respectively,
as

Here the suffixes e and h refer to the electron and hole,
and the su%xes 1 and 2 stand for the well and the barrier
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FIG. 1. Confinement features of the one-particle wave func-
tion g, and the electrostatic potential P in the quantum-well
structure. The hatched portions represent the penetrating wave
function and electrostatic potential.

FIG. 2. Schematic diagram of the dielectric quantum-well
structure with a smaller dielectric constant in the barrier layer
than in the well layer (e& & el).
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layers, respectively. The effect of the dielectric-constant
difference between the well and barrier layers is included
in the Hamiltonian Hc,„&, b and H„&fby introducing im-

age charges. The image-charge method, which is a well-
established method in electrostatics, represents the elec-
tric field induced by charged particles in the plane-
parallel geometries in terms of imaginary charges placed
in virtually homogeneous media.

The detailed derivation of Hc „& b and H„&fis given in
Appendix A. Here, the well layer will be denoted by C
and the barrier layers by L (left side) and R (right side).
The Coulomb interaction between an electron in region

and a hole in region 8 will be denoted by
HCoulomb(r„rh). The eXPliCit eXPreSSiOnS Of HC,„l,mb

corresponding to five configurations of the electron and
hole positions are given as follows:

LCH Coulomb ( e & h
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The self-energy Hamiltonian has only two forms according to the position of the charged particle. For an electron,
they are given as

2
q&e

2~, I2z, +L+2ni 2~, I2z, —L —2ni

2
&n

&=F2+3, , 2&llz, ( 1) z, +nLI
(2. 14)
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el+@2 „o(e, +@2)I2z,+(2n +1}LI (2.15)

The self-energy Hamiltonian for a hole is given by simply
replacing the suffix e with h in the above expressions.
The self-energy potentials diverge at the interface. The
divergent terms are separated out of the infinite series of
the sums in (2.14) and (2.15). To remedy this divergence,
shifted mirror faces' are employed for the lowest-order
(n =+1) image charges, introducing the mirror shift 5
(Fig. 3). As shown in Fig. 4(a), the self-energy potential
has an infinite discontinuity at the interfaces for the origi-
nal mirror face, while it is suppressed for the shifted mir-
ror face.

First, we will discuss the one-particle wave functions in
the DQW structure and then construct the exciton wave
function from a product of the one-particle wave func-
tions. It is desirable when calculating the eigenstates of
H" in (2.1) or H'"' in (2.2} to include the self-energy po-
tential. As shown in Fig. 4(b), the self-energy potential

well region barrier region

~ ~
~gt

real electron image electron

original mirror face shifted mirror face
(interface)

FIG. 3. Shifted mirror face and the image electron. The
shifted mirror face is introduced to suppress the divergent
feature of the self-Coulomb interaction. Original mirror face is
at the interface, and the shifted mirror face is located a distance
5 from the interface. The solid line represents the true interface
and the dashed line represents the shifted mirror face.
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(a)

Barrier ell Barrier

For the lowest exciton state a variational wave func-
tion is constructed from a product of the lowest one-
particle wave functions of an electron and a hole as

)eh(zh )g (r
(( rh(~~

z zh ) (2.21)

original

shifted

L/2

where A is the normalization constant and

g (1
(( rh(( z, —

zh ) represents the electron-hole relative
motion, and is defined as

g ("e(( Ph((, ze Zh )

2( )2+p2( )2] (/2
I (2.22)

Here, a and P are variational parameters to minimize the
exciton energy. They represent the confinement in the
directions parallel and perpendicular to the interface, re-
spectively. Then the exciton binding energy is defined by

Barrier Well Barrier Ebind (E(e)+E(h)) Etot (2.23)

FIG. 4. Qualitative features of (a) the self-energy potential
for the original and the shifted interfaces and (b) the effective
one-particle potential including the self-energy potential
{Hp t +H ]f ).

E"'=min(+la, .„le) .
a, P

(2.24)

Details of this calculation are given in Appendix C. The
one-particle energies are approximated as

where the total energy E"' is determined by minimizing
the expectation value of the total Hamiltonian by varying
the parameters a and P, i.e.,

where the parameters k„~„and8, are determined
through the conventional treatment of the square-well
potential problem. Here, we use the following boundary
conditions (see Appendix B):

L, I.——0 =Q —+0
2 2

(2.17)

1 d I.——0
dz~ 2

1 dI (2)
Pl~

(2.18)

Then the secular equation which determines the energy
eigenvalues is obtained as

fi k,
AE, —

2m'"Vl~
+1 =0. (2.19)

In the same way, the hole wave function is obtained as

cos(khzh }, Izh I

~ L /2,
Bhexp( )rh Izh I), Izhl) L/—2, (2.20)

where the parameters k&, ~z, and 8& are determined by
(2.17), (2.18), and (2.19) simply by replacing the suffix e by
h and changing b E, to AE, .

changes the square-well potential into a smoothly shaped
potential but the confinement feature is not essentially
modified. Thus the eigenstates of Ho" =Hk;„'+H",, or
Ho"'=Hk";„'+H'",', can be employed as a good approxi-
mation for the true eigenstates of H" or H'"'.

The lowest eigenstates of Ho' is obtained in the form

cos(k, z, ), lz, I

~ L /2,
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The mirror shift 5 is introduced phenomenologically
because the first-principles determination of 5 is beyond
the scope of this paper. At present there is no criterion
for appropriate choice of the value of 5. However, for-
tunately enough, we find that physical quantities, such as
the exciton binding energy, are not very strongly depen-
dent on the parameters 5. The calculated 5 dependence
of the exciton binding energy is shown in Fig. 5. The well
and barrier materials are chosen to be GaAs and ZnSe,
respectively, in order to see the 5 dependence of the exci-
ton binding energy under realistic situations. The materi-
al parameters used in this calculation are given in Table
V. The exciton binding energy is measured in units of the
eA'ective Rydberg of GaAs and the well width is mea-
sured in units of the exciton Bohr radius in GaAs. The
e8'ective Rydberg and the exciton Bohr radius of GaAs
are estimated as 5 meV and 114 A, respectively, by using
the static dielectric constant and the carrier masses of
bulk GaAs given in Table V. It can be seen from the

where Eo' and Eo"' are the lowest eigenvalues of Ho' and
Ho"', respectively, and the self-energies are included in
the lowest-order perturbation theory. Thus the exciton
binding energy is calculated approximately by

Ebi d Eb E( ) +E(h) + (q IH( )
I@ )
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strength per unit volume is calculated by dividing the os-
cillator strength by the effective volume V =Lcr~l.

fe, K 2peg Qf,,K=
V m PA'CO, g K I. (2.31)

with

Q = J %(O,Z„Z,)dz, , (2.32)

where p,g is the interband momentum matrix element.
Substituting (2.21) into (2.32) with (2.16) and (2.20), we
obtain

sin(k, —kz )L /2 sin(k, +kz )L /2
FIG. 5. Mirror shift 5 dependence of the exciton binding en-

ergy. Three 5 values are employed. The binding energy and the
well width are scaled by the effective Rydberg {Ry*), namely
the exciton binding energy and by the exciton Bohr radius (a& )

of the bulk well material, respectively.

—(a. +x )L/2+
Ke +ICh

(2.33)

f,„=„/(e,K]M)g) f'.
02PACOeg K

(2.28)

Here, ~g ) stands for the ground state, mo is the free elec-
tron mass, m,g K the angular frequency of the excitonic
transition, and M is given by

p, e
' +e/K'I pM=

2
(2.29)

in terms af the momentum operator p. The exciton state
~
e, K ) with a total wave vector K can be written as

' 1/2

[e,K)= Op IK R()d g e %(r
i ri, (),z,zh)

Xat, a„(g), (2.30)

figure that the 5 dependence of the exciton binding ener-

gy is rather weak, except for the very thin layer case.
The difference in the exciton binding energy between the
two cases 5/as =0.01 and 0.02 are 1.1% and 5.3% for
the well width 1.=0.5 and 0.2az, respectively. Thus the
exciton binding energy and also the exciton oscillator
strength can be calculated precisely enough so far as the
mirror shift 5 is chosen appropriately.

The oscillator strength of the excitonic transition is
calculated in order to clarify the optical properties of the
excitons in DQW's. The oscillator strength of the exci-
tonic transition is defined by"

To see the enhancement factor explicitly, the oscillator
strength is compared to that of the bulk material:

f,K ~b 1k ~~B Q
2

fbulk HDQw L
(2.34)

~g lt3Q 2

f= f., x
fbulk

(2.35)

The dependence of this quantity on the potential barrier
height, the dielectric-constant ratio, and the effective-
mass ratio will be discussed in Sec. III.

