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We investigate the equivalence between the Boltzmann (or 6eld) approach and the particle ap-
proach for the definition of the diffusion coefficient in the presence of electron-electron collisions.
Accordingly, we introduce a "model" collision operator as well as a "model" electron distribution
function which can be used in a one-particle numerical procedure. In this way one can overcome
the difficulties connected with the calculation of the dN'usion coefficient in the presence of electron-
electron collisions within the framework of the particle approach.

I. INTRODUCTION

As is customary in the study of the motion of an en-
semble of particles, two equivalent approaches can be
used. ' The first one (Boltzmann or field approach), by in-
troducing the single-particle distribution function, con-
siders the ensemble as a continuum. The second one
(particle approach), by following the motion of each par-
ticle (pointlike), considers the discretized nature of the
ensemble.

In the theory based on the Boltzmann equation there
are no difficulties in defining the diffusion coefficient in
the presence of e-e collisions. However, the situation
is not so simple in the particle approach, where the ap-
propriate estimator for the diffusion coeNcient in the
presence of e-e collisions is to the best of our knowledge
still missing. In this paper, a proper definition of this es-
timator will be found by establishing a close parallel be-
tween the Boltzmann equation and the particle approach.
Such a parallel will help us in laying down a standard
procedure to include the e-e collisions in the response
problem. Finally, we shall provide a prescription for a
one-particle simulation of the diffusion coefficient, associ-
ated with Pick s law, in the presence of e-e collisions.

The paper is organized as follows. Section II estab-
lishes the parallel between the particle approach and the
Boltzmann equation in the absence of an electric field and
e-e collisions. Then, the inAuence of an external field as
well as of e-e collisions is considered in Secs. III and IV,
respectively. Section V is devoted to the determination of
the appropriate estimator for evaluating the diffusion
coefficient in the presence of e-e collisions. Some con-
clusions are finally drawn in Sec. VI.

II. INDIVIDUAL AND AVERAGE MOTION
OF AN ENSEMBLE OF PARTICLES

IN THE ABSENCE OF AN ELECTRIC FIELD

Let us consider a gas of particles (electrons) colliding
with scatterers in the absence of both an external electric
field and e-e collisions. As usual we assume that the col-
lision duration ht is much shorter than the mean-free-
Aight duration v.. An electron in the gas performs a ran-
dom walk in space changing its velocity v (momentum p)
after each collision. It is well known that this process
can be simulated numerically with desired accuracy, for
example through the Monte Carlo technique. Let us im-

agine an electron with momentum po at time t =0 which,
after a number of collisions, acquires momentum p at the
time t. The intermediate moments p, , p2, . . . , p„and col-
lision times t „t2, . . . , t„(or fiight durations t, —0,
t2 t„etc.) are st—ochastic variables, so that the random
process may be characterized by a probability to find the
electron at time t with momentum p, provided that it had
the momentum po at t =0 and suffered n collisions. Let
us denote this (conditional) probability as P„(p, t

~ po). By
definition, the total probability for an electron to have a
momentum p at a time t is given by the sum over all pos-
sible numbers of collisions:

+(P typo)= g I' (P tlpo)
n=0

Figure 1 provides a diagrammatic representation of Eq.
(l). Here the first term in this series corresponds to the
probability for an electron to travel without collisions
during the time interval t. This probability is given by
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P„(p, typo) is organized quite like Eq. (3) but is more
cumbersome because of many subsequent integrations
over collision times t, , t2, . . . , t„and the summation over
intermediate momenta. To simplify the formula we write
its Laplace transform, P„(p, s

~ po ):

1 1 1

where s is the Laplace variable and the scattering opera-
tor 8'is defined as

I
1

s+1/'f P
in L a place domain

8'x =JR' x ~ .
P

FICx. 1. Diagrammatic representation of Eq. (1). In the rhs
of the figure the open circles represent the scattering operator
and the dashed lines joining two consecutive circles (propaga-
tors) correspond to the probability a carrier has of not making a
scattering with the given momentum.

