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The electronic band structure of the InAs-GaSb superlattice is studied within the localized-
orbital framework by the renormalization method. The tight-binding Hamiltonian includes spin-
orbit coupling and an accurate description of the composing crystals near relevant band edges. The
tight-binding renormalization-group method is described in detail, and is shown to be conceptually
simple and operatively efficient. The superlattice band structure is calculated for several unit-cell
widths, and the semiconductor-semimetal transition is analyzed. A negative indirect band gap ap-
pears for long-period superlattices; its origin and the effects of band anisotropy and spin-orbit split-

ting are discussed.

I. INTRODUCTION

The InAs-GaSb superlattice’? has very interesting
electronic properties because the relatively large valence-
band offset makes it possible to produce a coexistence of
spatially separated electron and hole two-dimensional
gases,” and to tailor the optical gap over a wide range.*
Although some calculations propose a staggered hetero-
junction,>® accepted values of the valence-band offset
place the bottom of the InAs conduction band lower in
energy than the top of the GaSb valence band,*” % in the
so-called “broken gap” configuration.

It was soon recognized that such an unusual lineup
opens the possibility for a semiconductor-to-semimetal
transition® with increasing superlattice period. The tran-
sition is experimentally well established by Hall measure-
ments and Shubnikov—de Haas oscillations!® and by far
infrared magnetoabsorption:!! it takes place at a critical
width of the InAs slab of about 100 A, the GaSb thick-
ness having a minor role. This was predicted within
simplified tight-binding model,® and confirmed by k-p
calculations. >!* These works exploit a simple quantum
size effect in the motion along the superlattice axis: as
the wells thickness increases, the lowest superlattice elec-
tronlike band approaches the bottom of the InAs conduc-
tion band, and eventually it passes below the highest su-
perlattice holelike band, which in turn is raising toward
the top of GaSb valence band.

In order to assess the true semimetallic character of the
superlattice, however, a detailed analysis of the three-
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dimensional band structure is needed.'* The large size of
the unit cell prevents direct use of the traditional
methods employed in bulk band-structure calculations:
for instance, ab initio self-consistent calculations per-
formed in the pseudopotential framework are restricted
to thin or ultrathin superlattices,6 and also a simple
tight-binding scheme, followed by direct diagonalization,
can cope just with medium-size supercells.!> Also the
empirical-pseudopotential approach on folded band struc-
ture, '® though recently applied also to large-period super-
lattices, !’ seems to require a considerable computational
effort. The study of the three-dimensional band structure
in the long-period regime was thus performed by a Har-
tree self-consistent calculation within the envelope-
function approximation, leading to the conclusion that
the semimetallic behavior is due to extrinsic effects. 4

In this paper we consider a microscopic description of
the InAs-GaSb superlattice Hamiltonian in terms of lo-
calized orbitals, and we show that it is possible to obtain
the electronic structure, without restrictions on the su-
percell size, by means of the renormalization method. '
We find that the interplay of band anisotropy and spin-
orbit splitting has important effects on the superlattice
band structure, leading to a significant negative indirect
band gap and hence to an intrinsic semimetal behavior
for long-period superlattices.

In Sec. I1, we give a brief overview of the techniques in
current use for the study of the large-period superlattice
problem, namely the envelope-function approxima-
tion!>” ' and the tight-binding complex-k method! (a
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closely related approach is provided by the transfer ma-
trix,? either in the k-p formalism?' or in the tight-
binding Green-function framework??); we then discuss
the motivations of the renormalization and its main
features and advantages. In Sec. III, we describe the pa-
rametrization of the Hamiltonian, which has been ob-
tained by modifying a semiempirical sp>s* model** with
nearest-neighbor interactions in such a way to include the
spin-orbit coupling®* and to reproduce correct effective
masses?®> at the Brillouin-zone center. In Sec. IV we
present and discuss our theoretical results together with a
comparison with experimental and theoretical work in
the literature. Section V contains the conclusions.

II. METHODS OF CALCULATION
FOR LONG-PERIOD SUPERLATTICES:
THE RENORMALIZATION APPROACH

The study of the semiconductor-semimetal transition
in the InAs-GaSb superlattice poses a rather demanding
theoretical problem because of the large size of the unit
cell. Before presenting in detail the renormalization
method, it is worthwhile to briefly summarize the other
theoretical tools devised for this kind of problem, togeth-
er with an overview of advantages and limitations.