III. GENERAL FEATURES OF DQW's

The optimum design of a synthesized material requires
precise knowledge of the fundamental properties and
their dependence on physical parameters of the original
materials as well as on details of the structure. In this
section, the general properties of the excitons in DQW's

where az is the exciton Bohr radius in the bulk material
and coD&w and cob„&k denote the excitonic transition fre-
quencies in the DQW and in the bulk material, respec-
tively. The first factor is related to the energy shift due to
the quantum confinement and this quantity cannot be
determined without specifying the band-gap energy of the
DQW material. However, to see the general trends of the
oscillator strength, it is not necessary to specify the
band-gap energy. Thus the oscillator-strength ratio is
calculated dropping the frequency factor as

where the second-quantized form in the Wannier orbital
representation is employed and R~~ denotes the center-of-
mass coordinate parallel to the interface, op and dp
denote the area and the length of a unit cell in the direc-
tion parallel and perpendicular to the interface, and XI~
gives the number of unit cells in the quantization area.
The oscillator strength is usually defined for the active
volume of the quantum well. However, the active volume
is not well defined for the quantum-well structure with
finite potential barrier because the exciton wave function
is extended into the barrier layers. Here, the oscillator

Sample

mq" (mo)

Well material

0.1

0.5
10

TABLE I. Parameters of the model well material. All
DQW's appearing in Sec. III have this well material. The elec-
tron and hole effective masses m, and mz are measured in units
of the free electron mass mo.
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TABLE II. Parameters of the model barrier materials in No.
1-1, No. 1-2, No. 1-3, and No. 1-4. The conduction- (valence-)
band discontinuity AE, (AE, ) is measured in units of the
effective Rydberg of the well material. J3 )0

LU

Sample

AE, (Ry*)
AE, (Ry*)

m,"' (m, )

No. 1-1

10
10

O. l
0.5
5

No. 1-2

10
100

0.1

0.5
5

No. 1-3

100
10
0.01
0.5
5

No. 1-4

100
100

0.1

0.5
5

U)

I
U)

Kl

0
0.0 1.0

%fell width L (a~)

2.0

are clarified by using model materials. The main subjects
are the effects of barrier height of the DQW, effective
mass of the electron and hole in the barrier layer, and
dielectric constant of the barrier layer. The material pa-
rameters. of the well layer are given in Table I, and the
parameters are chosen similar to those of GaAs to simu-
late a realistic situation. This well material is used
throughout this section.

FICx. 6. Calculated exciton binding energy of the four model
DQW's No. 1-1, No. 1-2, No. 1-3, and No. 1-4, which have the
same well material and whose barrier materials have the same
parameters except for the band discontinuity. The material pa-
rameters of the well and barrier layers are given in Tables I and
II, respectively. The binding energy is scaled by the eAective
Rydberg (Ry ), namely the exciton binding energy and the well
width is scaled by the exciton Bohr radius (a& ) of the bulk well
material

A. E6'ect of the barrier height

First, the barrier-height dependence of the exciton
binding energy is investigated. To examine this depen-
dence, four barrier materials having different barrier
heights are considered. Table II gives the material pa-
rameters of these barrier materials. They have the same
values of the electron and hole masses and of the dielec-
tric constant except for the band discontinuity. The band
discontinuities are measured in the effective Rydberg
(Ry*), namely the bulk excitonic binding energy of the
well material.

Figure 6 shows the exciton binding energy E in the
four DQW's as a function of the well width. The well

width is normalized by the excitonic Bohr radius in the
bulk well material and the exciton binding energy is mea-

sured in units of the effective Rydberg. The binding ener-

gy increases by reducing the well width for all four cases.
For thick layers (L ~ 1.6az ), the four DQW's have al-
most an identical exciton binding energy, and the larger
band discontinuity (stronger confinement) yields the
larger binding energy. These trends are the same as those
in the conventional quantum wells (QW's) where the
dielectric confinement effect can be neglected. C)n the
other hand, for thin layers, the situation becomes very
complex and the sample with the largest band discon-
tinuities for both conduction and valence bands (No. 1-4)
does not have the largest binding energy. In order to see
the origin of the complicated behavior, we rewrite the ex-
citon binding energy as

(3.1)

where 4;„is the variationally determined exciton wave
function. The quantity within the first set of parentheses
can be regarded approximately as the exciton binding en-
ergy in the conventional QW's, although 4;„includes
the dielectric confinement efFect through the variational
parameters o, and P in (2.22). In fact, this quantity takes
the largest value for No. 1-4, rejecting the strongest
quantum confinement. On the other hand, the quantity
within the second set of parentheses represents the
difference between one-electron self-energy and exciton
self-energy. The relative magnitude of the self-energy
difference among DQW's of No. 1 series is rather compli-
cated and cannot be interpreted in a simple manner.

Thus, although the larger band discontinuities yield
larger Coulomb interaction between an electron and a
hole, the self-energy difference compensates the enhanced
Coulomb interaction, resulting in a rather complex be-
havior of the exciton binding energy.

The osciHator strength of the excitonic transition for
these samples is shown in Fig. 7. Generally, the oscilla-
tor strength increases monotomcally as the well width is
reduced. This results from the increased spatial overlap
between the electron and the hole due to the confinement
effect. However, the barrier-height dependence of the os-
cillator strength is rather complex. It can be seen that
higher potential barrier yields larger oscillator strength
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FIG. 7. Calculated exciton oscillator strength of the four
model DQW's No. 1-1, No. 1-2, No. 1-3, and No. 1-4 normal-
ized by the value of bulk GaAs. The dotted line (No. 1-3) be-
comes almost identical to the dot-dashed line (No. 1-4) for
I. )0.2a~.

FIG. 8. Calculated exciton binding energy of the three model
DQW's No. 2-1, No. 2-2, and No. 2-3 which have the same ma-
terial parameters except for carrier masses in the barrier layer.
The relevant material parameters of the well and barrier layers
are given in Table I and III, respectively.

except for the extremely thin region (L &0.2a~). This
tendency can be explained as a consequence of the poten-
tial barrier con6nement. It can be also seen that the in-
crease in the oscillator strength due to the confinement
effect is stronger for the electron than for the hole.

B. Kft'ect of the effective mass of the barrier

As mentioned in Sec. I, the effective mass of the car-
riers in the barrier layer plays an important role in deter-
mining the excitonic state. The effect of the effective
mass is closely related to the con6nement of the wave
function, because the wave function penetrates the bar-
rier layer and is affected by the effective mass of the bar-
rier. Table III gives the material parameters of the model
barrier materials. They all have the same barrier heights
(b,E, =10, b,E„=100)and dielectric constant (@2=5).
Barrier material No. 2-1 has the same electron and hole
effective masses as the well material. Material No. 2-2
has 5 times the electron effective mass of the well materi-
al and the same hole effective mass as the well. On the
other hand, material No. 2-3 has five times the hole
effective mass of the well material and the same electron
effective mass as the well.

Figure 8 shows the exciton binding energy for rnateri-
als No. 2-1, No. 2-2, and No. 2-3. Material No. 2-2 yields

the largest binding energy among these samples. This
can be explained in terms of the difference in the exciton
reduced mass of the barrier material, which is 1, 3, and
1.15 times that of the well material for No. 2-1, No. 2-2,
and No. 2-3, respectively. Thus the exciton binding ener-

gy in No. 2-2 is enhanced through the penetration of the
exciton wave function into the barrier layer.

The oscillator strength of the excitonic transition is
also calculated for these DQW's and the results are
shown in Fig. 9. General trends of these curves are simi-
lar to those of the exciton binding energy. For thin layers
(L &0.8az), material No. 2-2 has the largest oscillator
strength corresponding to the largest binding energy.
This is a consequence of decrease in the exciton Bohr ra-
dius due to the mass confinement effect. For thick layers,
the difference among three materials is small.

Summarizing the barrier-mass effect, the barrier rna-
terial should have a large carrier mass to enhance exci-
tonic properties. The barrier-mass effect is more pro-

1000-

100

TABLE III. Parameters of the model barrier materials in
No. 2-1, No. 2-2, and No. 2-3. Notations are the same as in
Table II.

Sample No. 2-1 No. 2-2 No. 2-3
0.0 1.0 2.0

hE, (Ry*)
AE, (Ry )

mz ' (ino)

10
100

0.1

0.5
5

10
100

0.5
0.5
5

10
100

0.1

2.5
5

N/ell width L (a~)

FIG. 9. Calculated exciton oscillator strength of the three
model DQW's No. 2-1, No. 2-2, and No. 2-3 normalized by the
value of bulk GaAs.
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nounced for a lighter mass carrier (electrons for many
cases) than for a heavier mass carrier since the exciton re-
duced mass is determined mainly by the lighter carrier
mass.

C. E6'ect of the dielectric constant of the barrier

The effect of the difference in dielectric constant be-
tween the well and barrier layers was the initial motive
for investigating DQW structures. We have already stud-
ied this effect using the infinite barrier model. ' Howev-
er, the infinite barrier model is not appropriate for very
thin well layers because the unphysically localized wave
function yields an extremely large Coulomb interaction
between the electron and the hole, and consequently the
calculated results are not reliable. To see the effect of the
dielectric-constant difference in a more realistic situation,
we examined four model barrier materials No. 3-1, No.
3-2 No. 3-3, and No. 3-4 which have the same materia

~ ~

parameters except for the dielectric constant l, @2=10,5, 2,
and 1). Their material parameters are given in Table IV.