Now it is easy to sum the series and obtain the expression
for the Laplace transform of the total probability
P(p, s~ po) We h. ave

P(P s~po) X P (p ~~po)
n=0

exp( t /~ ), w—here the scattering rate 1/r is

ws+1/~ „o s+1/~
1 1

s +1/ ~ PPO +1th PPO
'5 = 6

P P

(7a)

and 8' ~ is the transition probability per unit time for
the electron having the momentum p before a collision to
acquire a momentum p' after the collision. Let us write
the first term in Fig. 1 explicitly. It is given by

Po(p, typo) =exp( t/~„)5—

The diagrammatic representation of Eq. (7a) is the same
as in Fig. 1 where, being in the Laplace domain, the prop-
agator is now represented by the factor (s+1/~~) ', as
recalled in the inset of the figure. By inverse Laplace
transformation we obtain

The second term in Fig. 1 represents the process with one
collision at some time moment t, (0(t& (t). The corre-
sponding probability is given by

P P P P P

P&(p, typo)= f dt&exp
0 TP

X g W~~ exp
PI TP

+ /g + ~ ~ ~

dt exp1
TP

8 exp
7p Pp ' Po Po Pp

/X
Po

(3)

By writing Eq. (3) we implicitly have assumed that the
collision duration ht„&& is much shorter than the mean
free flight ~: 1

in L ap lace doma inS

~too&& &+ &p (4)

This is a usual condition of applicability of the Boltz-
mann equation.

The next lines in Fig. 1 with two or more points (ver-
tices) represent the contributions from processes with
two, three, and more collisions. The expression for

FIG. 2. Diagrammatic representation of Eq. (9). In the rhs
of the figure the triangles represent the negative of the collision
operator and the continuous lines joining two consecutive trian-
gles (propagators) correspond to the carrier free Right.
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+ ~ ~ ~

FIG. 3. Diagrammatic representation of the resummation
procedure which connects the propagators of Fig. 1 with those
of Fig. 2.

f~ ( t) =exp( I~ t—)5 ~ (13)

The operator in the left-hand side (lhs) of this equation,
which we denote as I, enters the formulas for the none-
quilibrium state created by the field E instead of the
operator I'". For instance, the evolution of the state with
a given initial momentum po now is described by

P(p, tampa) =exp( I~"t)—5~~ (7b)

I'"x =(1/r —W)x = g (W~~x~ —W~„x~ ) .
P

(8)

The expression (7b) proves that P(p, t~p0) is nothing but
the solution of the Boltzmann equation:

a +I,"" f, (t) =0 (9)

where I'" is the collision operator describing the col-
lisions of electrons with phonons and/or impurities given
by

In the particle approach the inAuence of the external
field is taken into account via the changes in momentum
during the free Aight due to the acceleration of the
electron by the field according to the Newton law p(t)=p+ e Et. The operator e EB/Bp is the displace-
ment operator representing this acceleration: x (t)
=exp( —teEB/Bp)x (0). Since the motion of an electron
is not entirely free but rather a motion with collisions, the
acceleration due to the electric field can be taken into ac-
count by inclusion of the new vertices eEB/Bp into prop-
agator lines in a manner a similar to that shown in Fig. 2.
Such an inclusion can be done either before the summa-
tion over other vertices or afterwards with the same final
result.

with the initial condition f (0)=5„.The identity f (t)PP0

=P(p, t~p0) confirms the correspondence between the
theory based upon the Boltzmann equation and the parti-
cle approach as noticed in Refs. 6—8.

The solution of the Boltzmann equation (9) can be also
represented as a series of collisions and free Aights in a
different way, as is depicted in Fig. 2. In the Laplace
domain the propagators are represented by the factors
1/s according to the series expansion

—Ith
1 1

+Ith (10)

The Boltzmann equation and the particle approaches
differ only in their methods of summation of the series.
Indeed, making use of the identity (see inset in Fig. 2)

—I =8'—th
P

III. INFLUENCE OF AN EXTERNAL ELECTRIC FIELD

The electron gas in an electric field E has the station-
ary distribution function I'p which satisfies the
Boltzmann equation:

we can expand each term (W —1/r )" into series con-
taining difFerent powers of W (represented, as above, by
circles) and —I/r (represented by squares). Then, each
graph in Fig. 2 would contain a different sequence of cir-
cles and squares connected by straight lines. The resum-
mation can be done as is depicted in Fig. 3 and so the
correspondence between the two types of expansion
shown in Figs. 1 and 2, respectively, is established.

IV. INFLUENCE OF ELECTRON-ELECTRON
COLLISIONS

In this case. the Boltzmann equation for the stationary
distribution function in an electric field is

I„F,+S,(F~F)=O, (14)

where S (F~F) is the nonlinear e-e collision term which is
given by

I I

I I
P P]P]

(15)

A small fluctuation of the distribution function evolves in
time according to the same formula as before:

b F ( t) =exp( I"t)b F (0)—
with the linearized response operator I"given by

I"=Ip +Sp (F),

(16)

(17)

The stationary distribution function F does not vanish
under the action of the operator I". Indeed, from the
definition (17) and (18) it follows that

where S (F) is the "linearized" e-e collision operator act-
ing on a function x as

S (F)x =S (F~x)+S (x~F)
I

P P]P]
I

+W, ', F„x —W 'F, x, ) . (18)
p p] P] P PP] p] p

eE +I'" F =I I' =0,
Bp

e being the electron charge.

