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Iterative diagonalization of the Hamiltonian matrix is required to solve very large electronic-
structure problems. Present algorithms are limited in their convergence rates at low wave numbers

by stability problems associated with large changes in the Hartree potential, and at high wave num-

bers with large changes in the kinetic energy. A new method is described which includes the e6'ect

of density changes on the potentials and properly scales the changes in kinetic energy. The use of
this method has increased the rate of convergence by over an order of magnitude for large prob-
lems.

I. INTRQDUCTIQN

The motivation for this work has its foundations in at-
tempts to model periodic ce11s containing many atoms
while using a plane-wave basis. The number of plane
waves required is moderate when modeling a material
such as silicon, but is much larger when some of the
atoms are first-row or transition-metal atoms. The nonlo-
cal pseudopotentials associated with these atoms are
quite deep and require high-wave-number plane waves
to describe the resulting wave functions. The dual re-
quirements of simultaneously describing a large cell
volume and a high kinetic energy lead to an explosive
growth in the number of basis functions. The need for a
new algorithm became apparent when simulations had to
be abandoned due to computational difhculties related to
the 1arge number of plane waves, as well as the charge in-
stabilities associated with large systems.

We outline an adaptation to systems which have ortho-
normality constraints of an iterative conjugate-gradient
method known to be eScient in very large minimization
problems. The practical use of this method has been lim-
ited by the difhculty of determining the exact linear com-
binations of vectors which minimize the total energy. We
describe a simple new technique for minimizing the total
energy in a self-consistent manner.

II. BACKGROUND

The method of self-consistent fields commonly used in
quantum-mechanical simulation is gracefully nonlinear.
In the usual formulation, the wave function of the system
to be studied is expressed as a product of single-particle
eigenstates. The energy of the system is a function of a
set of coeKcients of basis functions. While there exist

many stationary points in the energy, for unpolarized
electrons there are no false minima. As long as the
ground state is not orthogonal to the starting point, the
exact ground state is reachable from any starting set of
coefticients by following a path of decreasing energy.
Since the energy is at least a quartic function of the
coe%cients, no direct method of solution exists and ap-
proximate solutions must be iterated until they no longer
change. To begin the standard procedure, an initial
electron-electron potential is determined by some sort of
guess and a Hamiltonian matrix is generated. The Harn-
iltonian matrix is diagonalized and the lowest eigenvec-
tors are occupied. An electron density and correspond-
ing electron-electron potential are generated from the
solutions, and the process begins again. If one simply
uses the output electron density from one iteration as the
input density to the next, it is found that the process os-
cillates and each new e1ectron density has overcorrected
that from the previous iteration. This overcorrection is
typically handled by averaging the input and output den-
sities in some manner. As one studies physically larger
systems, it is observed that the oscillation becomes unsta-
ble and the new solutions overcorrect the previous ones
in ways that simple density averaging cannot easily over-
come. Higher-order schemes exist to surmount these
difhculties, and their discussion forms a subject by itself.
Most of these methods are reasonably weH conceived and
are useful for the simulation of systems of medium size.
Some of the methods have been designed to partially
overcome the lack of self-consistency in the diagonaliza-
tion of the Hamiltonian matrix by simple wave-vector-
dependent damping schemes, but are approximate. oth-
ers mode1 the dielectric response of the material under
study, using information gained from previous diagonali-
zations of the converging Hamiltonian matrix. The e6'ort
required to model the dielectric matrix is a small part of
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the effort required to diagonalize the Hamiltonian matrix.
While it is unquestionably better to damp the density
changes difFerently for diferent wave vectors than to sim-

ply mix densities, the knowledge of the dielectric
response of the system under study must become much
more detailed for rapid convergence of extremely large
systems which have very many unstable density wave
vectors. These methods have had a great deal of success
in overcoming previously intractable instabilities.