A. The envelope-function approximation |

An appealing way to overcome the supercell size prob-
lem is provided by the envelope-function approximation.
The model starts from a k-p-type Hamiltonian,?¢ which
is quadratic in k, and accurately describes a few relevant
bands of a given bulk material near the band extrema of
interest. The superlattice wave functions are expressed as
the product of a cell-periodic part (rapidly varying in
space) and a multicomponent envelope function, which is
smooth on the atomic scale. Then the wave-vector com-
ponent along the superlattice axis, say k,, is replaced by
the differential operator —i d /dz; this produces a set of
Schrédinger-type differential equations for the envelope
function, where the potential has the periodicity of the
superlattice, and computational labor is independent of
the supercell size. Band anisotropy?’ and spin-orbit in-
teractions®® can also be included.

The approximation of separating variations on the
atomic length scale from those on the envelope-function
scale is a valid one only for slowly varying potentials.
Since this is not the case for the superlattice potential
near the interfaces, the solutions are found within each
composing material in the superlattice unit cell, and
matched by suitable boundary conditions which assure
continuity of the envelope function and conservation of
the current density.

These boundary conditions, however, completely over-
look the microscopic description of the interfaces, and
are justified only when the constituent materials have
similar band structure. Moreover, the model Hamiltoni-
an works properly in an energy range which is often
smaller than the actual region of interest. Within these
limitations, the envelope-function approximation, when-
ever applicable, gives a reasonable picture of the basic
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properties of superlattices; at present, considerable in-
terest is drawn by its ability to include in a simple way
the effects of magnetic fields. %’

B. The complex-k method

In order to overcome the intrinsic limitations of the
envelope-function approximation, the microscopic de-
scription of the crystal must be recovered. A most fruit-
ful microscopic scheme is the localized-orbitals formal-
ism, and the problem of the supercell size can be success-
ful met with the theoretical tools of the complex-k and
renormalization methods.

The complex-k method!’ rests on two main physical
ideas. (i) For a fixed energy, if the crystal wave function
is assigned on a small number of adjacent atomic planes,
the transfer matrix allows the wave function to be calcu-
lated on all the other planes, one (or few) at a time; one
thus sees that with an energy-dependent basis set the
number of basis functions is small. (ii) In a bulklike re-
gion, the bulk complex band structure allows the wave
function to be known at once in the whole region.

Operatively, the method is devised to find a superlat-
tice state at a time. A wave vector q parallel to the su-
perlattice planes and a trial energy E are fixed, and all the
bulk eigenstates with those q and E are found for both
materials; these states will have, in general, a complex k,
component along the superlattice axis: a nonzero imagi-
nary part of k, characterizes decaying states. Then an
energy-dependent basis set is built. For instance, one
may define the superlattice wave function by its (arbi-
trary) coefficients on an appropriate number of atomic
planes, and then propagate it to the whole supercell by
using the transfer matrix at the interfaces and knowledge
of the bulk states in bulklike regions. Alternatively, one
may expand the superlattice wave function in each ma-
terial into the corresponding bulk states:!° this procedure
doubles the number of basis functions, but avoids the use
of the transfer matrix (if the interfaces are abrupt and the
flat band approximation is made) and simplifies the evalu-
ation of the Hamiltonian matrix. The Hamiltonian ma-
trix is then expressed in the energy-dependent basis and
diagonalized. The eigenvalue closest to the initial trial
energy E is then chosen to restart the whole procedure,
which is repeated until convergence is achieved.

C. The renormalization method

The methods developed to solve the superlattice
Schrodinger equation within a microscopic description
scheme start, in general, from the calculation of the bulk
band structure of the composing materials. The renor-
malization method!'®3%3! is unique in that it works in real
space directly on the superlattice problem, and provides a
manageable description in terms of the standard layer or-
bitals ®,,(q). Here q indicates the (k,,k,) components of
the superlattice Bloch vector k, i.e., k=(q,k,), z being
the growth axis of the superlattice; / labels the layers of
the unit cell (atomic planes can always be grouped in lay-
ers, in such a way that interlayer interactions are restrict-
ed to nearest neighbors); and finally, A labels the » in-
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dependent orbitals on each layer (we assume for simplici-
ty that n is the same for every layer). On the layer orbital
basis, for a given k, the Hamiltonian H of a superlattice
composed of N, layers of material 4 and Ny layers of
material B has a block-tridiagonal form with corner ele-
ments which take into account the Bloch boundary con-
ditions:

H, C Cle ™
cl H, c,
H(q,k,)= cl
HN~1 CN*I
Cye" cl_, Hy

(1)
Here N =N 4+ Np, and d is the supercell width. H,; and
C; are n X n matrices which depend on q:

[H/(qQ)] »=( @, \(qQ)|HI|®;;(q)) ,
[CHQ =P (QH|P; 1 3(q)) .