(12) (19)

On the other hand, by differentiating the Boltzmann
equation (14) with respect to the number of electrons N,



12 212 I.INO REGGIANI et al. 40

we have

BEIee & 0
BX

(20)

Due to the nonlinearity of the Boltzmann equation (14),
the distribution function F is not necessarily proportion-
al to dF„/BN and, in general, it is

BE,F WN (21)

Then, an arbitrary (small) deviation of the distribution
function at t ~ (x becomes proportional not to F but to
B~F/BN (if, of course, it does not vanish at all). In other
words, the expression

f (t) =exp( I~"r)5— (22)

f~(t) =exp( I"t)5— (23)

This new operator, which is a functional of the distribu-
tion function we are looking for, is defined as follows:

I"=I +S (F), (24)

at t —+ ~ does not go to E /X and therefore cannot be
considered as the proper distribution function in this
case.

A proper iterative procedure to find the stationary
electron distribution function in the presence of e-e col-
lisions can be formulated by using a formula similar to
Eq. (22) but with the evolution operator of another form:

agonal part 8 ~ to describe collisions. The simulation of
the process described by Eq. (23) presents no special
problems as compared to the case where e-e collisions are
absent. The diagonal part of the operator S (F), 1/r",
given by

ee
I P P]

P Pip)

(28)

changes (to the due extent) the free ffight duration, and
thus gives the probability per unit time for an electron in
state p to make an e-e collision. On the other hand, the
off'-diagonal part of S (F), W ",, given by

I I

(29)
P lP )

serves to determine the final state p' after an e-e collision
has occurred. Thus, for the particle simulation of the sta-
tionary homogeneous problem we should use the stochas-
tic law of motion described by the operator I"with the
transition rate 8' .= 8""+ 8'"..

These formula show that, for an electron, the other
electrons are simply additional scatterers (the dependence
of scattering rate on the distribution function being quite
analogous, for example, to the dependence of electron
scattering on phonons upon the distribution function of
phonons). Using the expression (23) in this way, we can
obtain (by iteration) the stationary distribution function
E as we have already mentioned and find the drift veloci-
ty of electrons, V:

where

S (F)x =S (x~F)

1V= —g vF (30)

I I

I
P P)P)

(25)

As. long as I"can be considered a linear operator it has
the property

I "E =0
P 5' (26)

may be used to obtain the stationary distribution F
through an iterative procedure. In this way the distribu-
tion function can be obtained by iterating a single-
particle simulation. On the other hand, the expression
(22) should be used, as we have seen above, to describe
properly the response problem in the presence of e-e col-
lisions. As we have seen in the previous sections, expres-
sions of the type of (22) and (23) can be put into
correspondence to a one-particle simulation in which one
should use the diagonal of the momentum part of the col-
lision operator (1/r )5, for the determination of the
free flight or the acceleration by the field and the nondi-

Therefore, the expression (23) can serve to represent the
average motion of an electron. Indeed, at t~ao the
function f (t), by satisfying Eq. (14), tends to F /N and
the expression

E = lim exp( I~ t)5„~—

I I

P 1 P)P l

P lP1

or, due to the indistinguishability of the particles,

(31)

~P P l ~P )P ~P P 1 ~P )P
5'P} PP] P]P P]P

I

W", =2W",—F g W
P i/1

(32)

(33)

We expect that, at least for the majority of cases, 8"~ in
Eq. (33) is a positive quantity; in any case we shall leave
this problem to a future investigation. Let us note that
the expression

~PE (

P 5'1
P Pl

(34)

To find the diffusion coefticient entering Pick s law or,
more generally, to solve a response problem in the case of
e-e scattering, we should set up a one-particle simulation
of Eq. (22). In such a simulation, the ffight duration
remains the same as in the simulation of Eq. (23) since the
diagonal terms in S (F) and S~ (F) coincide. On the con-
trary, the off-diagonal terms in these operators differ
significantly. In the case of the linearized e-e collision
operator S (F) we have
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I l

I I
p p]

(35)

entered as a diagonal element in the collision integral for
collisions of a "pair" of particles,

Here np=N/Vp is the electron concentration, Vp is the
volume of the system, and the symmetric tensor 6,.& de-
scribes the contribution due to the e-e collision correla-
tion. This last is given by

which play a significant role in the theory of fiuctua-
tions. ' Thus, for the particle simulation of the response
problem we should use the "stochastic law of motion" de-
scribed by the operator I" with the transition rate
Fpp Wpp + &pp i.e., to solve some specific "model
problem" described by Eq. (22).