When the system becomes very large, the Hamiltonian
matrix can no longer be stored in the computer memory,
and must be diagonalized by iterative methods. Pioneer-
ing eAorts are those of Davidson, Haydock, Bendt,
%'ood and Zunger, ' and Car and Parrinello. For most
early studies, however, direct diagonalization of the
Hamiltonian matrix was possible. The success of these
early eA'orts led to attempts to solve larger and larger
problems which included full relaxation of the ionic coor-
dinates. In order to allow ionic relaxation, Car and Par-
rinello developed a molecular-dynamics approach to di-
agonalization by developing fictitious equations of motion
for the plane-wave coefFicients and combining them with
equations of motion for the ions. Both ions and electrons
were relaxed together in this scheme. The discovery that
this technique scaled better than direct diagonalization
with increasing numbers of plane waves made the ap-
proach interesting. Payne et al. developed a semiana-
lytic method of integrating the equations of motion
which for some systems allowed an order of magnitude
larger time step to be taken. This method was used suc-
cessfully by Allan and Teter to predict a fully relaxed
crystal structure of SiOz. Williams and Soler' suggest-
ed that since there were no false minima in the electronic
problem, it would be more efficient to adapt the Payne
method to integrating Schrodinger s equation in irnagi-
nary time rather than solving the fictitious second-order
equations of Car and Parinello. The Williams and Soler
adaptation of the method of Payne et al. was considered
to be the method of choice for iterative solution.

All of the iterative methods use vectors which are
products of the Hamiltonian matrix and trial vectors of
plane-wave coefficients. The methods difter in the
manner in which they use the product vectors to mini-
mize the total energy. The single most important feature
of the iterative approach to diagonalization is that these
vectors can be formed extremely efhciently within the
Hohenberg-Kohn-Sham local-density approximation
(LDA). When a plane-wave basis is used, the Hatniltoni-
an matrix can be split into parts which are diagonal ei-
ther in momentum space or in real space. Consequently,
the entire Hamiltonian matrix need never be stored. The
kinetic-energy operator acting on the vector is diagonal
in momentum space. Usually the potential is multiplied
by the trial vector in real space; the result is Fourier
transformed and then combined in momentum space with
the contribution from the kinetic-energy operator. Thus
the formation of the vector, which is the product of the
Hamiltonian matrix and a trial vector, scales approxi-
mately linearly in the number of plane waves.

TypicaIly the electron-electron interaction potential is
updated after changing all of the single-particle wave

functions. The iterative techniques tend to be better
behaved than direct diagonalization for the density over-
correction instability because any single iteration con-
tains only a partial reaction to the potential. For very
large systems, however, the problem of the electron den-
sity overreacting to changes in the potential again be-
comes the limiting factor in solving the problem. One
may choose to model the dielectric response of the ma-
terial in order to properly damp the density oscillations
as in the previously mentioned work of Ho, Ihm, and
Joannopoulos which requires several diagonalizations of
the Hamiltonian matrix with fixed potentials. Since diag-
onalization is the main computational cost associated
with very large simulations, one would like to avoid hav-
ing to perform this task several times. In order to avoid
multiple diagonalizations, a simple scheme which ac-
counts for the self-consistent response of the system un-
der study while iteratively minimizing the energy of the
system is required.

One may also try to defeat the instability by making
smaller changes during the iterative procedure, but the
maximum stable change to a trial eigenvector goes in-
versely as the square of the largest dimension of the prob-
lem. This scaling will be explained later. The onset of
this instability can also be delayed by making smaller
density changes by iterating each trial vector separately
and updating the Hartree and exchange-correlation po-
tentials after each band is changed. Actual trials of this
procedure show a significant increase in the maximum
stable time step for a problem with a very large unit cell,
but the extra computational work of updating the density
and potentials after each band update yields no net gain
in efficiency. If band-by-band updating of the potentials
is to be successful, more intelligent use must be made of
the additional information.

The standard eigenvector equations are derived from
the condition that the first derivative of the total energy
with respect to each of the plane-wave coefficients is zero.
In order to have the proper linear expression for the gra-
dient, the total energy must be correctly expanded to
second order in the coe%cients. This includes the
changes in the total-energy operator due to density
changes as well. The usual matrix equations have as-
sumed a linear expansion in the total-energy operator
with changes in the coefficients, yielding the single-
particle Hamiltonian operator. This is the correct
sing)e-particle operator only if the density does not
change. The proper second-order expansion possesses an
extra set of terms that describes the second-order varia-
tion of the total-energy operator. The neglect of these
terms causes the overcorrection. Although these terms
are well understood, they are universally neglected be-
cause of the practical difficulties of including them.