The exciton binding energies of these materials are
shown in Fig. 10. The exciton binding energy can be
enhanced by decreasing the dielectric constant of the bar-
rier. This enhancement clearly lasts up to the region o
I. ~ 2a *, while the effect of barrier mass disappearsag, w ie
around the region of L, ~a~ as was seen in Sec.S c. IIIB.
This is a direct consequence of the long-range nature oof
the olarization effect. The most important features ise poa
that the extremely large binding energy exceeding the
two-dimensional limit (4 Ry*) can be obtained by de-
creasing the barrier dielectric constant. This large
enhancement can produce a very stable exciton even
when the well material originally had a small binding en-
ergy.

The oscillator strength of the excitonic transition is
also calculated, and the results are shown in Fig. . ei . 11. The
oscillator strength becomes larger as the barrier dielectric
constant is reduced. This is due to the reduction in the
effective electron-hole distance through the dielectric
confinement effect.

In order to see these general features in a practica 1

DQW, the exciton binding energy in GaAs/ZnSe DQW's
is plotted in Fig. 12 as a function of the well width. Four
curves are shown in the figure: the solid line corresponds
to the GaAs/ZnSe DQW's, the dot-dashed line to a hy-
pothetical DQW in which ZnSe is assumed to have the
same carrier masses as GaAs, the dashed line to another
hypothetical DQW in which ZnSe is assumed to have the

IX.
'

LI

Ul

CA

U

IXI

t00 1 =.

l

I

80 -',

60-1

40—

\
\

20 -',

No. 3-1
———- No
—-—- —No

3-2
3-3

0
0.0

Well width L (ae)

2.0

same dielectric constant as GaAs, and the dotted line to a
hypothetical DQW in which ZnSe is assumed to have the
same dielectric constant and carrier masses as GaAs. In
these hypothetical DQW's, the band discontinuities are
taken to be the same as the realistic values. Details of the
material parameters used in the calculation is given in
Sec. V. It is found that the dielectric confinement effect
is dominantly contributing to the enhancement of the ex-

edci on int b' ding energy in this system. It is also confirme
in wellthat the carrier mass effect is effective only for thin we

layers, whereas the dielectric effect works even for thick-
er layers.

In summary, DQW structures have excitonic proper-
ties which can be readily controlled by changing the bar-
rier material. We have three degrees of freedom in con-
trolling the excitonic properties in DQW's. One is the
barrier height, which determines the one-particle
confinement feature; the change in the band discontinuity
yields the change in the excitonic properties. Another is
the effective mass of carriers in the barrier, which affects
the excitonic properties through the change in the exci-

1000 „,.

-I 1:
'I

i l:.
il .
'I t ~

\ ~ '.

4't '

100 = ', t. .

No. 3-1
------- No. 3-2
---- - —No. 3-3-""."" No. 3-4

FIG. 10. Calculated exciton binding energy of the four model
DQW's No. 3-1, No. 3-2, No. 3-3, and No. 3-4 which have the
same material parameters except for the dielectric constant of
the barrier layer. The relevant material parameters of the weil
and barrier layers are given in Tables I and IV, respectively.

TABLE IV. Parameters of the model barrier materials in No.
3-1 No. 3-2, No. 3-3, and No. 3-4. Notations are the same as in
Table II.

0

Vl

10=

Sample

AE, (Ry )

AE, (Ry*)

mI, (mo)
E'p

No. 3-1

10
100

0.5
0.5

10

No. 3-2

10
100

0.5
0.5
5

No. 3-3

10
100

0.5
0.5
2

No. 3-4

10
100

0.5
0.5
1

1
0.0

Well width L {&~)

FIG. 11. Calculated exciton oscillator strength of the four
model DQW's, No. 3-1, No. 3-2, No. 3-3, and No. 3-4 normal-
ized by the value of bulk GaAs.
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fe)

FIG. 12. Exciton binding energy of the GaAs/ZnSe DQW
(solid line). In order to clarify the mass confinement and dielec-
tric con6nement efFects, three virtual barrier materials are con-
sidered: one with the dielectric constant of ZnSe and carrier
masses of GaAs (dot-dashed line), another with the dielectric
constant of GaAs and carrier masses of ZnSe (dashed line), and
the other with dielectric constant and carrier masses of AaAs
(dotted line). The material parameters used in the calculation
are given in Table V.

FIG. 13. Energy diagrams of a three-level model. ~g), ~e ),
and ~b) denote the ground, the one-exciton, and two-exciton
states, respectively. Three longitudinal relaxation constants are
shown with associated transitions.

ton reduced mass. The change in the mass of the lighter
carrier (electron) gives the larger change in the excitonic
properties. The other is the dielectric constant of the
barrier. This quantity dominates the electrostatic feature
of the DQW, and determines the excitonic properties.
%'e can get the optimum enhancement of the excitonic
properties by combining these three effects.

IV. OPTICAL NONLINEARITY OF DQW's

In this section, the calculation of the third-order opti-
cal nonlinearity of DQW's is presented. This calculation

I

is based on the three-level model given in Fig. 13. The
ground, one-exciton, and two-exciton states are denoted
by ~g ), ~e ), and

~
b ), respectively. Energy separation be-

tween ~g) and ~e ) is denoted by fico,s, and that between
~e ) and ~b ) by ficob, . Six relaxation constants are includ-
ed in the model; three of them representing the longitudi-
nal relaxation rates and the other three representing the
transverse relaxation rates. Here, the third-order non-
linear susceptibility y' ' is defined by the following rela-
tion between the third-order nonlinear polarization P' '

and the electric field E;

(~1+~2+ co3 ) X ( ~1 ~2 ~3 ~1~ co2~ co3 )'El(~1 ) 2(co2)E3(co3 )
(3) (3) (4.1)

with

E, (+co; ) =En;exp(ik r+i co;t),

P' '(+co)=Po 'exp(ik r+icot) .

(4.2)

(4.3)

The third-order nonlinear susceptibility is calculated as'

4 p2

4fiQ mtlililcroL, b l,s
'

(co, 0 iy, ) (—co,—s 0+iy, )—
'Veg f,sfb,

COeI,s '
(cob, 0 iyb,—)(co—,s 0 iy,s—)(co, ,—s —0+iy,s)

f„fb,
'

(co,s 0 iy, ) (c—ob
—2Q iysb)— —

f„fb,
(cob~ II l ybe )(cobs 2Q l ybs )(coes 0 l y~s )

(4.4)
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where 0 is the frequency of the incident light, co;J. (f;J. ) is
the frequency (oscillator strength) of transition between i
and j states, the notations up and N~~ mere given in Sec.
II, and the summation is taken over the exciton states.

I;. is the longitudinal relaxation rate between i and j
states, and y;. is the relaxation rate of the off-diagonal(i' ) element of the density matrix (transverse relaxa-
tion rate). The transverse relaxation rate y,.~ is generally
composed of the sum of the decay rate of the amplitude
of the i and j state wave functions (y,'. ) and the pure de-
phasing rate (y,'~ ):

If
7 lJ V1J VlJ (4.&)

2Q'
m PACOZJ.

(4.6)

F,J= 2vrfi 2Q
MA mPAcoJ

Ip;, I', (4.7)

The oscillator strength given by (2.29) is defined for the
free exciton which moves coherently throughout the
whole crystal corresponding to a 5-function-like spec-
trum of the exciton. This oscillator strength is propor-
tional to the quantization volume and becomes infinitely
large as the quantization volume increases. Correspond-
ingly, the radiative lifetime of excitons becomes infinitely
short and at the same time the y' ' value diverges since

is proportional to the square of the oscillator
strength. This unphysical situation was recently resolved
by Feldmann et al. ' by introducing the concept of
coherence volume which is determined by the homogene-
ous linewidth of the exciton transition. In their interpre-
tation, the infinitely large oscillator strength of the lC=O
exciton is shared by the finite-momentum exciton states
within the spectral linewidth A. Since the number of
states within the spectral linewidth 5 is proportional to
the quantization volume, the redistributed oscillator
strength for each exciton state becomes finite. This
effective oscillator strength successfully explains the
dependence of radiative lifetime on the sample tempera-
ture and on the quantum-well thickness. ' Using this in-
terpretation, the intensive character of g' ' can be
recovered as shown below.