5;q =—g v;vk(I") '(I" )

pp

X S„(F~F)

aF
(I"+—I") F„—X 5q (44)

V. DIFFUSION COEFFICIENT

PM (p, t
~ pp) =exp( —I"t)6p

P(p, tripp) =exp( I ~ t)6—
~~

(36)

(37)

The stationary distribution function F is determined
from the limit of P(p, tripp) at large time,

If we agree that for our "model" problem the law of
stochastic motion of a particle is prescribed to its full ex-
tent by the form of the evolution operator exp( I"t)—
and for the related problem of finding the stationary dis-
tribution by the operator exp( I ~ t), w—e can find, by the
corresponding simulations, the quantities

U=v VN (45)

Then the diffusion tensor D, k of Eq. (42) can be also
defined as

aF
D;k = g u; dt exp( I„"t)uk—

0 aN
(46)

[We use the property g (I") ' =0 (Ref. 3) to re-
place v, with u;.] Equation (46) can be rewritten as [see
Eq. (36)]

Let us introduce the "chaotic" electron velocity of the
model problem:

lim P(p, tripp)=
g —+ oo

whereas

(38)

aF
dt PM (p, t

I pp )& pk
0 aN

ppo

(47)

aF,
lim PM(p, tripp)=

g —+ oo
(39)

The integrand in the rhs of Eq. (47) is nothing but the au-
tocorrelation function of the chaotic velocity of the mod-
el problem:

Of course, the quantity in Eq. (39) can be evaluated by
differentiating with respect to N the results obtained from
Eq. (38). From the knowledge of BF /BX we can find the
differential (with respect to the number of carriers) drift
velocity VN given by

aF,
g u;PM(p, tripp)upk =(u, (0)uk(t)) .
ppo

(48)

Thus, in analogy with the case when e-e collisions are
neglected, ' we have

VN
BF
aN

(40) D,„=J dt(u, ( )u0„(t)), (49)

a a a
Sn = VN, 6n+D, , 6n,

ax; axk

is microscopically defined by '"

aF,
D(„= yv, (I ) '(v„V„„)~~ . —

p

(41)

(42)

as the drift velocity of the model problem.
The diffusion tensor D;k entering Fick's law for the re-

laxation of a smooth space-inhomogeneous Auctuation of
the electron density 5n,

(r(t)) =V, (r(0)) =0 (50)

where angular brackets denote the ensemble average for a
particle with the law of stochastic motion prescribed by
our model, i.e., by the linearized collision operator I".

Let v(t) be the velocity of a given electron in the simu-
lation of such a model motion. Then, v( oo ) [or v(t) for
the large t] averaged over many realizations becomes V&.
If we observe the wandering of an electron with the "law
of motion" given by the evolution operator exp( I~"t)—
we could find the diffusion tensor D,.k and the differential
drift velocity VN according to the usual formula:

The spectral density of current fluctuations at low fre-
quency, (5j,5jk ), includes as a part the contribution pro-
portional to the tensor D,k (Ref. 3)

1 d
2

( [x;(t)—V~; t][xk(t) —
V~q t ] ) =D,k . (51)

e no
2

(&j;&jk)= (Dk+Dk; ~v )
0

(43)

On the other hand, the substitution in the evolution
operator I "~I~" [i.e., the substitution S~(F)~S~(F)]
gives us the drift velocity V by the same procedure.
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VI. CONCLUSIONS

In this paper the equivalence between the Boltzmann
equation and the particle approach in the presence of
electron-electron collision has been investigated and
given on a rigorous basis. In particular, we have proven
that the dN'usion coefficient can be still expressed
through a time integral of the single-particle autocorrela-
tion function of velocity fluctuations. However, the law
of the stochastic motion of the electron should be deter-
mined by the linearized electron-electron collision opera-
tor. By introducing a model collision operator and distri-
bution function, we propose an iterative scheme to evalu-
ate the quantities of interest through a standard one-

particle simulation. Further research will be devoted to a
quantitative calculation for practical cases of interest.
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