Notice that the z component of the superlattice Bloch
vector appears only in the corners. From now on, the q
dependence will be implicit. The Hamiltonian H of Eq.
(1) is also represented in a schematic way in Fig. 1.

The renormalization method is meant to find the
Green function G(E)=1/(E —H) on a given layer [,
i.e., the nXn submatrix G,(E) with elements
(@,,|G(E)|®;.); the trace of G,(E), whose imaginary
part is proportional to the local density of states on layer
1, has a simple pole for each energy corresponding to an
eigenvalue of H. In fact, because of the overall periodici-
ty, all states are in general extended and have a nonzero

()

part A part B
A N

unit  cell

FIG. 1. Schematic representation of the block tridiagonal
Hamiltonian (1) as a linear chain: H,, are the on-site interac-
tions, and C,, are the hopping matrices between sites m and
m +1. Phase factors e * embody the Bloch boundary condi-
tions.
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(though possibly small) contribution on each layer.

The renormalization procedure arrives at the Green
function G,(E), on a given layer /, avoiding the impossi-
ble task of direct inversion of the large matrix E —H:
this purpose is achieved by introducing an n Xn self-
energy matrix 3 ,(E) such that

1 1

G = H —S(E) E-HaE)

(3)

The calculation of the energy-dependent self-energy
operator is performed via partitioning techniques;'® it in-
volves only an appropriate use of the Dyson equation.
Formal aspects have been discussed elsewhere;>C we focus
here on relevant technical aspects, and in particular, we
provide here for the first time a stable algorithm for the
calculation of wave functions, and not only of eigenval-
ues.

The calculation of H 4(FE) is performed by successive
decimation of all layers but that of interest. For instance,
let layer m be eliminated; a modified, or renormalized,
Hamiltonian H'®(E) is then defined on the remaining
layers. In the renormalized Hamiltonian, the matrix ele-
ments H,, and C,, are removed, and the following matrix
elements are modified:

1

H»(anlem—1+Cm~1'E’-TI}—CL—1 ’
m

1

H,(nRL:HmHﬁLCLﬁCm , 4)
m
1
Cr(nR—)lzcm——lE__H Cvm
m

[it is assumed that possible values of the indices O and
N +1 are replaced by N and 1, respectively; it is also as-
sumed that Cy is multiplied by the same phase factors as
in (1)]. Notice that, since the superlattice spectrum is
discrete for a given k, we can take E as a real number, so
that the renormalized Hamiltonian H ‘®(E) is Hermitian;
for physical systems with a continuous spectrum, like
surfaces and single interfaces,®”33 a positive imaginary
part € must be added to the energy E, and Egs. (4) must
be generalized to the non-Hermitian case.

Numerical calculation of Egs. (4) requires only the in-
version of the small matrix E — H,, (plus matrix multipli-
cation and addition). The physical meaning of the per-
formed elimination is that the renormalized Hamiltonian
and the original one are equivalent for the calculation of
the Green function on the remaining layers.

It is easily seen that the block-tridiagonal form of the
Hamiltonian is preserved by Egs. (4), so that the pro-
cedure can be iterated. Successive single-layer elimina-
tions are analogous to repeated transfers of the wave
function using the transfer matrix; however, the renor-
malization is numerically stable even after many itera-
tions, while, in general, the transfer-matrix algorithm is
not. This circumstance would be of interest in the case of
large disrupted (non-bulk-like) regions, for instance if
band bending were considered in some extent.

In bulklike regions a substantial improvement of the
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efficiency is obtained eliminating simultaneously every
other layer. We have implemented a program code
which exploits in a simple way this local symmetry, along
the following lines. Consider sites 1 through N, of the
ring-shaped linear chain represented by Hamiltonian (1),
and suppose that matrices H;=H , and C;=C, in ma-
terial A are independent of the layer index /. We allow
only H, and H, N, to be different from the bulk value H 4

(this situation is always met after single-layer elimina-
tions of disrupted interfacial zones, if any). Let us now
define N, as the index of the rightmost preserved layer of
part A: at this stage, N, =N ,; it can be assumed that N,
is an odd number [if it is not, layer N, is removed using
Egs. (4) and the desired situation is recovered without
changing the form (1) of the Hamiltonian]. Now all the
layers with even index from 2 to N, —1 are simultaneous-
Iy eliminated by the following simple generalization of
Eqgs. (4):

1
H(]R —H1+CAﬁ;CT

1 (5a)
HP =Hy +C]| =, C,

for the boundary layers, and

1 1

H{=H,+C, _E—:H—ACL +CLE‘:‘:CA ,
1 (5b)

CP=Cag—g Ca

for the internal odd layers. Again, only the small matrix
E —H , has to be numerically inverted; this time, howev-
er, (N,—1)/2 layers are removed in a single step. Equa-
tions (5) can be iterated, possibly after a single layer elim-
ination, to make odd the number of preserved layers in
material A. As a result, a small number of renormaliza-
tions of the order of log,N 4, reduces the whole part A4 of
the supercell to the single layer with / =1.

