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Layer Korringa-Kohn-Rostoker (LKKR) approaches that calculate interlayer scattering using a
plane-wave basis set cannot treat systems in which the interplanar spacing becomes small. This
problem is most acute at band energies at, which electronic lifetimes are long and the scattering
strong. Taking a face-centered-cubic material as an example, solutions for the simplest of grain
boundaries, the X5 tilt, requires the stacking together of (210) planes. The planar spacing for this
system is too small to allow the conventional LKKR methods to be applied. %'e estimate needing
over 500 plane waves to converge the interlayer scattering in this case. We describe here a solution
to layer coupling that allows for this situation. The technique optimizes the sizes of the angular
momentum and plane-wave basis sets and thus provides an important extension to LKKR schemes.
The ideas developed can be easily applied to both low-energy electron di6'raction and photoemis-
sion.

I. INTRODUCTION

Techniques for calculating electronic and spectroscop-
ic properties of surfaces and interfaces by first partition-
ing the system into layers of atoms and then using
multiple-scattering theory are collectively referred to as
layer Korringa-Kohn-Rostoker (LKKR) approaches. '

These methods can correctly treat infinite systems, such
as an isolated surface, without imposing three-
dimensional translational symmetry. This is achieved by
first solving for the scattering operators for each layer us-
ing an angular momentum basis set and a two-
dimensional (2D) KRR theory. Since each layer has 2D
translational symmetry, then a 2D Fourier transform
block diagonalizes the layer scattering matrices at each k
in the 2D Brillouin zone (BZ). The scattering properties
of each layer can also be described in terms of plane-wave
scattering matrix elements, by considering the scattering
of an incident plane wave at energy E and k by an isolat-
ed layer of atoms. This plane wave is then expanded into
spherical waves about each atomic site in the layer and
all intralayer multiple scattering summed within this
basis. The resulting scattered partial waves can be
transformed back into plane waves using a Huygen's con-
struction. Individual layers can then be coupled together
in the plane-wave basis in a recursive manner to build up
the solid. For example, if the scattering matrices of the
individual layers are identical, the reAectivity of a semi-
infinite half-space can be found using layer doubling.
This reAectivity would be the quantity needed to find the
low-energy electron-diffraction (LEED) spectra of an
ideal surface (for a more detailed discussion of the usual
implementation of the LKKR method we refer the reader
to the previous paper, s denoted as I).

These recursive algorithms involve the effective
transmission matrix of the layer which includes a term

involving no intralayer scattering (direct) in addition to
corrections from multiple scattering in the layer. The
direct term is represented by the 2D Bloch free-space
Green's function at the given k, which is diagonal in the
plane-wave basis. Thus the only internal angular momen-
tum summations which can cause convergence problems
also involve the product of an atomic t matrix which lim-
its the contribution from high angular momentum chan-
nels.

The di%culties associated with the close-spaced layers
can easily be seen by examining the form of the plane-
wave basis functions which couple the layers. The basis
functions coupling two layers separated by the vector
c=(c~~,c, ) converge uniformly provided the z component
of the interlayer spacing is nonzero, since for large 2D re-
ciprocal lattice vectors (g) they take the form [see Eqs.
(22) and (23) of I]

(r~Ks )~,=e~,p=[i(k+g) c~~+i&2E —(k+g)'~c, ~]

