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A technique is presented for embedding planar defects such as interfaces or surfaces in an other-
wise perfect crystal. The method is a layer Korringa-Kohn-Rostoker scheme, in which a solid con-
taining the defect is first partitioned into layers of atoms. The scattering properties of each layer are
calculated in a partial-wave basis set, using the two-dimensional symmetry assumed to be present in

each layer. The layers are subsequently coupled together, in a plane-wave basis, to form a solid.
The self-consistent equations for the scattering matrices of semi-infinite bulk regions embedding the
defect are solved iteratively, removing the constraint of three-dimensional translational symmetry.
Within this formalism, "supercell" and "slab" boundary conditions can also be applied with no ex-
tra difFiculty. The approach is illustrated in detail for a twin fault in aluminum, for which the mi-

croscopic origins of the stacking-fault properties are discussed. Changes in local symmetry and the
resulting hybridization of electronic states explain the observed perturbations in the stacking-fault
electronic structure.

I. INTRODUCTION

The number of surface or interface atoms where the
potential shows appreciable deviation from bulk forms a
small percentage of the total in a real crystal. However,
defects such as surfaces and interfaces often play a prom-
inent role in determining the chemical and physical prop-
erties of materials. For example, catalytic activity de-
pends crucially on the precise nature and position of sur-
face atoms and coadsorbates and the nature of electronic
states associated with the surface. ' Interfaces, such as
stacking faults and grain boundaries, are important in
determining many mechanical properties such as defor-
mation behavior as well as corrosion resistance and resis-
tivity. In addition, segregated impurities play as impor-
tant a role as modifiers of interfacial properties, as do
their counterparts catalyst poisons and promoters. As a
result there has been much work recently in both the de-
velopment of techniques capable of accurate first-
principles calculations of such systems and in the innova-
tive use of traditional bulk-electronic-structure ap-
proaches to these complex problems.

Calculations of surface and interface electronic proper-
ties with accuracy comparable to those of bulk tech-
niques have only been realized of late. The problems as-
sociated with the reduced symmetry, and the effectively
infinite number of unique atoms, have lead many authors
to impose the somewhat artificial "slab" or "supercell"
boundary conditions. The former have almost exclusive-
ly been used for surface calculations, where a film of a
finite number of layers of atoms is chosen to represent the
desired system. There have been many successful film
calculations of surface electronic structure and the prop-
erties of coadsorbates on a wide range of substrates. Ex-

amples include studies of localized surface states on
Al(100), '' the interactions between Ni, CO, and coad-
sorbed promoters and poisons, " and the electronic struc-
ture of actinide surfaces. ' The supercell boundary con-
dition has been predominantly used for interface calcula-
tions. The region of interest containing the defect is
periodically repeated along the z direction, ' hence mak-
ing the system a bulk calculation at the expense of a large
number of atoms in the unit cell. The properties of a Si
grain boundary' and Si stacking faults' have been treat-
ed this way using a pseudopotential approach. The impo-
sition of these boundary conditions does have certain
disadvantages, namely localized states induced by the de-
fect may interact between adjacent supercells or in film
calculations surface states from either side of the film
may couple. In the example of an aluminum surface cal-
culation by Chelikowsky et al. ,

' possible localized sur-
face states were observed which decayed by only about
10% from the surface value at the center of a 13-layer
film.

Recent interest in the physical properties of interfaces
has stemmed from their importance in determining the
mechanical behavior of many materials. For example,
ductility in intermetallic Al-based alloys may be im-
proved by segregated impurities. ' The high stacking-
fault energies generally observed in these intermetallics
tend to prevent slip and thus results in poor ductility.
The calculation of stacking-fault electronic properties,
and the modification by impurities, is therefore of consid-
erable technological interest since experimental alloy de-
velopment programs are expensive and time consuming.
Theoretical alloy development along these lines is now
being actively researched by several groups. ' '

The problem of treating a real surface was first ad-
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dressed in the pioneering work of Appelbaum and
Hamann. ' Their approach was to match surface and
bulk wave functions at a plane inside the bulk by using a
transfer-matrix method. Silicon surfaces were treated in
this way using a pseudopotential basis set, but there are
difficulties associated with the infinite number of bulk
states projected onto the two-dimensional (2D) surface
band structure. This point is discussed in Inglesfield and
Benesh. Wave-function matching of spherical waves
was proposed by Holzwarth and Lee, ' thus allowing
transition-metal surface electronic properties to be calcu-
lated. The philosophy is essentially the same as Appel-
baum and Hamann' and so is prone to the same prob-
lems.