Treating part B along the same guideway (it is now
convenient to define N, as the leftmost preserved layer in
part B), one is left with layers 1 and N. The last step is
the calculation of the effective Hamiltonian H 4(E) by el-
iminating layer N; finally, the Green function G,(E) is
obtained by Eq. (3).

The described iterative decimation is very efficient: in
practice, it is possible to scan the energy range of interest,
looking for poles of the Green function. The method
presents a remarkable advantage in the calculation of
band dispersion along k,; namely, until layers 1 and N
are preserved, all the operations of the renormalization
procedure are mdependent of k, (i.e., C Ne “" is never in-
volved): it is only the very last step which mampulates
k,-dependent matrix elements, and which has to be re-
peated, with minor additional labor, as k, is changed.
We can thus obtain as a by-product the k,-projected su-
perlattice bands.

Another important novelty of the present paper is to
provide a stable and efficient algorithm for the study of
localization properties of superlattice states. For this
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purpose, we have devised the following procedures. The
first one, which is stable, simply repeats the whole de-
cimation, preserving in turns different layers of interest;
however, it would highly desirable not to repeat all of the
calculation from the very beginning for each layer. At
first sight, a possibility seems to propagate the local
Green function (and hence the wave-function amplitude,
from the residue at the pole) to successive layers, in close
similarity with the transfer-matrix approach. Like the
transfer-matrix algorithm, however, this procedure is not
numerically stable, so that it can be carried out only for a
few tens of layers. Suppose we have eliminated all layers
but those with indices m and m +1: the Green function
can be calculated there, but now we want to find it on
layer m +2. We indicate by the schemes (a) and (b) in
Fig. 2, respectively, the renormalized Hamiltonians in
which only layers m and m +1, and layers m, m +1, and
m +2, are preserved. All renormalized matrices in (b)
are assumed to be known. We can formally pass from the
scheme (b) to (a) in Fig. 2, eliminating layer m +2 by
Egs. (4); this formal relation can be mverted and solved
for the three unknown matrices Hm , HR) ., and CR),,
whose expression is:

I7(R) — gy (R) _ (R)
Hm =H, Cm+1H(R) —H Cm+1 ’

m+1 m+1

1

HR,=g-Cc!  ———-———C (6)

(R) __ m+1

Hm+1 Hm+1
(R) — ot ___1____~ (R)
Cm+2-"cm+1 Cm+1 .
Hm+l m+1

Now layer m is eliminated in (b), again by Eqgs. (4): we
have thus the possibility of evaluating the Green function
on layer m +2, and of continuing this procedure to layer
m +3, and so on.

The above procedure is not numerically stable and it is
thus of limited help. However, we have been able to
overcome numerical problems with the following algo-
rithm. In order to describe it, we look for the Green
function on a couple of adjacent layers at an arbitrary po-
sition within the unit supercell, say on layers m and
m + 1. As schematically shown in Fig. 3(a), we divide the
unit supercell in part S _(m =+ 1), which contains all lay-
ers with index less than m +1, and part S (m), which

(a) (b)

A(R) +

/‘ Cmva
/ ‘m\\ /_ o \ (R}

l ”nnl ”nnl
NP N
C::)&I CE,R,).Z

FIG. 2. Schematic representation of the renormalized Hamil-
tonians acting (a) on layers m and m +1 and (b) on layers m,
m +1, and m +2; matrices without the superscript (R) are the
same as in the original Hamiltonian (1).
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unit cell III. THE TIGHT-BINDING MODEL HAMILTONIAN

S.(m+1) S, (m) Semiempirical tight-binding schemes have been widely

used to study a variety of semiconductor layered struc-

() ! 2 m-1 8 mel me2 Né‘ CN) tures with moderate computational requirements. The

) 0 O - 0O © O main bulk features are reproduced by judicious adjust-

ment of the independent matrix elements of the model;

] ; N relevant situations in semiconductor microstructures,

®) O S mD+ O such as relaxation, alloying, strain, and interface dipoles

FIG. 3. Partition of the unit-supercell into S_(m +1) and
S, (m). Circles in (a) indicate the N layers of the supercell; by
introducing the renormalized Hamiltonians H'®(m +1) and
H'®(m), the system is reduced to layers 1, m, m +1, and N in-
dicated by squares in (b).