The X=O oscillator strength f~
and the effective oscil-

lator strength FJ. in DQW's can be written as

D(E)= MN)( crp

27r62
(4.10)

If the spectral width 5 is so small that the energy depen-
dence of y ' '(E) can be neglected, we have

~(3) II ~ (3)(E)
N o.

p

S, h

(4.1 1)

Now it is easy to check the intensive character of y'". In
the above calculation me ignored the temperature factor
defined by

f D(E)f(E)dE

D(E)f (E)dE
(4.12)

where f is the Bose distribution function. This factor
must be taken into account to see the effect of finite tern-
perature on g' '. Here, we scale Ipb, I

as

Ipb, I'=4 Ip„l' . (4.13)

In the bulk crystal, g is estimated to be 1/2 for a weakly
bound biexciton state composed of spin-singlet pairs of
electrons and holes, whereas for two-exciton scattering
(unbound) state, g is estimated to be 2 corresponding to
the boson model. ' In low-dimensional structures,
takes a value between these two values depending on the
details of the envelope wave function. We also assume
that

I b =0. (4.14)

Hence the coherence volume of exciton can be given by
S„hL,. In fact, the oscillator strength F; is equal to
S„hLtimes the unit-volume oscillator strength in (2.31).

Now, we define the effective nonlinear susceptibility
g' ' by summing the nonlinear polarization due to each
exciton state distributed over the spectral width 6 as

~( ) —f ~ ( )(E)D (E)dE (4.9)

where E stands for the transition energies Am, and fico&„
g' '(E) is given by (4.4) replacing the oscillator strength
f,j. by Fj and dropping the summation symbol, and the
density of states D (E) is given as

where p," is the momentum matrix element between i and
j states, M is the translational mass of the exciton parallel
to the interface, and Q is given in (2.33). The If=0 oscil-
lator strength f; becomes infinitely large when the
quantization area NIIo. p is taken to be infinite. On the
other hand, the effective oscillator strength is not propor-
tional to the quantization area but to another quantity
with the same dimensions. This can be called the coher-
ence area of exciton in a quantum-well structure:

4
( 3 ) cong e S

2 0 fiI
2 2 2

Ip„I' h, (n),
fi

(4.15)

This assumption implies that the two-exciton state can-
not be annihilated radiatively by single photon emission
apart from two-photon cascade emission via the one-
exciton state. Then y' ' can be written as

27rR2
coh (4.8)

and the dimensionless frequency factor ho(Q) is given by
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2(~q, —&—
&yb, ) —g(co,g /cob, )(co,g

—0,—i y, )

(co, g
—0 —iy, ) (~, —0+iy, )(co~, —II —iyb, )

I,g 2(cob, f—), i—yb, ) —(co,g /cob, )(co,g
—II —i y,g )

yeg (co g II iyeg ) (cobg 20 iygg )(cob 0 l ybe )
(4.16)

From now on, we confine ourselves to the case where
the transverse relaxation rates are much larger than the
longitudinal relaxation rates, namely, the transverse re-
laxation rates are dominated by the pure dephasing rates.
The dependence of g' ' on the exciton oscillator strength
depends delicately on the character of the longitudinal re-
laxation rate I, . Two limiting cases for the longitudinal
relaxation rate are considered: when the longitudinal re-
laxation is purely radiative and when it is dominated by
the nonradiative decay. The first case is relevant to good
quality samples. The longitudinal relaxation is given in
terms of the oscillator strength as

2ne COeg F
3771pc

(4.17)

where n is the refractive index of the material. In this
case, y' ' is proportional to the oscillator strength and is
given by

V. PRACTICAL EXAMPLES OF DQW's

In this section, some practical examples of DQW's are
proposed. Here, we consider mainly a DQW with a
GaAs well layer because its characteristics are well un-
derstood; for example, band gap, effective masses, dielec-
tric constant, and band discontinuity to other materials.
First, we will discuss the feasibility of fabricating DQW s.
In fabricating heterointerfaces, one should first consider
the lattice properties. In particular, the lattice structure
and lattice constant are important quantities to be
matched between the two materials to fabricate a high-
quality interface. GaAs has a zincblende (cubic) struc-
ture and its lattice constant is 5.653 A. From this point
of view, materials are limited to such species as Ge,
Al(Ga)As(P), Zn(S)Se, CaF2, NaC1, or BaO. All these
materials have cubic lattice structures and lattice con-
stants similar to GaAs and larger band gaps than GaAs.
Among them, Ge and BaO have larger static dielectric
constants than GaAs and they are not appropriate for the
barrier material of DQW's. Al(Ga)As(P) is one of the

lp„l' h, (n) .
4Lrnonkco, 0 y, ~p&~,g

(4.18)

Thus the dependence of y' ' on material parameters is
similar to that of the oscillator strength in (4.7). On the
other hand, g' ' for the second case is proportional to the
square of the oscillator strength, and thus depends more
strongly on material parameters than the oscillator
strength does. The absolute magnitude of y' ' and its
dependence on material parameters will be discussed in
the next section.

most popular materials to form heterointerfaces between
GaAs. Many studies on the GaAs/ZnSe heterointerface
have been reported. ' ' However, the main concern of
these studies was the epitaxial growth of ZnSe; GaAs is
used only as a substrate with a similar lattice constant.
Thus the DQW eÃect in this structure has not been no-
ticed explicitly. Nevertheless, there is great possibility
for fabricating the GaAs/ZnSe DQW's. Heteroepitaxial
growth of CaF2 has been studied. ' However, since
this material has a different lattice structure and a rather
different thermal expansion coeScient from GaAs, a
high-quality heterointerface is still very dificult to grow
at present although high-quality growth of CaF2 is ex-
pected in the near future. The situation for NaC1 is simi-
lar to that for CaF2. However, due to its deliquescent na-
ture, a stable GaAs/NaC1 heterointerface seems quite
dificult to fabricate at present. Table V presents the ma-
terial parameters of GaAs, Alp 3Gao 7A.s, AlAs, ZnSe,
CaF2, and NaC1. Parameters for Alo 3Gao 7As are deter-
mined by linearly interpolating those of GaAs and AlAs.

Before going into detail, we will brieAy discuss the
dielectric constant to be used in the exciton problem.
Mayer ' and Haken have proposed that the Coulomb
interaction for the exciton has the following form:

2 2
pr CQU]p~b

e r r [I—
—,'(e ' +e " )]

~o

(S.l)

with q, =(2m, coLo/A')' and qz =(2mhcoLo/A')', where
r is the electron-hole distance, the static (optical) dielec-
tric constant is denoted by ep (e„),and coLo represents
the LO-phonon frequency. For GaAs, the LO-phonon
energy A'coL is about 35 meV, and the quantities q,

' and

qh
' are 40 and 15 A, respectively. For r))40 A the

Coulomb interaction is determined by the static dielectric
constant ep, while for r &&15 A the Coulomb interaction
is determined by the optical dielectric constant e . The

0
excitonic Bohr radius in bulk GaAs is about 114 A and
thus the Coulomb interaction is dominantly determined
by the static dielectric constant. However, in the DQW
structure, especially in thin well layers, the excitonic
Bohr radius becomes anisotropic and is reduced. Thus
the situation becomes intermediate between the two lim-
its, and an interpolation formula like (S.1) should be used.
In the following, we will use the static dielectric constant
eo, which yields the minimum value of the exciton bind-
ing energy, for GaAs/Al Ga& As, GaAs/AlAs, and
GaAs/ZnSe DQW's. For GaAs/CaF2 and GaAs/NaCI
DQW's which have smaller exciton Bohr radius, both the
static and the optical dielectric constants are used to
show the minimum and maximum values of the exciton
binding energy.
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FIG. 15. Exciton binding energy for GaAs/AlQ3GaQ7As,
GaAs/A1As, and GaAs/ZnSe DQW's. The material parame-
ters used in the calculation are given in Table V.

FIG. 14. Transition energy of the exciton for
GaAs/Alp 3Gap 7As, GaAs/AIAs, and GaAs/ZnSe DQW's.
The energy gap of the bulk GaAs is taken to be 1.52 eV. The
corresponding transition wavelength is also given in the 6gure.

Now let us consider the calculated results. First, the
change in exciton transition energy will be discussed.
Figure 14 gives the transition energy of the exciton in
GaAs/ZnSe, GaAs/A1As, and GaAs/Alp 3Gao 7As
DQW's. The band-gap energy of bulk GaAs [E (GaAs)]
is taken to be 1.52 eV, and the exciton transition energy
is nearly the same as Es(GaAs) for DQW's with well
widths larger than 0.8a~. However, for thin well layers
(L ~ 0.4as ), the exciton transition energy increases

drastically. These features are mainly determined by the
well-width dependence of the subband energy because the
exciton binding energy shows a much weaker dependence
on the well thickness. In the limit of L —+0, the exciton
energy should approach that of the barrier material.

The calculated results of the exciton binding energy for
GaAs/Alp 3Gac 7As, GaAs/A1As, and GaAs/ZnSe
DQW's are shown as a function of the well width in Fig.
15. Throughout this section, the exciton binding energy
and the well width are measured in units of the exciton
binding energy of bulk GaAs ( =5 meV), and exciton
Bohr radius of bulk GaAs (=114 A, respectively. The
straight line in the figure gives the room-temperature en-
ergy (k~ T=26 meV). It can be seen that the GaAs/ZnSe

TABLE V. Parameters of the actual materials: GaAs, A1Q 3GaQ 7As, A1As, ZnSe, CaFz, and NaC1. Notations are the same as in
Table II. The static (optical) dielectric constant is denoted by eQ (e„).