Any iterative technique confronts two questions. In
which direction should changes be made to a vector of
band coefficients'? How much of the change vector
should be added to the original vector? There are ideal
answers to each question. The ideal direction should be
the difFerence between the trial vector and the exact
eigenvector, and the amount should be just sufficient to
cancel the error in the original vector.
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Unfortunately, one cannot determine the error content
of an arbitrary trial vector. The exact solutions of
Schrodinger's equation minimize the total energy of the
system under the constraints of orthonormalization. One
can therefore calculate the gradient of the total energy
with respect to the plane-wave coeNcients within the trial
vector under the condition that the vector remain nor-
malized, and orthogonal to the other trial vectors. When
the gradient vector is not zero, it is the only practical
measure of error in the original trial vector. It also
represents the vector of changes to subtract from the trial
vector to which will result in the most rapid initial reduc-
tion in the total energy.

The proper amount of an arbitrary vector of changes
to subtract from the original trial vector is that amount
which minimizes the total energy of the system. Since
the exact magnitude of change which will minimize the
energy is difficult to determine, most common iterative
solution methods use a simpler scheme.

Investigation of the exact behavior of the total-energy
variation with changes in the coefficients of a single band
shows that a simple assumption of the form of this varia-
tion can be made. This paper derives a procedure for
parametrizing this form which allows, for the first time,
proper inclusion of all of the second-order effects of
coefficient changes on the total energy. The approxima-
tion gives not only the correct second-order expansion for
small changes in the band coefficients but also allows ac-
curate extrapolation of the results for large changes.

Given an arbitrary vector of changes to a vector of
band coefficients, determining the proper amount of this
vector to subtract in order to minimize the total energy
then becomes easy. When one has a good method of
determining a nearly optimal change vector, one obtains
an efficient self-consistent band-by-band updating pro-
cedure.

A preconditioned conjugate gradient procedure is then
described which generates effective vectors of changes,
and incorporates this form of minimization. This process
updates the approximations for each band, and minimizes
the total-energy contribution from that band subject to
the constraints that the band remains orthogonal to all
other bands and normalized. The preconditioning is
necessary to ensure that the computational effort to solve
a given problem scales favorably with increasing numbers
of plane waves.

This method of solution converges more rapidly than
solving for all bands simultaneously by direct diagonali-
zation. This efFiciency exists for two reasons. The itera-
tion scales better than direct diagonalization with in-
creasing number of plane waves. The density instabilities
associated with direct diagonalization do not occur. This
approach requires one gradient evaluation and one esti-
mate of the change in the Hartree and exchange-
correlation energies for each one-dimensional energy
minimization. It properly includes the changing Hamil-
tonian matrix in the minimization step. There are then
several distinct advantages: it is the fastest iterative diag-
onalization method currently known for large quantum-
mechanical problems; every iteration lowers the total en-
ergy; there are no electron-density instabilities; it requires

no problem-dependent parameters such as times steps or
fictitious masses and it is numerically stable.

III. SECOND ORDER EXPANSION
OF THE TOTAL ENERGY

Assume a plane-wave basis set Ie ' 'j in a box of
volume 0 and sides 1„12,and 13. The G's are reciprocal-
lattice vectors such that 6 1,. =n, , where n,. is an integer.
Initially, only k=0 will be treated. This method is usual-

ly used on multiple k points, and the assumption in the
derivation is not a limiting factor.

Given a set of doubly occupied bands Ig„(r)I which
are expressed as a sum of plane waves,

(r) y C e2~iG r

6

One may write the energy per unit cell of the system un-
der the usual LDA assumptions as

n G G'

—2++A, „gCG CG„—5
m n G

where the A, „'s constrain the bands to be orthonormal.
The total-energy operator E, is

I

E, = —
—,
'V' + V;,„(r)+ ,' f ~,—~

d r'+e„, (p(r)) .
r —r'

Forming a second-order Taylor expansion of the total
energy around a set of band coefficients,

z=z, +gg, 5c,*„

+ —,
' g g g g 5CG„5CGBE

n m G O' BCGn BCG'm

The Gnth component of the gradient of E is

The derivatives appearing in the gradient expression
include not only the explicit dependence of the energy on
the C's, but also the dependence of the total energy on
the density which depends implicitly on the C's. It is the
effect of the derivatives on the density dependence of the
Hartree and exchange-correlation energies which deter-
mines the difference between the single-particle Hamil-
tonian operator H, p

and the total-energy operator E p.
I

H, = —
—,'V + V;,„(r)+p,(r)+ f ~,

~

d'r',
r —r'

where

Be„,(r)p, (r) =E,(r)+p(r)
p r

The Hamiltonian matrix H may be formed by taking
plane-wave matrix elements using the Hamiltonian
operator.