contains all layers with index larger than m. We now
manipulate part S_(m +1) by single-layer elimination
[Egs. (4)] of layers 2,3, ...,m —1, thus obtaining the re-
normalized Hamiltonian H'®(m +1) which is defined
only on layers 1 and m. Similarly, in part S, (m) we suc-
cessively remove layers N —1,N —2,...,m +2, and cal-
culate the renormalized Hamiltonian H'®(m) acting on
layers m +1 and N. At this stage the whole unit super-
cell is reduced to layers 1, m, m +1, and N [Fig. 3(b)],
and it is described by a renormalized Hamiltonian ex-
pressed in terms of H'®(m +1),H® (m) and the in-
teractions among S _(m +1) and S, (m), namely C,, and
CNelk‘d (see Fig. 1). Four renormalizations are still re-
quired to find the Green function on layers m and m +1.

The motivation of obtaining H'®'(m +1) and H® (m)
by successive elimination of single layers is that if we also
need the Green function on layers m +2 and m +3, we
do not have to restart the procedure from the beginning.
In fact, H®(m+3) is readily obtained
from H®(m +1) by simply removing layers m and
m+1 in part S_(m +3); furthermore, H'® (m +2)
is already known, if we store the partial results of the
already performed successive elimination of layers
N—1,N—2,...,m+2 in part S (m), i.e.,
the renormalized Hamiltonians H'® (N —2),H & (N
—3),...,H®(m). As a result, the calculation of the
Green function at every layer of the unit supercell re-
quires a total of 4N renormalizations.

The renormalization method is very satisfactory from a
conceptual point of view: it unifies the treatment of
different situations such as interfaces and disrupted and
bulklike zones in the simple formalism summarized in
Egs. (4) and their generalization (5); each step of the
iterative elimination procedure has a transparent physical
meaning in terms of a renormalized Hamiltonian acting
on the preserved layers. In the new implementation
along the lines here described, the method is extended to
the evaluation of the wave-function amplitude and to the
very easy determination of the k,-projected band struc-
ture.

are easily included in the model, giving correct physical
trends. In a number of cases, tight-binding calculations
have provided a valuable predictive guide to the main
physical properties of the problem at hand, which have
been confirmed by more realistic ab initio calculations.

Following a widely used parametrization scheme,?’ we
describe the bulk InAs and GaSb crystals by a nearest-
neighbor interaction tight-binding model with sp3s* or-
bitals per atom. However, we have several different re-
quirements on the parametrization; it must include spin-
orbit coupling and give an accurate account of the energy
bands and effective masses near the fundamental gap.
Notice that with the sp3s* spin-orbit model the matrices
H, and C; defined in Eq. (2) are of order 10X 10 for the
(001) grown superlattices.

In Ref. 23, the independent matrix elements are fitted
to the known bulk band energies’ differences at the sym-
metry points I and X, neglecting spin-orbit coupling. In
a superlattice, on the contrary, one is usually interested
in energies near the fundamental gap of the constituent
materials, and it is thus important to give an accurate
description of the bulk band dispersion in that region, in-
cluding the spin-orbit coupling. Thus we have to find an
alternative parametrization procedure, suitable to our
purpose.

For this purpose it seemed natural to start from the
k-p model.?® The k-p method features are as follows:
use of the cell-periodic part of the bulk Bloch functions at
a given k, as a basis set; quadratic expansion in k—kg;
and restriction to a few bands in a selected energy range,
other bands being possibly considered by second-order
perturbation. The same procedure can be explicitly car-
ried out for a tight-binding Hamiltonian at the I" point.
Analytic relations between tight-binding and k-p quanti-
ties are thus obtained. In order to change the original pa-
rametrization of Ref. 23 as little as possible, we exploit
only two of these relations, modifying the tight-binding
independent matrix elements in such a way to reproduce
the values of the Luttinger parameters ¢, and y, given by
Lawaetz?® (Luttinger parameters Y1 Y2 and y; describe
the dispersion of heavy- and light-hole bands in the k-p
formalism). The modified tight-binding parameters, list-
ed in Table I, produce also values of y; and m,, the
conduction-band effective mass, in good agreement,
within typical uncertainties of these parameters, with
Lawaetz’s ones. %’

We describe the superlattice Hamiltonian in the flat
band approximation: diagonal terms in GaSb are shifted
by the valence-band offset Eypo. This very important
quantity is taken as an empirical input parameter. In or-
der to compare our results with Ref. 14, we set
Ey3o=0.57 eV. The resulting bulk band structures of
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TABLE 1. Tight-binding parameters for InAs and GaSb, in
eV. Notations are as in Refs. 23 and 24. These parameters
place the top of the valence band at 0.0 eV both in InAs and
GaSb. The Luttinger parameters ¥,;, ¥, and ¥; and the
conduction-band effective mass m,, calculated from our tight-
binding model, are also listed. For comparison we report in
parentheses the values taken from Ref. 25.