Materials

lattice structure
lattice constant (A)
m, (mQ)
mi, (mQ)
EQ

AE, (eV)
AE, (eV)

GaAs

zinc blende
5.653
0.0665
0.475'

12.60
&0.9'
0
0

A1Q 3GaQ 7As'

zinc blende
5.655
0.084
0.483

11.84
10.1

0.32
0.17

zinc blende
5.660
0.124'
05'

10.06'
8.16'
1.06
0.55g

ZnSe

zinc blende
5.668
0 170"
0.57'

7.6
5.4'

0.34
0.96"

CaF,

CaF,
5.463

6.8'
2Al

NaCl

NaCl
5.63

5.6'
2Al

'These values are estimated by linear interpolation of the values of GaAs and A1As.
G. E. Stillman, D. M. Larsen, C. M. Wolfe, and R. C. Brandt, Solid State Commun. 9, 2245 (1971).

'A. L. Mears and R. A. Stradling, J. Phys. C 4, L22 (1971).
C. J. Johnson, G. H. Sherman, and R. Weil, Appl. Opt. 8, 1667 (1969).

'W. P. Dumke, M. R. Lorentz, and G. D. Pettit, Phys. Rev. B S, 2978 (1972).
R. E. Fern and A. Onton, J. Appl. Phys. 42, 3499 (1971).
J. Batey and S. L. Wright, J. Appl. Phys. 59, 200 (1986).

"D.T. F. Maple, J. Appl. Phys. 35, 1879 (1964).
'M. Sondergeld, Phys. Status Solidi B 81, 253 (1977).
"A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593 (1967).
k S. P. Kowalczyk, E. A. Kraut, J. R. Waldrop, and R. W. Grant, J. Vac. Sci. Technol. 21 482 (1982).
'American Institute of Physics Handbook, 3rd ed , edited by D. . E. Gray (McGraw-Hill, New York, 1982), pp. 9—74.

American Institute ofPhysics Handbook, 3rd ed , edited by D.. E. Gray (McGraw-Hill, New York, 1982), pp. 6—12.
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bulk value of the momentum matrix element p, and the
transverse relaxation rate y, are used as follows:
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2p~g =28.9 eV (Ref. 23),
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FIG. 16. Exciton oscillator strength of GaAs/Alp 3Gap 7As,
GaAs/A1As, and GaAs/ZnSe DQW's normalized by the value
of bulk GaAs.

10

DQW is favorable for getting a large exciton binding en-
ergy over the whole range of the well widths.
GaAs/Alo 3Gao 7As DQW's have a smaller exciton bind-
ing energy than the others. These results agree well with
the general features clarified in Sec. III because ZnSe has
a smaller dielectric constant and larger carrier masses
than GaAs, while Alo 3Gao 7As has similar values of the
dielectric constant and carrier masses to GaAs.

Figure 16 shows the calculated oscillator strength of
the excitonic transition for Alo 3Gao 7As/GaAs,
A1As/GaAs, and ZnSe/GaAs DQW's. The general be-
havior of the oscillator strength is similar to that of the
exciton binding energy, although the difference in the os-
cillator strength among three materials is smaller than
that in the binding energy.

The absolute values of y' ' for Alo 3Gao 7As/GaAs,
A1As/GaAs, and ZnSe/GaAs DQW's are shown in Fig.
17 as a function of the well width. In this calculation, the

fiy, =2 meV (Ref. 4) . (5 3)

10
I t

'I

i

\

\

~/ GaA

The spectral width b, in (4.7) is assumed to be 2Ay, and
the dimensionless frequency factor ho(Q) in (4.16) is set
to be unity. This calculation corresponds to the case
where the longitudinal decay is purely radiative and thus
the well-width dependence of y' ' is the same as that of
the oscillator strength. The GaAs/Alo 3Gao 7As QW
with a well width of 114 A ( =a~ ) yields y' '=0.06 esu
which agrees well with the experimental value. Very
large g' ' values can be achieved using a ZnSe barrier and
reducing the well width.

Now the calculated results will be presented for GaAs
DQW's with insulators as the barrier layer. The exciton
binding energies of GaAs/CaF2 and GaAs/NaC1 DQW's
are given in Fig. 18 as a function of the well width. The
three curves correspond to three dielectric constants of
the barrier medium of 2, 5.6, and 6.8 which are e of
both NaC1 and CaF2, eo of NaC1, and eo of CaFz, respec-
tively. The straight line in the figure gives the room-
temperature energy. These curves were calculated using
the infinite barrier model, because the band discontinui-
ties between GaAs and these materials are unknown.
Since these materials are both insulators and are con-
sidered to have very large band discontinuities with
GaAs, the infinite barrier model is appropriate for these
materials. Very large values of the exciton binding ener-

gy are obtained for both cases and the strong dependence
on the dielectric constant of the barrier layer is demon-

Gao -, As

L

GaAsiNaCI

0.01
0.0 1.0

Well width L

2.0
0.0

I I I I

1.0

Well width L (aa)

2.0

FIG. 17. Calculated third-order nonlinear susceptibility of
GaAs/Ale, Gae 7As, GaAs/A1As, and GaAs/ZnSe DQW's.
These results are obtained by assuming that the longitudinal re-
laxation is dominated by the radiative decay which is directly
related to the exciton oscillator strength.

FIG. 18. Exciton binding energy of GaAs/NaCl and
GaAs/CaF2 DQW's. The static dielectric constants ee of NaC1
and CaF2 are 5.6 and 6.8, respectively, and the optical dielectric
constants e„ofNaCl and CaF2 are both 2.0. An infinite barrier
model is used for the calculation, since the band discontinuities
for these materials are not well known.



12 372 MASAMI KUMAGAI AND TOSHIHIDE TAKAGAHARA

1000

bQ

tlat
L

L0
CU

tll

100 =

0.1 =

1
0.0

I I I

1.0

Well width L (as)

2.0
0.01

0.0 1.0

Well width L

2.0

FIG. 19. Exciton oscillator strength of GaAs/NaCl and
GaAs/CaFz DQW's normalized by the value of bulk GaAs.
Material parameters used in the calculation are given in Table
V.

FIG. 20. Calculated third-order nonlinear susceptibility of
GaAs/NaC1 and GaAs/CaFz DQW's. The calculation used the
same assumption as in Fig. 17.

strated. In this case, the absence of saturation of the ex-
citon binding energy for very thin layers reAects the
infiniteness of the barrier height. As mentioned above,
the curves corresponding to e and eo give the maximum
and minimum values of the exciton binding energy, re-
spectively.

Figure 19 shows the oscillator strength of the excitonic
transition in GaAs/CaFz and GaAs/NaCI DQW's. The
well-width dependence is similar to that of the exciton
binding energy; however, the dependence on dielectric
constant is not so strong as that of the exciton binding
energy. The absolute values of g' ' of these samples are
given in Fig. 20 as a function of the well width. In these
materials also, very large y' ' values can be expected.

Table VI summarizes the exciton binding energy, oscil-
lator strength, radiative lifetime, and g' ' of GaAs
DQW's with a well width 1.=0.2az (=23 A) for various
barrier materials. DQW materials are clearly very
promising for large exciton binding energy and large os-
cillator strength, and fast response time and large non-
linear susceptibility g' '.

Up to now, only DQW's with GaAs as the well materi-
al have been considered. However, there is no reason to
restrict the well material to GaAs alone. Any material
can be chosen as the well material for DQW's, and the
key parameters are the energy of the excitonic transition,

the exciton binding energy of the original material, and
the feasibility of fabrication. For large exciton binding
energy, a CuCl/Capz DQW seems favorable as a practi-
cal example. Also, DQW's with II-VI—compound semi-
conductors as the well material are favorable, because
they originally have a large exciton binding energy in the
bulk state.

Very recently, Ishihara et al. reported the excitonic
properties of the two-dimensional perovskite semiconduc-
tor (C,pHz]NH3)zPbl4. This material consists of PbI4
layers sandwiched between alkylammonium layers and
has a typical DQW structure. They argued that the
eff'ective dielectric constant of PbI4 layers is 13, while
that of the organic layers is about 2. In their sample, the
PbI4 layer has a thickness of 0.3a~, where a~ is the exci-
ton Bohr radius in bulk PbI2 and the measured exciton
binding energy is 12.3 Ry*. Since the band discontinui-
ties and the efFective masses of thd alkylammonium are
unknown, the infinite barrier model is employed in the
calculation. Using the dielectric constant ratio
(e, /ez=6. 5) and the well thickness (0.3azt ), we estimate
the exciton binding energy to be 15.5 Ry*, which agrees
well with the experimental value. The enhancement fac-
tor of the oscillator strength relative to the bulk value is
calculated to be 36, which agrees quite satisfactorily with
the experimental value 41. They also observed the depen-
dence of the exciton binding energy on the barrier thick-

TABLE VI. Calculated binding energy E, oscillator strength F,g, radiative lifetime T~, and third-
0

order nonlinear optical susceptibility y"' for the GaAs DQW's having 23-A (=0.2a~, where a~ is the
exciton Bohr radius in bulk GaAs) -thick GaAs layer and barrier layers of Alo 3Gao „As,A1As, ZnSe,
CaF2, and NaC1. The eo or e in parentheses is the dielectric constant of the barrier material employed
in the calculation.