In the Taylor expansion, there is a corresponding
change in the Hamiltonian due to the second derivatives



12 258 TETER, PAYNE, AND ALLAN 40

of the Hartree and exchange-correlation energies with
respect to density.

The additional terms reAect changes in the Hartree and
exchange-correlation potentials with variation in the C s.
If one tries to take this variation fully into account the
problem becomes much larger than the original
eigenvalue-eigenvector problem since all the bands be-
come coupled through the changes in the electron-
electron potential. On the other hand, ignoring this vari-
ation in the potential leads to slow convergence due to
the charge oscillation which was described earlier.

The additional terms are dominated by changes in the
Hartree potential at small wave numbers. The Fourier
transform of the Hartree potential at a given wave num-
ber is proportional to the Fourier transform of the elec-
tron density at that wave number divided by the square
of the magnitude of the wave number. Thus changes in
the electron density can yield extremely large changes in
the Hartree potential as the size of the system increases,
and the size of the minimum wave number correspond-
ingly decreases. Ignoring the changes in the charge den-
sity produced by changes in the wave function produces
larger and larger errors in the Hartree potential as the
minimum wave number becomes smaller. As a trial wave
function interacts with its corresponding potential, it
loses magnitude in regions of high potential and increases
in regions of low potential. Ignoring the changes in po-
tential as the wave function varies causes the solution
process to overpopulate the low-potential regions and un-
derpopulate the high ones. Upon recalculation of the po-
tential, the high- and low-potential regions have inter-
changed, and repetition of this process yields the corre-
sponding low —wave-number oscillation of charge in the
unit cell, commonly referred to as charge "sloshing. "

IV. BAND-BY-BAND MINIMIZATION
OF THE TOTAI. ENERGY

periodic with period ~. Thus an exact parameterization
for the energy as a function of 0 is

E(0)=E,„+g E, cos(2j0)+E, sin(2j0) .
j=l

Since no false minima exist in the total energy within the
unpolarized version of the LDA, the high-frequency con-
tributions must be small. Numerical experimentation
shows that the total contribution to the sum from j
greater than 1 ss typically more than an order of magni-
tude smaller than the j =1 contribution. Figure 1 shows
a plot of the total energy of an 8-atom silicon cell as a
function of 0 when one trial vector is added. The dots
are the exact total energy and the line is the the j =1
contribution. Consequently a very good approximation
of the functional form of E over the entire range of 0 is

E(0)=E„+E,icos(20)+E, &sin(20) .

Three pieces of information are then needed to determine
an approximate minimum of E(0). It is important to un-
derstand that the only part of the total energy which
must be evaluated is that part which depends on 0. This
includes the Hartree energy, the exchange-correlation en-
ergy, the kinetic energy of band m, and the electron-ion
energy of band m. After grouping the last two into a par-
tial Hamiltonian matrix H& which is independent of den-
sity, the part of the total energy which depends upon 0 is

E(0)=f [(C"*cos0+D"*sin0)H, (C" cos0+D"sin0)]

where f is the occupancy of band m, usually 2, and
would include a k-point weight if there were more than
one k point.

Assume that one wishes to minimize the total energy of
the system by changing the mth band subject to the con-
straint that it remains orthogonal to all other bands and
also remains normalized. After n iterations, one has a
current estimate for the mth eigenvector, C', and a nor-
malized vector of changes D" which is orthogonal to all
of the bands including C" . The problem separates into
two parts: how to determine the optimum D" and how
much of D' to add to C" to minimize the energy. Be-
cause D" is orthogonal to all of the bands, the ortho-
gonality constraint is satisfied with any linear combina-
tion of the two vectors. To maintain normality, a simple
convention is to add the vectors according to the scheme

O'+'=C' cosO+D"sinO .