i (k+g)-cIi —g)e (~e I~e ' as g~~,
where k is the 2D momentum. Thus, while exponentially
convergent, the rate clearly depends on the size of c,. In
systems where c, is small, many vectors are required to
converge the interlayer scattering to a prescribed accura-
cy. Two further factors work against this basis for close-
spaced layers. First, the number of 2D reciprocal lattice
vectors at a given g grows like g thus exacerbating rates
of convergence. Second, for any given system, stacking
higher Miller index planes together results not only in the
layers becoming closer together but also in increasing the
size of the 2D layer unit and hence decreasing the magni-
tude of the g vectors. These two factors conspire to make
many interesting systems (e.g. , grain boundaries and
stepped surfaces) computationally intractable with the
usual LKKR methods.
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We have found that the dimensionless quantity g;„c,
monitors whether the system can or cannot be reasonably
calculated with the simpler LKKR method, where g;„ is
the smallest reciprocal lattice vector. If this number is
larger than 5, then coupling all the layers in a plane-wave
basis is feasible, as discussed previously. If not, then it is
more e%cient to implement the formalism which we dis-
cuss in this paper. The problem becomes more acute at
band energies arising in photoemission calculations or in
electronic structure calculations, where one en-
counters long electron lifetimes (often infinite) and strong
multiple scattering. At these energies only a few partial
waves (say up to l=2 for transition metals) are required,
but many plane waves. For a face-centered-cubic (fcc)
first-row transition metal, we have found that in order to
converge the density of states (DOS) to four significant
figures, over 30 plane waves were required compared to
nine (l=2) partial waves. This calculation was done
along a favorable crystal direction, i.e., stacking (100)
planes together which have the second largest interplanar
separation, and the second smallest 2D layer unit cell for
the fcc structure. Thus, at band energies, most systems of
interest fall into the category where the plane-wave basis
set is bigger and often too big to be practical in calcula-
tions. It is the purpose of this paper to report an algo-
rithm for solving this problem. The solution, at the ex-
pense of some algebraic complexity, provides a method of
optimizing both basis sets.

This work is motivated by a study of the electronic
properties of a X5 tilt grain boundary, which is one of the
simplest possible grain boundaries. This occurs when the
stacking sequence along the (210) direction and its mirror
image join, the crystallographic mismatch forming the
grain boundary (see Fig. 1). There has been considerable
interest in this model grain boundary since grain boun-
daries in general and similar defects in crystals are impor-
tant in understanding the mechanical properties of metals
and alloys. In particular, their inAuence upon the frac-
ture behavior of intermetallics has been the thrust of con-
siderable experimental and theoretical work. ' ' " Our
goal, therefore, is to provide accurate first-principles cal-
culations for this system and to provide a technique cap-
able of treating complex grain boundaries both with and
without segregated impurities. Layer coupling of (210)
planes in a plane-wave basis set was found to not con-
verge due to the small interplanar spacing (g;„c,= 1).
The problems associated with close-spaced layers has also
been noticed by other groups' as a major impediment to
LKKR-type calculations. Solutions to this problem, such
as the combined-space method, ' can only treat a finite
number of close-spaced layers. In the case of the X5 tilt
grain boundary this method is totally inappropriate since
there are an infinite number of close-spaced layers form-
ing the bulk. Thus the range of problems which can be
handled within the LKKR framework is increased sub-
stantially with our method.

The aim of this paper is to find an expression for the
Green's function for an atom embedded in a layered solid
using multiple-scattering theory. The outline of the pa-
per is as follows. In Sec. II we give the elements of
LKKR theory necessary for a discussion of closely
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FIG. 1. (a) The atomic arrangement of the X5 grain bound-
ary used in the calculations. The atomic planes are stacked
along the [210] direction; (b) plan view of 2D unit layer unit cell
showing atoms at the boundary (open circles) and those below,
from plane 1 (shaded circles).

spaced layers. Most of the formalism is given in I, the
preceding paper so we will just refer to the relevant equa-
tions. In Sec. III we will show how to add a layer onto a
stack of layers in such a manner that convergence can al-
ways be achieved no matter how close together the inter-
planar spacing is. In principle the bulk half-space
scattering matrices can be built up this way, though it is
faster to use a layer-doubling technique. In order to per-
form calculations in reasonable computing times we
found it necessary to adopt a layer-doubling technique.
One suitable for close-spaced layers is discussed in Sec.
IV. Once the bulk matrices have been found, then any
layers which are different from the bulk need to be added
on one at a time using the ideas presented in Sec. III. In
a self-consistent interface calculation, for example, only
the potentials of layers at and close to the interface are al-
lowed to relax. The more distant layers are fixed with
bulk potentials. Thus, the relaxed layers are now
different from the bulk. Scattering matrices for all the
layers to the left and to the right of a particular layer
along with this layer's scattering matrix are all that is re-
quired to calculate the Green's function about atoms in
this particular layer using equations given in Sec. II. In
Sec. V we illustrate the convergence properties of the
method with self-consistent calculations on a X5 tilt
boundary in nickel. The technique can, of course, be
used to advantage in both photoemission and LEED cal-
culations for systems with small interplanar spacings.
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II. THEORY