InAs GaSb
E(s,a) —9.5381 —7.3207
E(p,a) 0.7715 0.5949
E(s*,a) 7.4099 6.6354
E(s,c) —2.7219 —3.8993
E(p,c) 3.5817 2.6541
E(s*c) 6.7401 5.9846
V(s,s) —5.6052 —6.1567
Vix,x) 1.8398 1.5789
Vix,y) 49419 4.8261
V(se,pe) 3.7914 6.1569
V(Se,Pa) 6.7934 5.7937
VisS,p.) 3.3744 4.9895
V(sX,p) 3.9097 4.2180
A, 0.421 0.973
A, 0.392 0.714
Y 19.67(19.67) 11.8(11.8)
Y2 8.37(8.37) 4.03(4.03)
Y3 9.13(9.29) 5.04(5.26)
m, 0.024(0.023) 0.050(0.045)

InAs and GaSb near the fundamental gap are displayed
in Fig. 4; the energy zero is taken at the top of InAs
valence band.

The interaction parameters across the interfaces are
taken equal to the bulk values?® for InSb and GaAs, re-
spectively; this choice has a noticeable effect on some of
the results to be presented, showing the importance of the
microscopic features of the interfaces even for large-
period superlattices. A related problem is raised by the
values of the number of layers N, and N [in InAs-GaSb
(001) superlattices, with only nearest-neighbor interac-
tions, a layer is formed by a single atomic plane of either
anions or cations]. If N, and N are even numbers, both
interfaces between In and Sb atoms and between Ga and
As are alternatively present. If N, and Ny are odd, the
same pair of atoms, either In and Sb or Ga and As, occur
at each interface. As expected this ‘“‘microscopic”
difference in the interfaces affects the electronic structure,
mainly (but not only) for small-period superlattices. We
do not pursue further this question, and present only re-
sults obtained with N , and N even.

IV. RESULTS FOR THE InAs-GaSb (001) SUPERLATTICE

In this section we present our results, with the aim to
clarify the physical mechanisms which drive the onset of
the semimetallic behavior. Although some quantitative
features of the reported band structures are to be taken
with caution, because they are very sensitive to the value
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FIG. 4. Bulk band structures of InAs and GaSb near the fun-
damental gap, calculated by the tight-binding parameters
displayed in Table I. The zero of the energy is taken at the top
of the InAs valence band.

of the valence-band offset Eypo, the mechanisms of in-
direct gap formation are to a large extent independent of
it. The choice of interaction parameters across the inter-
faces can have small, but not negligible, effects on the su-
perlattice band structure: if we replace values reported in
Table I by a mean from InAs and GaSb parameters, we
have changes in the superlattice band dispersion of the
order of the meV. This is rather surprising, in view of
the large number of layers in the unit supercell. The im-
portance of the microscopic structure of the interfaces is
supported by the wave-function amplitude, which often
shows a strong asymmetry with respect to the center of
the slab of (for instance) GaSb, as a consequence of the
difference between the two interfaces; this asymmetry of
course disappears for superlattices with odd values of N ,
and Np.

Figure 5 illustrates the evolution of the N , =Ny super-
lattice band structure versus the supercell width. Here
the wave-vector components q parallel to the superlattice
planes are zero, and the dispersion along z is projected.
Mixing and anticrossing behavior occur; anyhow, far
from mixing regions, it is possible to retain the overall
distinction between the almost dispersionless heavy-hole
bands and the light-particle ones, with noticeable band-
width even for large-period superlattices. As the super-
cell size increases, holelike states raise toward the top of
the GaSb valence band, and the electronlike states ap-
proach the bottom of the InAs conduction band. The
lowest electronlike band E1 passes below the highest
heavy-hole band HH1 for N =66, in close agreement
with the experimental value of about 100 A for the
semiconductor-semimetal transition.



FIG. 5. Evolution of the superlattice band structure for
q=1(0,0) versus the unit-supercell size; the dispersion along k, is
projected. Dashed lines indicate the top of the GaSb valence
band and the bottom of the InAs conduction band; the dotted
line is simply a guide for the eye to the evolution of the lowest
InAs electronlike subband E1.