Barrier material

Alo 3Gao 7As (eo)
s {eo)

ZnSe (eo)
CaF, (e )
NaC1 (e )

E' (mev)

15.7
22.0
39.9
98.3
98.3

F
40.3
58.8
65.6

151
151

T, (psec)

211
144
129
56.2
56.2

y"' (esu)

0.42
0.61
0.68
1.6
1.6
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ness through the n dependence for (C„H2„+iNH3)2Pbl~
by varying the length of the alkylammonium chain.
They found an increase in the exciton binding energy
with increasing n. This may be interpreted as the effect
of the multiple quantum well (MQW). Although in our
theory only a single-quantum-well (SQW) case is con-
sidered, the effect of the MQW can be simply deduced.
In MQW structures, the carrier confinement effect, the
carrier mass effect, and the dielectric confinement effect
are all reduced because the wave functions and the elec-
tric force lines extend through several layers Thus, the
exciton binding energy becomes larger with increasing n,
approaching the value of the SQW case which corre-
sponds to n = ~.

VI. SUMMARY AND CONCLUSION

In this paper, the fundamental physics determining the
excitonic properties in DQW s is clarified and, as a conse-
quence, the guiding principles for designing DQW struc-
tures with optimum excitonic properties are obtained. (1)
Exciton binding energy can be changed by varying the
barrier height through the carrier confinement effect. In
addition, the oscillator strength of excitonic transition
and the nonlinear optical properties can be enhanced by
enlarging the barrier height. (2) The carrier masses in
barrier layers also affect the excitonic properties through
the penetrating wave function. In general, the barrier
material with heavier carrier masses yields a larger exci-
ton binding energy, larger oscillator strength, and larger

In this case, it is more effective to use barrier ma-
terials with heavy mass for the lighter carrier (electron)
than for the heavier carrier (hole). (3) The dielectric con-
stants of barrier layers affect the screening of the
electron-hole Coulomb interaction and play an important
role in determining the excitonic properties of the DQW.
The excitonic properties are enhanced substantially by
decreasing the barrier dielectric constant. Combining
these general features, we can design the excitonic prop-
erties in DQW's to a great extent.

Some practical examples of DQW's have been pro-
posed with GaAs as the well material. Here, ZnSe, which
is a semiconducting barrier material, was shown to be one
of the most favorable and promising materials. This is
because it has a lattice constant nearly matched to GaAs,
and has a smaller dielectric constant and larger carrier
masses than GaAs. Furthermore, we can achieve a com-
plete lattice matching by employing ZnS Se& „with a
tiny amount of sulfur, ' or ZnSe/ZnS„Se, strained lay-
er superlattice. '

Among the insulators, NaC1 and CaF2 are very favor-
able as barrier material of GaAs DQW's, because they
have small dielectric constants and cubic lattice struc-
tures with a lattice constant nearly matched to GaAs.

This paper has considered the DQW structures ex-
clusively. However, there is no reason to be limited to
the DQW structure. Any structure with a heterointer-
face is expected to show enhanced excitonic properties.
For example, even a single heterointerface can be expect-
ed to show the effect of dielectric confinement and
effective-mass confinement. The quantum-well structure

with different barrier materials on each side may also
enhance excitonic properties. A thin single heterointer-
face can be considered as a DQW with a vacuum (air)
layer as one of the barriers. Vacuum (air) is one of the
best materials for the barrier of DQW's, because it has
the smallest dielectric constant.

Furthermore, the DQW effect can be expected in other
low-dimensional structures, namely quantum wires and
quantum dot structures. Semiconductor microcrystallites
are attracting much attention from both theoretical
and experimental points of view. In zero-
dimensional structures, the dielectric confinement and
the quantum confinement effects are working in all space
dimensions and thus the DQW effects appear significantly
enhanced.

Finally, we would like to mention other applications of
the DQW structure. Generally speaking, the DQW
structure changes not only the excitonic properties but
also many other material properties, such as the mobility
of the carrier ( ~ 1/m *), the CR time constant ( ~ e), and
the Frohlich interaction [(I/e —I/eo)'~ ]. These prop-
erties play important roles in determining the perfor-
mance of electronic devices as well as optical devices.
Furthermore, the DQW structure is also effective for con-
trolling the radiative lifetime, not only through the
change of the oscillator strength mentioned in this paper,
but through the change of the density of optical modes
which depends on the electromagnetic dielectric constant
of enlosing medium.

In conclusion, the DQW structure is a unique material
whose excitonic properties can be controlled to a great
extent by changing the band discontinuity, carrier mass
ratio, and the dielectric-constant ratio. This material
whose has a large possibility to synthesize the novel prop-
erties which can be appropriate to our individual applica-
tions.
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APPENDIX A: COULOMB INTERACTIONS
IN DIELECTRIC QUANTUM WELLS

This Appendix derives the Coulomb interaction be-
tween charged particles in dielectric quantum-well struc-
tures. The most general case will be considered in which
the dielectric constants of the well layer (region I), the
left-hand-side barrier layer (region II), and the right-
hand-side barrier layer (region III) are given by e&, e2, and
e3, respectively, as shown in Fig. 21(a). First of all, we
calculate the electrostatic potential set up by a charged
particle in the DQW structure. The discontinuity of the
dielectric constant induces polarization charges at the in-
terfaces. This polarization effect can be simply incor-
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-L/2 0 L/2

(b) The potential in region II (left-hand-side barrier lay-
er) is given by placing image charges eo, e'i, and ez, . . . at
zo, z„and zz, . . . and at the same time by regarding the
whole structure as having a common dielectric constant
ez. The charges [e„'I (n =0, 1,2, . . . ) are determined as

Z3 Z2 Z-$ Zo Z1 Z2 Z3

2Ep
e„'= + e„, n =0, 1,2, . . . (A4)

Z-]Z 4 Z1 Z-2 Z3 Zo Z2

where the charges [e„I are given by (A2).
(c) The potential in region III (right-hand-side barrier

layer) is given by placing image charges eo', e" „and
e" z, . . . at zo, z 1, and z z, . . . and by regarding the
whole structure as having a common dielectric constant
e3. The charges [e"

„ I (n =0, 1,2, . . . ) are given as

FIG. 21. (a) Schematic structure of a general three-layer
DQW. Typical configurations of the real and image charges are
shown for the cases when a charged particle is in the well layer
(b), and in the right-hand-side barrier layer (c). The original
charge is indicated by an open circle and the induced image
charges are given by solid circles.

porated by the method of image charges. However, in
this case there is an infinite series of image charges due to
the presence of two interfaces. The position of these im-
age charges is given by

z„=nL+( —1)"zo, n =0, +1,+2. . . , (A 1)

wher e zo denotes the position of the original charge, L is
the thickness of the well layer, and the z axis is taken to
be perpendicular to the interfaces. Three cases will be
discussed separately depending on the position of the
original charge.

Case I. The charged particle is in the well layer [region
I in Fig. 21(a)]. A typical configuration of image charges
is plotted in Fig. 21(b).

(a) The potential in region I is given by placing image
charges e+1 and e+z, . . . at z+1 and z+z, . . . , respective-
ly, and at the same time by regarding the whole structure
as having a common dielectric constant E, . The charges
[e„J(n =+1,+2, . . . ) are determined from the continui-
ty conditions for the electrostatic potential and the nor-
mal component of the displacernent vector at the inter-
faces. The results are given as

~n +1
e+z(n+1) =5 eo ~

2E3e"„=— e „,n =0, 1,2, . . .
1 E3

(A5)

n =0, 1,2, . . . . (A6)

(b) The potential in region II is given by placing image
charges e „e1,e3, and ez, . . . at z, , z „z3,and z~, . . .
and by regarding the whole structure as having a corn-
mon dielectric constant ez. The charges e, and [ez„+,I
(n =0, 1,2, . . . ) are given as

e
E1 EP 4E1EP E1 E3

n =0, 1,2, . . . . (A7)

(c) The potential in region III is given by placing image
charges eo, e" z, and e"4, . . . at zo, z &, and z 4, . . .
and by regarding the whole structure as having a com-
mon dielectric constant e3. The charges [e"~„I
(n =0, 1,2, . . . ) are given as

where the charges [e
„ I are given by (A2).