-180

-190

b6

Q

-200

-210

For small 0, the total energy may be expanded in a
simple quadratic function of 0, and, when C" is close to
a minimum, this form is sufticient. %'hen C' is far from
the converged solution, however, large values of 0 may be
required. A better form for the total energy as a function
of 0 is necessary. Since the total energy depends upon
the square of the wave function, the total energy is

8 (rod)

FIG. 1. The total energy of an 8-atom silicon cube in
eV/(unit cell) is plotted as a function of 0. The dots represent
the exact calculation and the line is the lowest harmonic contri-
bution.
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This can be evaluated easily at 0=0 to give one of the
three pieces of information needed. Ifp(r) is expressed in
terms of 0 and the above result is differentiated and eval-
uated at 0=0, one obtains

BE(8)
B0 8=0'

—f (Cne, H. Dn+Dne. H Cn)

=2f Re(D"*.H C"),
where H is the single-particle Hamiltonian matrix whose
operator was defined previously. This is the second re-
quired piece of information. Since H-C must be gen-
erated to obtain D", only a simple dot product is required
to generate the first derivative of the total energy with
respect to 0. If the second derivative of the energy with
respect to 0 were evaluated at 0=0, one would have the
required third piece of information. A count of the
operations required to do this calculation implies that a
better procedure is to evaluate E(8) self-consistently at
some sma11 0. A good compromise is m/300. This value
of 0 is not so small as to yield significant rounding error,
but close enough to zero that the curvature estimate at
0=0 is accurate. This estimate of accurate curvature
around 0=0 is especially important when the trial vector
is nearly converged.

E at vr/300 can be computed by updating the trial vec-
tor for band m, calculating the contribution from the
density-independent Hamiltonian and the changes in the
Hartree and exchange-correlation energies. The density-
independent Hamiltonian is a linear operator. If one be-
gins the nth iteration for band m with H, -C", the result
of applying H, to D" will allow the linear combination of
the two vectors to be calculated both at m/300 and the
final value of 0 which minimizes the energy. H&-C"+'
will then be available at the end of the nth iteration.
Therefore the density-independent Hamiltonian matrix
must be applied once at the beginning of the band itera-
tion and once more for each update. This is a significant
savings since the electron-ion interaction can be compu-
tationally intensive if nonlocal pseudopotentials are used.
The only parts of the energy which must be calculated
twice are the Hartree and exchange-correlation energies,
and to calculate these, only one band density must be up-
dated. The only additional work over an algorithm
which updates the potential after each band update is to
calculate the change in the Hartree and exchange-
correlation energies at 0=m. /300, which is an easy com-
putation. The gain over other band-by-band algorithms
is the minimization of the total energy within the step,
not merely total energy reduction. The increase in com-
putational costs to calculate the changes in this fashion
comes largely from the increase in the number of Fourier
transforms. The number of Fourier transforms per band
goes from approximately three in a method which only
updates the potential after all the bands within a k point
are updated to six per band when the potential is updated
after every band change, and the changes are calculated
self-consistently. Since Fourier transforms only make up
a fraction of the total computational cost, the actual in-
crease per band update is approximately 40%%uo.

This procedure gives reasonable performance when the

vectors chosen are the gradients of the total energy, re-
sulting in a simple steepest-descents algorithm. When
the vectors are chosen to be conjugate to one another, the
rate of convergence increases substantially. The perfor-
mance degrades, however, as the number of plane waves
is increased. Basically, the highest-wave-number plane
waves contribute a disproportionate share to the gradient
because of their high kinetic-energy content. Payne
et al. solved this problem by allowing a semianalytic in-
tegration of the gradient which caused the high-wave-
number components to decay most rapidly and limited
their effect. By preconditioning the gradient one achieves
the same effect by limiting the contribution of the high-
wave-number parts of the gradient.

In the conjugate-gradient method, one minimizes a
function by first computing the gradient of the function.
The gradient is then used to establish a vector of parame-
ter changes which is added to the vector of parameters in
such an amount as to minimize the function. This pro-
cess is repeated, but each new vector is forced to be con-
jugate to previous change vectors. " In practice, for near-
ly quadratic functions, the relative e%ciency of the
method depends upon two factors. The first is the band-
width of the problem. If the eigenvalue spectrum is too
wide, the method will converge very slowly. This may be
easily demonstrated. Assume a nearly converged trial
vector for band m, C, which is made up of a sum of
eigenvectors of H:

The sum represents the error in C . Assuming that the
squares of the e's are negligible, the measure of error
which one actually can compute is the residual vector

H C —A, C = g e(A, ;
—

A, )E, ,
i (wm)

where

=C .H.C

If the k s span a broad range, there is no amount of this
residual vector which may be added to the trial eigenvec-
tor to eliminate the error in C . The exact error vector
may be recovered by multiplying the residual vector by
the inverse of the Hamiltonian matrix shifted by A.