This critical width is very sensitive to the valence-band
offset. This is expected on the basis of simple quantum
size considerations of light and heavy particles; near the
top of the GaSb bulk valence band, and for q=(0,0), the
dispersionless heavy-hole bands behave like discrete lev-
els of the one-dimensional motion in a quantum well with
infinite potential barriers; even changing the valence-
band offset to 0.52 eV, !? their position with respect to the
“well top” (the GaSb valence-band maximum) does not
change by more than 1 meV. On the other hand, the
light electrons in E1 are not near the “well bottom,”
which is now the InAs conduction-band minimum; they
can be confined by lower barriers only if the superlattice
period is increased. As a result, for instance, with
Eypo=0.52 eV the critical width corresponds to
N, =80.

The classification of superlattice states in terms of
bulklike states of individual composing materials is
justified, in this range of energy, by localization proper-
ties and orbital character. Some examples are given by
the wave-function amplitudes displayed in Fig. 6. The
represented states are in a mixing region of HH4 and E 1.
In Fig. 6(a) the heavy-hole component is prevalent: the
state is almost completely localized in GaSb, where it has
Dy and p, orbital character and it shows a structure with
three nodes, like the fourth energy level of a particle
confined in a quantum well. In Fig. 6(b) the state is more
electronlike: the wave function is mainly localized in
InAs, where s character dominates; however, due to its
light mass, the electron can penetrate in GaSb, where it
induces a noticeable p, amplitude which adds to a
remainder of the three nodes’ heavy-hole contribution.
Notice also the asymmetry of the wave-function ampli-
tude with respect to the center of the slab of (for instance)
GaSb, and the jumps near the InSb interface; it would be
interesting to relate these features to the electronic struc-
ture of the interfaces.

The interchange in relative position of bands E1 and
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FIG. 6. Wave-function amplitudes for the states at (a)
E =0.4986 eV, k=(0,0,47/Na) and (b) E =0.4860 eV,
k=(0,0,47/Na) for the superlattice with N ,=Nz=100 (for
each atomic plane, the plotted quantity is 3, |c;,|?, where c;, are
the coefficients of the wave-function expansion in terms of the
layer orbitals ®;;). Solid and open circles indicate anions and
cations, respectively; planes 1-100 are InAs, 101 -200 are GaSb.

HH1 at q=(0,0) is not a sufficient condition for the onset
of the semimetallic regime: a close inspection of the su-
perlattice three-dimensional band structure is needed.
Figures 7-9 show the superlattice bands near the Fermi
level for k with components q along the [100] and [110]
directions for different unit-cell thicknesses. Dispersion
along k, is projected: notice that this allows a wealth of
information to be synthetically displayed and analyzed.
Besides the strong nonparabolicity of the bands and their
quasi-two-dimensional behavior for large enough values
of |ql, notice the anisotropy with respect to the directions
of q and the lifting of spin-orbit degeneracy present at
q=(0,0): both these effects have a magnitude of several
meV, which is relevant on the superlattice-bands energy
scale.

For N 4 =Npg =64 (Fig. 7) it appears that bands E1 and
HH1 are mixed even at q=(0,0), where a gap of 2.6 meV
opens. For k off the z direction, the superlattice conduc-
tion band starts moving downward; however, the result-
ing indirect gap is exceedingly small (of the order of 0.1
meV) and it disappears altogether as the superlattice
period is increased. These results qualitatively agree with
the conclusions of the envelope-function-approximation
calculation of Ref. 14. However, if the superlattice
period is further increased, something new happens, and
a relevant indirect gap does appear. For N, =Ny =100
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FIG. 7. Band structure of the superlattice with N ,=N; =64
for k off the z direction. Dispersion along k, is projected. The
top of the valence band and the bottom of the conduction band
almost coincide; they are indicated by the dashed line. At
q=(0,0), the two upper bands are a mixing from E1 and HH]1,
and the lower one is HH2.

(Fig. 9), its size has reached 3.5 meV, and the k-space re-
gion where the conduction band lies below the valence-
band maximum is rather large.

We now want to briefly comment on the employed flat
band approximation. The main effect of the Hartree
self-consistent description of the charge transfer from
GaSb to InAs was shown!* to be a raising of superlattice
states mainly localized in InAs, and a lowering of those
localized in GaSb; such an effect is not expected to sub-
stantially modify the balance of spin-orbit and anisotropy
effects and anticrossing behavior that we are discussing.
As for the charge transfer from superlattice valence and
conduction bands due to the presence of the negative in-
direct gap, we note that near the Fermi level [at least in
simple situations such as that of Fig. 6(a)] both these
bands are mainly GaSb holelike states, with some InAs
electronlike admixture in the small mixing region; as a re-
sult, we expect that this effect causes no relevant charge

0.57

0.56

0.55

E (eV)

0.54

0.53

« [110])

q(2n/a)

FIG. 8. Band structure of the superlattice with N 4 =Nz =80
for k off the z direction. Dispersion along k, is projected. The
top of the valence band and the bottom of the conduction band
are indicated by dashed lines. At q=(0,0), the upper band is
HH]1, and the lower ones are a mixing from HH2 and E1.