Case II. The charged particle is in region II.
(a) The potential in region I is given by placing image

charges e1, e3, and e5, . . . at z1, z3, and z~, . . . and eo,
e' z, and e' 4, . . . at zo, z z, and z 4, . . . , respectively,
and by regarding the whole structure as having a com-
mon dielectric constant e, . The charges [ez„+,I and
[e' z„I(n =0, 1,2, . . . ) are determined as

2E1 E1
—

E3 2E1

1 2 1 3

(A2) 4E1E3e' "eo, n =0, 1,2, . . . .
(e, +ez)(e, + e3)

(AS)

Ep~ne z„—,=g eo,
E1+EP

n =0, 1,2, . . . ,

E1 EP E1 E3

E1+EP E1+E3
(A3)

where e&& is the original charge at zo. The quantity g is
defined by

Case III. The charged particle is in region III. A typi-
cal configuration of image charges is plotted in Fig. 21(c).

(a) The potential in region I is given by placing image
charges eo, ez, and e4, . . . at zo, zz, and z4, . . . and e' 1,
e' 3, and e' 5, . . . at z 1, z 3, and z 5, . . . , respective-
ly, and by regarding the whole structure as having a com-
mon dielectric constant et. The charges [ez„I and
[e' z„&I (n =0, 1,2, . . . ) are given as
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I 2E1
n

+ g epE)+E3

2E E1 1 2~n
E)+E3 E] +E2

n =0, 1,2, . . . . (A9)

Ie 2„,J (n =0, 1,2, . . . ) are given as

]. E3 4E1E3 E 1
E2'

"eo,

(h) The potential in region II is given by placing image
charges eo, e2', and e4', . . . at zo, z2, and z4, . . . and by
regarding the whole structure as having a com-
mon dielectric constant e2. The charges [ e 2„I ( n

=0, 1,2, . . . ) are given as

4E(E2e2„= g"eo, n =0, 1,2, . . . .
61+62 E1+'E3

(A 10)

(c) The potential in region III is given by placing image
charges e, , e „e3, and e ~, . . . atz, , z, , z 3, and
z 5, . . . and by regarding the whole structure as having a
common dielectric constant E3. The charges e, and

I

n =0, 1,2, . . . . (Al 1)

Having obtained the electrostatic potential induced by
a charged particle in the DQW structure, we can derive
the Coulomb interaction between charged particles by
calculating the potential at the position of a charged par-
ticle set up by another charged particle. For the
electron-hole Coulomb interaction, we have six diff'erent
interactions according to the position of an electron and
a hole. Here, regions I, II, and III will be denoted by C,
L, and R, respectively. Letting Hc,„„b(r„rh)represent
the Coulomb interaction between an electron in region 2
and a hole in region B, we have

2gn

'1+'3 .=0 ~1 I (r,
~~

—r~~~)'+ [z, +zh (2n +1)L]
E)

CC~Coulomb e h X„&1[(r,
()

—
rl, (~~)

+(z, —
zl,

—2nL) ]

LLH ( oulomb (

E] e~P
~1+~2 =Q &1I("

~~
"h~)) +[z +zh+(2n +1)L]

2

&2[(&.
~~

—
&1,~~)'+(Z, —

Z~ )']'"
E] e

El+ F2 E2[(re~~ Ppl ) + (z, +zg +L ) ]
4E )E2 E) 2gn

(c +1E ) 2&1+E3 =o E2I (r,
~~

rll ) + [z,—+zl, —(2n + 1)L] I

(A12)

(A13)

~RR
2

Coulomb( e& h )
E3[(r,

~~ rz~~)
+(z—, —zz ) ]

LC~c..l. b(&, &1 )=—

LR
~Coulomb( e& h )

CR
(.oulomb( er h )

E) E3 e
+~3 ~3[(.,„—.„,)2+(z, +., —L )']'"
4E)E3 E) E2 e~P

(e, +e3) &1+&2 „oe3I(r,
~~

—
rh~~) +[z, +zh+(2n+1)L] I'~

QO 2gn

&1+&2 „(1[(r,
~~

—
rq~~) +(z, —zq 2nL) ]'~—

2 E1 E3 e~P
~1+~3 =0 [(1'

l Phii) +[z +zl (2lg + 1 )L] )

4E) oo e 2gn

(~1+~2)(~1+~3) =0 [(r
~~

rh~~) +(z zg 2nL) ]
oo 2 ll

&1+&3 „=0[(r,
~~

—
rh~~) + z, —

zl,
—2nL) ]'

2 e g"
~1+&3 &1+&2 „(1[(r,l

—
rh~~) +[z, +zh+(2n +1)L] I'

(A14)

(A15)

(A16)

(A17)

From the invariance of the Coulomb interaction under the exchange of sign of charges, we can show that
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HC~oulomb(re rh ) HCoulomb(rh re ) HCoulomb( e h ) HCoulomb(rh e } a HCoulomb(re h ) Coulomb( h r, }. U» g
these relations, we can obtain the electron-hole Coulomb interaction for aH configurations of electron and hole posi-
tions.

Finally, for the sake of completeness, the self-energy due to the image charges will be given. The z coordinate of an
electron or a hole will be denoted by zo. Then we have the self-energy H„l&(r)of a charged particle in region I as

2elL
„ l n 2@i el+@3 „0I2zo —(2n +1)LI 2@i el+ez „oI2zo+(2n + 1)LI

Similarly for charged particles in regions II and III, we obtain

e ~1 &2 1 2E ie 61 63
2

2&2 &l+&2 12zo+LI (El+Ez) el+@3 „oI2zo —(2n +1)LI

e &1 &3 1 2E 1e 6'1 E'2
2

gn
H„lr(r)= — +

2~3 el+~3 12zo —LI (e, +e, )' e, +e, „0I2z, +(2n+1)LI

(A18)

(A19)

(A20)

For the case @2=e3, which is discussed in the text, the electron-hole Coulomb interaction and the self-energy are writ-
ten as

q„e

LC
HCoulomb(re~ rh }

Coulomb e~ h y
[( )2+[ ( 1)n ]2]l/2

2c q„e
~1+~2, =o &lI(r,

~~
rh~~) +[z, ( 1}zh nL] ]

(A21)

RCH Coulomb ( re ~ rh }
qne00

l+~2 „=,e, I(r,„—rh„)'+[z,—( —1)"zh+nL]'j'" (A23)

IRH Coulomb ( re rh )

2
2E'1

E'1+ E2

00 q2ne

„=0e'l[(r,
~(

—
rh()) +(z, —

zh
—2nL} ]' (A24)

RR
Coulomb ( re & rh )

2
261 q2n+1e

„=0el [(,
~~

—
h~~

+[z, +zh+(2n +1)L] I'
2e2 qie

~2[("e~~ "h~~) +(ze h } ] ~2[("e~~ "h~~) +(ze+zh L} ]
(A25}

LL RRH Coulomb ( re ~ rh } H Coulomb ( re ~ rh } (A26)

qne

2@i Izo —( —1)"zo+nLIn =+2, +3, .

2 2

2~ 12z, +LI 2& l2z, LI— (A27)

qie
2.,I2.,—I.

l

H„,f(r) =H„,f( r), —

2261 q2n+]e
+El2„O(E l6+)I22zo+(2n +1)LI (A28)

(A29)

where q„is defined by

61+6'2
(A30)

and is related to g in (A3} as

The relations (A26) and (A29) are derived from the mir-
ror symmetry with respect to the z= 0 plane.

APPENDIX 8: DISCUSSION
ON THE BOUNDARY CONDITIONS

FOR THE EFFECTIVE-MASS EQUATION

There are two methods of solving the one-particle state
in the finite well. One is the conventional eigenvalue
method which uses the stationary Schrodinger equation
matching the energy eigenvalues in the well and the bar-
rier regions. The other is the variational method which
calculates the energy expectation value for the whole re-
gion and minimizes the value. These two methods yield
difFerent solutions in general, depending on the continuity
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condition for the wave function and its first derivative.
To see this situation more closely, the general derivation
of the boundary condition is given below.