This is not feasible, but if we can multiply the residual by
an approximate inverse, the problem becomes much
better conditioned. This is the concept of precondition-
ing. The approximate inverse need not be very good, but
it is important that it be a positive definite operator so
the projection of the conditioned gradient on the actual
gradient is never zero. With increasing wave number, the
Hamiltonian matrix becomes diagonally dominant, with
the kinetic energy overwhelming any potential terms.
Each high-wave-number plane wave is nearly an eigen-
function of the Hamiltonian matrix. If we denote the ki-
netic energy of a plane wave by

E„;„(Cx)=2' Cx

and the expectation value of this for the mth band,
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Ep„=+CG CG E„;„(G).
G

At G's high enough so that the kinetic energy dominates
the contributions from the potential, and assuming that
the contributions of the potential to the eigenvalues
roughly cancel, the 6th component of the residual vector
described earlier becomes approximately

e, [E„;„(G)—Ek;„]E,G .
i (Am)

A typical example of the requirement of high-wave-
number planewaves occurs in the simulation of Si02 us-

ing nonlocal pseudopotentials. Kinetic-energy cutoffs as
high as 25 hartrees are used to completely converge the
system even though the occupied eigenvalues are only a
few hartrees in magnitude.

One can then precondition the residual vector by mul-
tiplying each component by a function of ~G~ which be-
comes proportional to 1/[Ek;„(G)—EP„] as the magni-
tude of 6 becomes large. The reason for the elimination
of the potential from this operator is to ensure a positive
definite operator. This multiplication roughly removes
the effect of the original Hamiltonian operation on the re-
sidual leaving nearly the original error term for high
wave numbers. Thus most of the errors in the high-
@ave-number coefficients are eliminated together, and the
method scales extremely well with increasing number of
plane waves. At low wave numbers, the Hamiltonian ma-
trix is not diagonally dominant, and there is no simple
way to multiply the residual vector to yield the error vec-
tor. Consequently, one simply lets the function remain
constant at energies below Ek;„.

The second factor which determines the relative
efficiency of the conjugate-gradient method is the compu-
tational effort required to perform minimizations with ar-
bitrary vectors of changes to the band coefficients. As
has been shown, the total energy is a somewhat more
complex function of 0 than a simple quadratic.

Previous attempts by the authors to use the conjugate-
gradient method to minimize the energy succeeded in
generating eigenvectors for simple problems in a few
iterations, but proved impractical because the method
scaled badly with increasing numbers of plane waves and
also the exact one-dimensional minimizations were too
costly. For large steps, the nonquadratic nature of the
energy response required several gradient evaluations to
achieve a minimum energy. These gradient evaluations
could be used more efficiently in other algorithms which
scaled better with increasing numbers of plane waves.

Stich et al. ' describe a conjugate-gradient method in
which the minimizations are less expansive because they
do not update the Hamiltonian matrix when they mini-
mize. This method suffers from the previously mentioned
problem of overcorrection because the curvature is un-
derestimated. The method also has no preconditioning,
so when the maximum allowable kinetic energy is in-
creased, its convergence rate will suffer.

A short description of the preconditioned conjugate-
gradient algorithm applied to constrained systems is now
provided. There are two vectors, one related to the
current gradient after preconditioning which shall be

called G" and another vector which is the previous
correction F' '. Initially F is zero. One forms Cr" by
the following process. Take the product of the single-
particle Hamiltonian matrix and the current estimate of
the band coefficients. One then projects the current band
out of this vector. If this vector were orthogonal to the
remaining bands, it would be the gradient of the total en-
ergy with respect to the present band coefficients,
fulfilling the constraints of orthonormality. These or-
thogonalizations are accomplished implicitly through a
subspace diagonalization step which will be described
later. If the resulting vector is zero, the band coefficients
formed an eigenvector and one is finished with that band.
The residual vector is then multiplied by a diagonal con-
ditioning matrix which reduces the high-wave-number
components while leaving the low wave numbers un-
touched. This constitutes the preconditioning. The con-
ditioning matrix K is

27+ 18x + 12x 2+ 8x 3

27+ 18x + 12x +8x + 16x

where

x =

K approaches x =0 with a value of 1 and has zero first,
second, and third derivatives. This guarantees that the
low-wave-number components of the gradient are left un-
changed. Above x =1, K approaches 1/[2(x —1)] with
an asymptotic expansion correct to fourth order in 1/x.
The factor of —, in E is used to expedite the joining of the
low-x and high-x expansions. This freedom is allowed
since the high-wave-number form of K is only defined to
within a multiplicative constant. At small wave numbers,
the algorithm is a simple conjugate gradient algorithm.
At high ~G~, however, the residual vector has been
transformed to resemble the original error vector. The
effect of the preconditioning, therefore, is to cause all of
the high-wave-number components to converge at the
nearly the same rate. If the preconditioning is not done,
then most of the time is spent making small changes to
the high-wave-number components of the trial eigenvec-
tor.