N 4=Np=100 for k off the z direction. Dispersion along k, is
projected. The top of the valence band and the bottom of the
conduction band are indicated by dashed lines. At q=(0,0),
bands HH1, HH2, LH1, and HH3 are displayed. The parabola
which represents the upward-dispersing electronlike band E1
can be identified (though its bottom is off the scale).
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FIG. 10. Wave-function amplitude for the states at (a)
E =0.5570 eV, k=(0.022,0,0)27/a; (b) E =0.5577 eV,
k=(0.024,0,0)27 /a; (c) E =0.5641 eV, k=(0.026,0,0)27 /a for
the superlattice with N, =Nz =100. Solid and open circles in-
dicate anions and cations, respectively. These states are on the
lower component of the spin-orbit-split superlattice conduction
band (see Fig. 9). (a) is completely holelike, (b) is of intermedi-
ate character, and (c) is electronlike.
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FIG. 11. (a) Schematic representation of the dispersion of a
holelike and an electronlike band: though at k =0 the electron-
like band is lower in energy, the formation of a negative gap is
prevented by the anticrossing behavior. A negative indirect gap
can be obtained by (b) holelike band anisotropy, (c) spin-orbit
splitting, and (d) mixing of several bands. In (b), (c), and (d)
dashed lines indicate the top of the ‘“valence” band and the bot-
tom of the “conduction” band.

transfer in space.

These considerations indicate that, even in the pres-
ence of band-bending effects, the intrinsic semimetallic
character can be explained by the following mechanisms.
In Fig. 9, the parabola (slightly spread by k, dispersion)
which represents the InAs electronlike band E1 can be
recognized. When E1 approaches the GaSb heavy-hole-
like band HH]1, the region of mixing is very small, and
the bands soon recover their original character and
dispersion (this behavior can be quantitatively analyzed
in terms of localization properties and the orbital charac-
ter of superlattice states; for instance, Fig. 10 shows that
the superlattice conduction band is heavy-hole-like before
the mixing region, of intermediate nature where E1 and
HHI1 mix, and electronlike at larger values of q). Then a
key role in yielding the negative indirect gap is assumed
by the holelike bands’ anisotropy and by the spin-orbit
splitting in the way schematically represented in Figs.
11(b) and 11(c). For comparison, notice that for
N 4,=Np =64 (Fig. 7) mixing of E1 and HH]1 occurs in a
wide region near the bottom of the parabola; here q is
small, as well as the spin-orbit splitting and the band an-
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FIG. 12. Band structure of the superlattice with

N ,=Np=140 for k off the z direction. Dispersion along k, is
projected. The top of the valence band and the bottom of the
conduction band are indicated by dashed lines. The negative in-
direct gap size is given by band anisotropy and spin-orbit split-
ting; however, notice that in the [110] direction the conduction
band has a local minimum, which is lower than the valence-
band maximum as a result of the presence of the second elec-
tronlike band E2 [see also Fig. 11(c)].

isotropy shift, so that the effect of anticrossing behavior
prevails, and no indirect gap, or a very tiny one, forms.

The reported results are an illustration of a general
trend verified also with the different parametrization of
the Hamiltonian of Ref. 19 over a wide range of superlat-
tice periods. However, for even larger superlattice
periods the situation can be more complicated. For
N, ,=Nz=140 (Fig. 12), besides the already discussed
effects, we can observe the onset of a different mechanism
capable of giving semimetallic character: the superlattice
valence-band top is for q in the [110] direction, where E2
and HH1 mix; for q in the same direction, we find a local
minimum of the conduction band which provides a nega-
tive indirect gap independent of band anisotropy. This
mechanism can be explained, in terms of crossing among
several bands, in the way schematically indicated in Fig.
11(d).

V. CONCLUSION

We have presented a detailed discussion of the renor-
malization method for the calculation of superlattice
band structure and wave functions; in particular we have
provided a stable and efficient procedure not only for the
calculation of superlattice eigenvalues, but also for super-
lattice eigenfunctions. We have studied, within the
localized-orbital formalism, the electronic structure of
the InAs-GaSb superlattice in the semimetal regime. A
relevant negative indirect gap is found, whose origin is in-
terpreted as an effect of band anisotropy and spin-orbit
coupling. The results of the present paper for the difficult
InAs-GaSb superlattice should stimulate a more
widespread application of the renormalization method
and its concepts in the study of the physical properties of
superlattices and microstructures.
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