The site-diagonal single-particle Green s function from which the electronic properties of the layered system can be
found is given Eq. (32) of I. To make this paper easier to follow we reproduce here

G(r, r')= 4i—~+R t'(r&)R~ '(r& )
— g Rz'(r')(ti ') ' f dkrzr (k) 6~—r ti. ' (ti. '

) 'R ~'(r),

(1)a,where ir="~ 2E, r & ~ & i
is the greater (lesser) of r and r', Rt'(r& ) and Rr '(r& ) are the regular and irregular solutions

to the isolated muffin tin, formed from products of spherical harmonics and solutions to the radial Schrodinger equa-
tion. The tilde signifies that only the spherical harmonic is complex conjugated. The scattering-path operator of a par-
ticular layer, in the LKKR formalism of I, was found in terms of an effective reAectivity of the solid excluding this layer
[Eq. (lg) of I]. The solutions to the equations of motion for the scattering-path operators [Eq. (13) of I] can also be writ-
ten in the following form.

r; = [1+[T,'+'+(1+ T„'+'g)(1 —Ti' 'gT„'+'g) 'Ti' '(1+gT'+')]g] T

X [1—9[ T'+' +(I +T' 'Q)(1 —
T/ 'QT'+') 'T/ '(1+QT'+')]ST ] (3)

In terms of ~;, ~& is given by
)

=( 1+1- g)(1+ Ti +1g)Tt —
1( I gTI +1g Ti

—1)—I

T„' '= T;,+(1+T;,Q)T„'(I —QT;, QT„')

X(1+ST;,) . (6)

and z„by

r =(1+r Q)(1+ T' 'g)T'+'(I —gT/
—'aT~+i) —i

and it is this form that we use in solving the case when
the layers are close spaced. Equation (3) will form the
basis of our solution to the closely spaced layer Green's
function since the matrix elements of ~; are found direct-
ly from it. However in treating the generalized layer-
doubling equations we will need Eqs. (4) and (5) as well,
since we need the full T matrix of a three-body system,
which is found from the sum of the three individual ~
operators.

In our solution, we couple the three scattering opera-
tors T&, T„, and T; in such a way that all scattering paths
between adjacent layers are calculated in an angular
momentum basis, while all the other scattering paths are
summed with the- plane wave basis set. For complete
generality each of these scatterers may be several layers
grouped together (i.e., a noncoplanar layer) so that the
shortest direct plane-wave scattering path may be made
arbitrarily long (in real space), and certainly such as to
ensure that g;„c,& 5. Hence, convergence can always be
achieved by a suitable partitioning of atoms into layers.
In our example of (210) planes each layer was made of
two planes, thus the shortest plane-wave displacement is
four times the (210) interplanar spacing. This differs
from the usual LKKR approaches where all planes are
coupled in the plane-wave basis set and that of Gonis, ' '
where the aO planes would be coupled in the angular
momentum basis set.