The trial eigenvectors of all of the bands, including the
current band, are then projected out of this filtered vec-
tor, the result is negated and becomes G'. The nth con-
ditioned residual vector is

R"=—(H C" —
A,

" C" ) K,
where

gn Cen ~ Cn
m m m

The vector passed to the one-dimensional minimization
process must be orthogonal to all of the bands so

G"=R"— g a" „C —a C"
k (Wm)

where
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Typically double precision arithmetic is used to guaran-
tee that after all of this manipulation, the resulting vector
contains more information than rounding error. Then
the vector corresponding to the new direction along
which to minimize the total energy is

F"=G"+y "F'

where

+El 4 Gn

G,n —le, on —i

y1 0

preconditioning step replace Cr with (k+G) . There is
no degradation in the efficiency in that the number of
passes to convergence is reasonably independent of the
number of k points. The total computational effort, how-
ever, goes directly with the number of k points. The ad-
vantage of using many k points is that an infinite material
may be modeled with a small periodic cell. The advan-
tage of this technique is that a large cell may be modeled
requiring many fewer k points, but allowing significant
variations from the symmetry of the perfect material
such as frozen phonons or point defects. The SiO2 exam-
ple in the following section on results was done with four
special points and a 12-atom supercell, but the method is
designed to be useable for periodic cells containing over
100 atoms.

Textbooks on the preconditioned conjugate-gradient
method contain a factor of the inverse of K in the
definition of y to ensure conjugacy. We have not found
this to be necessary. A plausibility argument is that K
and its inverse are 1 for low wave numbers, and the
high-wave-number errors are eliminated on the first few
passes. The minimization is supposed to be performed
using the vector F" which is no longer orthogonal to C"
because of the addition of some of the previous vector.
The minimization procedure described earlier requires a
normalized vector which is orthogonal to our current
band estimate. A component parallel to the current band
vector cannot be added to the band vector with any last-
ing effect since such an addition changes only the magni-
tude of the vector and the vector must remain normal-
ized. The minimization is therefore performed using
another vector D" which is formed by projecting the
band vector C" from F" and normalizing. One achieves
the same result as if the minimization had used F". The
vector D" is used for the minimization. F" is saved and is
used along with G" + ' to generate F'+ '.

After a pass through the bands has been completed, in
which each band has been iterated four or five times be-
fore proceeding to the next band, one then forms the sub-
space Hamiltonian matrix using the orthogonal filled
bands as basis functions. The elements of this matrix are
simply the Lagrange multipliers for orthonorrnality. The
eigenvectors of this small matrix will give the linear com-
binations of the trial vectors which are eigenvectors in
their subspace. This similarity transformation changes
neither the energy nor the density of the system. This
process not only solves any problems associated with
band ordering, but also guarantees that any subsequent
change to one band which lowers its energy will be or-
thogonal to all of the other bands. This is the implicit or-
thogonalization of the gradient described earlier. If the
subspace diagonalization step is not performed, the gra-
dients must be orthogonalized to all of the bands before
preconditioning as well as after. After convergence
without subspace diagonalization, the resulting vectors
will in general constitute a similarity transformation of
the eigenvectors.

To use the algorithm with multiple k points, simply
treat each as an independent minimization problem with
the proviso that each is processed by one pass through
the above algorithm before any are repeated. In the