Here, we consider the case in which the whole space is
divided into parts, and in each region the Hamiltonian is
given by

, V +u(r),
2mi

(81)

where m;* is the e6'ective mass of the particle in region
V;. The corresponding Hamiltonian density h is given by
a functional of the wave function g and its derivatives,
1.e.,

fi 0*V'0+4*u 0

(82)
for the region V;, where the prime (double prime) means
the first (second) derivative with respect to the spatial
coordinates. Then the energy functional to be minimized
1s given by

f h(0 4' 0" it* 0" 0' )«
E[4 W*l=

f,P"0«
where the region V consists of a number of subregions
rI;5

We get the first variation as

5Ef /*/dr= f (h&5$+h&5$'+h& 5g" Eg'5$—)dr+ f (h, 5$*+h + 5f'+h +-5P* E$5$—*)dr,

where h& is defined by

(84)

(85)

Using the Gauss theorem, we can rewrite (84) as

5Ef g /dr= f [h& (Vh& )+—(V h& ) Eg" ]5gd—r+ f [h& 5/+V(h&-5P) 2(Vh&—-)5$]der
V V S

+ f [h, (Vh + )+—(V h +-) Eg*]5$'—dr+ f [h, 5/*+V(h„, 5g*)—2( Vh, -) 5$'"" )da .
v S

(86)

Substituting the Hamiltonian density (82) into (86), we have

g2
5Ef P'/dr= g f — V +u E $5/*dr—+ g. f —,Vi+u E$*5gdr—

I I

+yf V — "
1t 5y —2—

S,. 2';
g2

, Vf' 5g do,2' .
(87)

where S; denotes the surface of the region V;. The eigenfunction of the Hamiltonian 0 is determined from the sta-
tionarity condition

6E=0. (8&)

Then, we obtain the Schrodinger equation

Q2

, V +u EQ=O, —
2fPZ I.

with the following boundary condition: '

fig f V — $*5$ —2 — ViI'j* 5g der =0 .
E I

For the one-dimensional problem, this condition reduces to

Q2
(5g)

dx . . +)+0

(89)

(810)

2Hz x(,. +, —0 2112 I' + ] x,-,. + )+0
.=0

7 (811)

where x;;+, stands for the coordinate of the interface between the ith and (i +1)th regions, and the suffix +0 ( —0) in-
dicates the right- (left-) hand side of the interface. If we suppose the independence of 5g at the interfaces, we can drop
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the summation over the suffix i in (811)and obtain

(&g)
1

(&i}'j)
2m;+(

l

2~i+1 x, , +)+0
=0 . (812)

Pl... . ,
—o=4~'„„+0 (813)

the boundary condition (812), is consistently satisfied by
imposing

These conditions for the effective-mass wave function are
quite general and are applicable to the case in which the
effective-mass wave function is not continuous at the in-
terfaces. If we assume the continuity of the wave func-
tion as

i

and from the eigenvalue method of the Schrodinger equa-
tion. This discrepancy arises from the failure to satisfy
the minimal constraint (814) associated with the con-
tinuity condition (813). In fact, when we adopt (813) and
(814) consistently, we obtain exactly the same solutions
from both approaches.

For a more general form of the boundary condition
given by

a b

1 df 1 dg (814)
c d itj x, , +) —0

(816)

7

x. . + I
—0 d& x. . + )+0

(81S)

we find different solutions from the variational method

This continuity condition has the same form as that de-
rived by Bastard, and is employed in the text.

When we employ the continuity condition (813) and a
boundary condition

the boundary condition (812) yields a constraint, i.e.,

m;
(ad bc) =0 .— (817)

However, the condition (812) cannot determine a, b, c, or
d any further without going into details of the material
structures. Thus the condition (812) provides a minimal
constraint which any model of the boundary condition
for the effective-mass wave function must satisfy.

APPENDIX C: CALCULATION OF THE EXPECTATION VALUE OF THK HAMILTONIAN

Here, details of the calculation of various energy terms in Sec. II are presented. The expectation value of an operator
X for the excitonic state in (2.21) is defined by

((X))= f f f [Ap, (z, )fh(z+)g(r~~ z zh)]'X. [A@,(z, )gz(zh)g(r~~ z zp )]dr~~dz dzp (Cl)

where the integration is taken over the whole region. The Fourier transform of the function g is introduced to reduce
the dimension of numerical integration:

(1) Calculation of the normalization constant A. The normalization constant A is necessary to calculate the expecta-
tion value (Cl) and is determined by the following equation:

1=f f f f g2q (z )2g (z )&

n (k +1)z
Using the relations

'2

f e '~ ' drll (2~) 5 2akll) 5(k~~)

(C3)

(C4)

and

m. (k, +1)
we can reduce (C3) to
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1=(4 )f f 3 Q, (z, )g„(„)(pi,—
„

i+ —,
' )e ' " d, d„. (C6)

In the integrand, g is a simple exponential function or a cosine function, and the integration can be carried out analyti-
cally.

(2) Calculation of the kinetic en-ergy term. The kinetic energy can be written as

(e) (h)
Ekin Ekin +Ekin

fz

() f f f f +V'+"i)d")idled "h X () f f f f +Vh+"i)d")idled (C7)

where the suffix j specifies the region V in which the effective mass is constant. Using the identity for a scalar field P
and a vector field A,

V ((I}A)=P(V.A)+ A (V((}),

the first term of (C7) can be rewritten as

g2
E„',„'=—g, , f f V, ()pV, '(Ii)dV, dzh+g, , f f (V, %) dV, dzh,

(C8)

(C9)

where the volume element is defined by d V, =r)~dr~)d Hdz, . Applying the Gauss theorem to the first term, we have

$2„., f f +V,+ds, dzh+ g ",
, f f (V,e)'dV, dzh, (C10)

where o. is the surface of the region V and dS, denotes the surface element. Substitution of the expression of 4 in
(2.21) into (C10) leads to

A AEk;„—g ()) f f (geVegephg +QefhgVeg)dSedzh

A A+ g (,) f f, (ah(Vef, )'g' —O,'WhgV'eg +V, (0efhgV, g)ld~, dzh

A A„,f f.P, V, P, Phg'dS, dzh

A A+ g "
",

, f f fph(V, Q, ) g p, g„gV,g—]dV, dzh . (Cl 1)

Clearly the first integral in (Cl 1) vanishes due to the boundary conditions (2.17) and (2.18). Thus, we have

A 2 2

Ev&n= X (i) f f fh(Vere) g dVedzh f f PefhgVeg dI'edzh
j 2me

(C12)

The second term of this expression can be reduced in a similar way to that used in (1). Finally, the electron kinetic en-

ergy can be expressed as follows:

A A

(,) f f fyh(V p ) g dr), dz dzh
2me

2m AA z 2 2p(k~~ +1) (2 zh) pl, zh I
+ I &(k(( + 1 —)'"

2 'J' k + 1) Q me
II

(a —P )kz~~
—P (a +P )k~)+P

k
ii
+ I ' (k

ii
+ I )

(C13)

The first term can be calculated analytically. The second term can be integrated over z, and zz analytically, and the
remaining integral over k~) is achieved numerically. The hole kinetic energy, namely the second term of (C7) can be cal-
culated in exactly the same way.

(3) Calculation of the Coulomb interaction term. The Coulomb interaction energy can be expressed as

Eco io b f f f & 'e!ehg'Hco lo bdr)~dz dzh (C14)

To reduce this expression to a more tractable form, it is useful to introduce the Fourier transform of g in (C2) and
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Hc „i,b. Here, the Fourier transform of Hc,„i,b for the CC case (both electron and hole are in the well) will be de-
rived. The results for other cases can be obtained similarly.

The Coulomb interaction Hamiltonian Hc,„i,b for the CC case is given by (2.8), and can be expressed as

IIeau&0mb ( CC)
n=0

n=0

n=0

Using the relation

1 e'"
dk

2~ k

2e q2n

e, [(r,
II

—
rh

II
) + (z, —zh —2nL) ]'

2e q2n+

(
II "II) +["+'~ —(2& +1)L]'I '"

2e q2„+2
e, I (r,

II

—
rhII) + [z, —zh+2(n + 1 )L] I

'/

2e q2n+l

&]I(r,
II

rhII) +[z, +zi, +(2n +1)L] I

(C15)

1

2~2

ik z

dkz e
' "ll 'lldk

1 P 1 I IIII&l+
e (C16)

(C15) can be rewritten as

—2(n+1)(kL+g) ) & & —2(n+l)(kL+g)~~~+e e Jdkll

where k =
lkII I, rII =r,

II

—
rhII, z & =max(z„zh ), z ( =min(z„zi, ), and g is defined by

E'2

(
—

vy)InIq„=

oo
1 ikll. rll~

—(z& —z& )k 2„(kL+&)~ (z& +z& )k (2„+l)(kL+&)
~ Coulomb +e e

2&El „O
(C17)

(C18)

Summing up the four geometric series, we have

;q ., cosh[(z ( +L /2)k +g/2]cosh[(z & L/2)k —g/2]—
dk

'il'E
i k sinh(kL +g) (C19)

The integration in (C14) over rII, z„andzi, can be achieved analytically in the same way as in (1) and (2). The remaining
integral over k is achieved numerically. Finally, for the sake of completeness, the Fourier transforms of the Coulomb
interaction for other cases are given as follows:

LC ikII rI (L/2+z, ik+q/2 Cosh[(L/2+zh )k +1/21
dk

~(e, +@~) k sinh(kL+g) (C20)

~RC~~ Coulomb

~LR~~ Coulomb

e2
ll lie e /q cosh[(L /2 —

zh )k +q/2]
dk

~(e, +a~) k sinh( kL +g )

2 [(L/2+z )k +g/2] I (L/2 —z )k +g/2]
'~ll 'll e ' e

dkll,
m(e, +@~) k sinh(kL +g) (C22)

~RR~~ Coulomb

—lz, —z„lkik .r
II II

27TE2 k

—(z +z~ —L)k

27TE2 El + E'2 k
dk

2 —{z,+z~ )k
e' ll II

~(e., +e.~)~ k sinh(kL +q) (C23)
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