III. STACKING LAYERS TOGETHER

In this section we outline the procedure for calculating
the half-space reffectivities Ti and T„which enter Eq. (3).
We consider explicitly the right half-space and similar ar-
guments hold for the left-half space. Formally the result
of adding a layer onto a stack of layers can be written as

Rgg= & K.;l
CT„'alK+ &,

R;,'= & K; I
~T„'~IL P, , &,

R's=(La, , laT„'SlK.+ &,

R„; = (La, —il QT,'QIL'P,

(7)

where the origin of the matrices is placed at the next left-
most layer for convenience and the superscripts denote
the basis type and not individual matrix elements. In or-
der to find the matrix representation necessary for calcu-
lations of the four coupled equations we first expand the
second term in (6) into four terms. The four hybrid ma-
trix elements, as expressed by (7), are found from this ex-
panded version of (6). After some algebra we arrive at

n —1 I n

+P; (R„; +I,+ )(1—T;,R„, ) 'T;

(R„;g+I;:f)P;

We ensure, for the reasons discussed, that products like

T, , QT„' have internal summations in the angular
momentum basis since these are adjacent scat terers.
Thus there are four possible hybrid matrix elements for
the scattering from the stack of layers, namely all four
possible combinations of plane and spherical wave cou-
plings. For example, on adding a layer to the stack, a
scattering path involving the scattering first from the lay-
er and then from the stack would involve internal sum-
mations in the angular momentum basis since these are
adjacent scattering events. On the other hand, the direct
term which would pass through the added layer and in-
volve only scattering from the stack would be represented
by a plane-wave term. This leads to four coupled equa-
tions for the hybrid matrices of T, . These matrix ele-

ments are labelled:
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R gL =P.+R ggP
ri —1 i ri i i —1

+P+(Rg +I+g )(1—T R. ) 'T

X(R gP, I, g+G ) (8b)

In contrast the usual LKKR method yields only one
equation as a solution to (6), which is expressed solely in
plane waves; this is

R„;g i =P;+T,+,P, +P, (1+T++ )R„, (1 —T, +, Rgg)

R g =I + gp+R~~P
ri —1 i —1 i ri i X(1+T, , )P, (10)

+(I'+LgP+R gL+ G+ )(1 TLL R LL) —1

X T (R .g+I, Ig)P; (Sc)

+(I fP+.R +G+)(1—T iR )

XT (R„;P I g+G ) (8d)

where the overlap between the two bases I needed for
transformation between plane and spherical waves is
given by Eq. (25) of I. G;—are the spherical wave repre-
sentations of the 2D Bloch free-space Green's function 0',

given by

Formulas suitable for the calculation of the matrix ele-
ments in (9) are complex and have been given by
Kambe, ' so we will not reproduce the results here but
refer the reader to these papers. In (8) the plane wave ex-
pansions of the 2D Bloch free-space Green's function P
are given by Eq. (26) of I, and the individual layer scatter-
ing matrices, T;, by Eq. (21) of I.

The matrices T;—+— are the plane-wave scattering matrix
elements of layer i where the + superscripts label the
direction of incident and scattered plane waves [Eq. (24)
of Ij.

In principle, Eqs. (8a) —(Sd) can be iterated to find the
bulk scattering matrices by adding one layer at a time or
by regarding these as a self-consistent relation. These
nonlinear equations can be solved by standard tech-
niques. One such approach is by taking the result of one
pass and mixing it with the input to use as input to the
next cycle. Acceleration of this scheme, resulting in
significant computational savings, can be obtained by de-
veloping a generalized layer-doubling method, which we
shall do in the next section. The scattering matrices for
the left half-space follow in an analogous manner. Once
all the hybrid matrix elements for the left and right half-
spaces have been found they are used in conjunction with
Eq. (3) to give the appropriate matrix elements of w;

necessary for the Green's-function calculation. Again
taking care to separate out the adjacent scattering events
~; can be expressed in the following form:

(L,~, Ir, II. ~, & =(1+g'L)TLL(1 g.
LIT«)—

After some manipulation 6, is given by

=T„,+)+T„,+)+(T„,g+)+T g )Tgg+) )(1—Tfg )Tgg+) ) 'Tf; )+(T(;g (+T„;g+)Tfg ) )(1—Tgg+, Tfg ) ) 'Tg+)

(12)

whereas in the usual LKKR method the half-space
reflectivities are determined solely in the plane-wave basis
set. The hybrid matrix elements needed in Eq. (12) are

=P+LgTggri+1 i ri+1 i

T'.~ =r+'~Tg~ T'g =r-. 'gT8~n+1 I n+1& iI —1 I II —1

T =Tgg+, I; g Tf =Tfg, I;+g

(13)

Again the superscript denotes basis type rather than an
individual matrix element.