V. RKSUI TS

Two simulations of silicon were performed which are
known to have problems at either low or high wave num-
bers. Four methods were used in the simulations. The
original method was a time intergration of Schrodinger's
equation in imaginary time using the semianalytic ap-
proach of Payne et al. applied to the first-order scheme
of Williams and Soler. In this method, the Hamiltonian
is updated only after all of the bands are updated. The
other three methods, steepest descents, conjugate gra-
dient, and preconditioned conjugate gradient, all used the
one-dimensional energy minimization technique de-
scribed earlier with three different ways of chosing the
vector of changes to be added to the trial eigenvector.
They also update the Hamiltonian after each band up-
date. The steepest-descents method used the gradient
vector orthogonalized to all the bands. The conjugate-
gradient method used the orthogonalized gradient vector
made conjugate to earlier change vectors. The
preconditioned-conjugate-gradient method added the
preconditioning described earlier to the gradient vector
before applying the conjugate-gradient method. Initial
trial vectors were filled with random numbers and then
orthonormalized. This extreme starting point is a deli-
berate test of the robustness of the algorithms since it en-
sures that every eigenvector of the Hamiltonian matrix
will contribute to the error. Finally, a simulation was
performed of Si02 using only the original and
preconditioned-conjugate-gradient methods.

The first simulation was an 8-atom cube of silicon us-
ing plane wave up to 16 hartrees in kinetic energy. The
normal maximum kinetic energy used to model silicon
lies in the 4—6-hartree region. Many other materials re-
quire much higher kinetic-energy plane waves (Si02 re-
quires plane waves of approximately 15—25 hartrees) and
so it is of interest to observe the robustness of a particular
solution method with respect to increasing number of
plane waves. Figure 2 shows the result of applying the
original method of Williams and Soler and three others.
As may be seen from Fig. 2, each subsequent method was
a substantial improvement on its predecessor. The scales
are diferent for the Williams-Soler method and those us-
ing the self-consistent energy minimization. The number
of iterations plotted is 20 for each of the methods using
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FIG. 2. The total energy error in eU/(unit ce11) of an 8-atom
silicon cube with a 16-hartree kinetic-energy cutoff vs iteration
number for various methods. The scales are different for the
different methods. The number of iterations of the original
Williams-Soler method has been divided by 5 to allow compar-
ison at the same level of computational effort.
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FIG. 3. The total-energy error in eV of a rom of 12 silicon
unit cells with a 4-hartree kinetic-energy cutoff vs iteration
number for various methods. The methods are scaled as in Fig.
2.

the one-dimensional minimization technique, but 100
iterations for the original method. The original method
applied the gradient operator once per time step. The
minimization methods would typically update each band
four times per iteration. The extra calculation to ensure
self-consistency takes some additional time, so the choice
of scales is to make the computation time roughly equal.

The next simulation involves a row of 12 silicon unit
cells with 24 atoms and an energy cutoff of 4 hartrees.
This was originally modeled to investigate the self-
consistent response of silicon to low-wave-number poten-
tial perturbations. The convergence was extremely slow
using the original method. To avoid the charge oscilla-
tions the time step had to be cut by a factor of 150 over
that used in the 2-atom unit cell. Thousands of iterations
were necessary for convergence. As may be seen in Fig.
3, all of the self-consistent energy minimization methods
constitute an enormous improvement over the original
technique and again the preconditioned-conjugate-
gradient method is significantly more eKcient than the
others.

The last simulation was of SiOz and consisted of a 12-
atom unit cell of a-cristobalite. The limit on the kinetic
energy of the plane waves was 16 hartrees. Figure 4
shows the result of the calculation. Again 100 iterations
of the original method were to be plotted versus 20 of the
preconditioned conjugate gradient to roughly normalize
the computational effort. After only 11 iterations, the
preconditioned-conjugate-gradient method had reached
the limit of rounding error of the computation of total
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FIG. 4. The total-energy error in eV of a 12-atom ceil of the
a-cristobalite form of SiO& with a 16-hartree kinetic-energy
cutoff vs iteration number for various methods. The methods
are scaled as in Fig. 2.
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energy. Since analytic expressions for the gradients were
being used, the errors in the wave function continued to
be lowered even though the total energy could not be
computed more accurately.

VI. SUMMARY

A method has been outlined which gives an e%cient
implementation of the conjugate gradient method applied
to the iterative computation of eigenvectors of the self-
consistent Hamiltonian matrix. A simple and eScient
procedure has been outlined which is correct to second
order in total energy for changes in the band coef5cients
and hence completely self-consistent. This technique is
accurate for large changes in the band coe%cients and
also is free from the charge "sloshing" instabilities nor-
mally associated with the solution of very large problems.

The gradient is preconditioned to make the convergence
rate reasonably independent of the number of plane
waves in the problem. The relative efticiency of this
method has been compared to other methods and in-
creases in rates of convergence greater than an order of
magnitude have been observed in large problems.
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