Equation (6) could be solved soley in terms of the angu-
lar momentum basis set. This is the approach suggested
by Gonis' and implemented by Zhang and Gonis. '

However, the direct terms in the angular momentum
basis involve nondiagonal Green s functions. Upon itera-
tion products of Green's functions involve internal sum-
mations which are not controlled by atomic t matrices
and can show slow convergence in certain geometries,
thus necessitating larger matrices. In our algorithm, we
have taken great care to ensure that all the internal sum-
mations are controlled by keeping the direct terms in a
plane-wave basis set. We have achieved this by solving
the more complicated three-center scattering problem so
that adjacent scattering can be treated explicitly.

IV. GENERALIZED LAYER-DOUBLING EQUATIONS

While (Sa)—(Sd) can be used to calculate refiectivities as
outlined at the end of Sec. III, the more conventional
technique of layer doubling may also be formulated in the
current framework. The aim of layer doubling' is to ac-
celerate the construction of the half-space matrices and
reduce the computing time needed. The conventional
layer-doubling equations (see paper I), which result from
the two-center scattering problem cannot be used in the
present situation, since there is no way to isolate the adja-
cent scattering separately from other scattering paths.
The way around this is to combine three scatterers at
once, using the three-center scattering formulas (3)—(5)
to form the total T matrix of such a system
(T =rt+~;+r„). The left and right scatterers are the re-
sult of a previous "double" and the central scatterer T; is
the basic layer repeat unit for the bulk. Thus after n
"doubles" the stack contains 2"+' —1 layers as against 2"
for the conventional method. As in standard layer dou-
bling we have four basic equations for T+, T, T
and T which describe transmission and reflection
from either side of the stack of layers. These combine to
double the stack as,
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T++=r, +(TI+++T„+ )r, +T(+ (1—T„+ T +) '[1+T„+++(T„+ Tl ++ T„)r,]

+(1—T„+ T, +
) '[T„+++T„T( ++T„+ (T( T„+ +Ti +)r], (14)

T+ =r+Tt+ +(T)+++T„+ )r+T)++(1—T„+ TI +) '[T„+ TI +TI+ +(T+ Ti ++T„+ )r]
+T„+ (1 —Tt +T„+ ) '[1+T, +(T( +T„+ +Ti +)r, ],

T +=r +T ++(T +T +)r +T, (1—Ti +T+ ) '[TI +T„+ +T„+(Ti +T„+ +Ti +)r]
+Ti (1—T„+ Ti +) '[1+T„+++(T,+ TI ++T„+ )r, ],

T =r, +(T( ++T„)r,+(1—TI +T„+ ) '[Ti + T( +T„+ +TI +(T„+ TI ++T+ )r, ]

+T„(1—Ti +T„+ ) '[I+T( +(TI +T„+ +Ti +)r],

(15)

(16)

where r; was given in (3). In the iteration of these equa-
tions we must remember to treat adjacent scatterings in
spherical waves and the rest in plane waves. This results
in 16 coupled equations due to all four possible couplings
between plane and spherical waves for each of the above
four equations. The details are straightforward but in-
volve lengthy algebra since we now have 16 coupled ma-
trix equations, and so will not be written down here.
However the philosophy is identical to that given in Sec.
III.

V. APPLICATION TO AN X5 TILT GRAIN
BOUNDARY IN NICKEL

The method described above has been applied to an X5
tilt grain boundary in nickel, with the geometry as shown
in Fig. 1. The structure was formed by reAecting semi-
infinite stacks of (210) planes of fcc Ni followed by a re-
laxation of atoms in the layer labelled 1 to avoid overlap
of the muon-tin spheres, and a relaxation of atoms in the
layer labelled 0 to maximize the number of nearest neigh-
bors. To lowest order, this procedure yields the grain
boundary structure obtained by embedded-atom
methods. " The potentials of atoms in layers labelled
0, . . . , 5 were allowed to relax during iteration to self-
consistency, with potentials of more distant planes of
atoms taken to be that of bulk nickel.

The bulk scattering matrices were converged using the
generalized layer-doubling algorithm, typically within six
or seven passes. The relaxed layers (atoms 0 to 5) were
added subsequently by layer stacking. Convergence in
the muffin-tin density of states (MTDOS) was achieved
with 15 plane waves. This rate of convergence for a bulk
nickel crystal along the [210] direction at a single k point
in the Brillouin zone at a complex energy (E, =0.2 har-.
tree and E; =0.005 hartree) is shown in Fig. 2(a) and is

contrasted with the behavior of the conventional LKKR
method. The solid line shows the rapid convergence of
the MTDOS calculated with the new code, while the old
code (dotted line) clearly shows no convergence in this
geometry. The central processor unit (CPU) time on a
VAX 3000 workstation for these tests is shown in Fig.
2(b). The new code takes significantly longer at a fixed
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FIG. 2. (a) Convergence of MTDOS, evaluated at a single k
point and at a complex energy of (0.2,0.005) hartree in the d
bands, for bulk Ni made from an infinite stack of (210) planes as
a function of the number of plane waves used in the interlayer
scattering. The solid curve shows the results from the new

code, compared to the dashed line of the normal LKKR calcu-
lation. (b) Comparison of the CPU time used by both codes.
Timings for the new close-spaced code are shown by the solid
line, and the usual LKKR code by the dashed line.

number of plane waves; however, it is roughly compara-
ble at 15 plane waves to the old code with 30 plane
waves. This time increase is predominantly due to the
more complex layer-doubling algorithm. The details of
the self-consistent algorithm involving energy and k in-
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FIG. 3. MTDOS for atoms in the vicinity of a X5 tilt grain boundary in Ni (shaded curve), with the atom labelling is as in Fig. 1,
contrasted to that of bulk Ni (dashed line). The Fermi energy is the zero of energy.

tegrations and the solution to Poisson's equation for the
interface are described in I.

The MTDOS for atoms in the vicinity of an isolated X5
nickel tilt grain boundary are shown in Fig. 3. The
changes are most pronounced on the interface layer, as
would be expected since the perturbations from bulk
geometry (in terms of coordination, bond length, and
bond angle) are the greatest here. Most noticeable is the
decrease in band width, resulting from the decrease in
coordination. Full bulk fcc coordination is only achieved
on the fifth atom from the boundary, and it is only on this
layer that the full band width is recovered, with the
MTDOS profile on the fifth atom appearing very similar
to that of bulk nickel. ' We notice that even at the
boundary layer most of the main bulk MTDOS peaks ap-
pear to be present though shifted in energy. This occurs
despite these nickel atoms only having four nearest
(touching) neighbors. However second- and third-nearest
neighbors are closer than in the bulk fcc crystal and con-
sequently do interact with the boundary layer atoms.
The large peak at the Fermi energy moves to lower ener-

gy, and this may well have consequences for the magneti-
zation at the boundary. At present we are performing
calculations on several metallic boundaries, and in the
case of Ni a spin-polarized calculation, and the e6'ects of
segregated impurities. Preliminary reports of this work
have appeared elsewhere. '

VI. CONCLUSIONS

The range of layered systems, for which LKKR
schemes provide an elegant solution to the electronic
structure, is greatly extended by the ability to treat
close-spaced layers. To this end we have developed algo-
rithms which can treat such systems and so remove the
obstacle which has traditionally hindered LKKR
methods. The solution is more complex and consequent-
ly more time consuming than the usual LKKR
schemes, ' but does provide a completely general way of
balancing the two basis sets used. The technique has
been applied to a X5 tilt grain boundary in nickel, with
very satisfactory results, giving solutions which converge
with 15 and 18 partial waves, nine for each of the nickel
atom in each layer.
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