A more satisfactory way of handling the matching is
via the use of Green's functions. This approach has been
adopted by several groups. The tight-binding (TB) for-
malism of TersofF and Falicov was developed to treat a
semi-infinite surfaces and interfaces and subsequently ap-
plied to a study of surface and interface magnetism. A
Green's-function matching formalism for treating embed-
ded defects has been proposed by Garcia-Moliner and
Velasco which could in principle be evaluated in some
suitable basis set. Inglesfield has developed a similar
Green s function matching formalism in a series of pa-
pers, in which he showed that the result of embedding a
region in another could be reduced to a surface integral
over the bounding surface. These ideas also do not speci-
fy the kind of basis set, and Benesh and Inglesfield
implemented the theory within the linearized
augmented-plane-wave (LAPW) basis set and have ap-
plied the theory to a study of simple metal surfaces. The
LAPW basis allows the full crystal potential to be han-
dled, however since the embedding potential is complex
and energy dependent, the principle advantage of lineari-
zation, namely reduction to an eigenvalue problem, is
lost. Lambrecht and Andersen have calculated the
Green's function and hence the electronic structure of an
ideal surface using the tight-binding linearized muffin-
tin-orbital (TB-LMTO) formalism. Since the TB-LMTO
basis functions are short ranged, the semi-infinite nature
of the surface could be accounted for in the method,
which was applied to a study of Cu(100) and Ge(110) sur-
faces. An alternative localized basis set was used in the
matrix Green's-function formalism by Feibelman in
his study of the chemisorption of an isolated Si atom to
an Al surface. Podloucky et al. have used a similar
philosophy to formulate the perturbation due to an im-
purity substituted in an otherwise perfect lattice. Using a
Korringa-Kohn-Rostoker (KKR) basis set the problem of
local moment formation in a nonmagnetic hosts was
studied within this framework. Thus, the Green's-
function approach is a powerful and flexible method for
handling perturbations to the perfect crystal.

Theories which use a mixed basis set of partial waves
as in the KKR method and plane waves between layers of
atoms are collectively known as layer KKR methods.
The theories of low-energy electron difFraction
(LEED) ' ' and photoemission use these ideas to cou-
ple a bulklike region to the surface. Non-self-consistent
surface electronic structure based on LKKR schemes

have been reported in the literature by several groups.
Multiple-scattering theories of surface and interface elec-
tronic structure have been formulated by us ' and oth-
er groups. ' ' These methods are easier to implement
than Inglesfield's embedding technique and though
present calculations have- only been performed within
KKR basis sets and the muffin-tin approximation to the
crystal potential, work is underway to remove this restric-
tion.

In this paper we outline a technique for self-consistent
surface or interface electronic-structure calculations us-
ing multiple-scattering theory. We believe that we are
the first to implement a LKKR approach self-
consistently. The theory is first presented in operator for-
malism, which makes the overall philosophy easier to
read. The equations derived are suitable for calculation
of matrix elements, which we do in Sec. IV.

II. THE LAYER KORRINGA-KOHN-ROSTOKER
APPROACH

The layer Korringa-Kohn-Rostoker (LKKR) method
provides a computationally efficient method for calculat-
ing self-consistent electronic properties of bulk materials
and their interfaces and surfaces. Within the model, real
interfaces and surfaces composed of efFectively an infinite
number of distinct atoms can be treated as easily as inter-
faces, and surfaces composed of a finite number of atoms
build as either a slab or periodically repeated to form a
supercell. The only symmetry required is periodicity in
two dimensions so that the electronic states can be la-
belled by a 20 crystal momentum k. Consider as an ex-
ample an interface between two bulk crystals such as
found at stacking faults or grain boundaries. In the
LKKR method the system is partitioned into layers of
atoms, and then further divided into three regions (see
Fig. 1): an interface region containing N, layers of atoms,
and two bulk regions surrounding the interface layers. In
the case of a surface calculation one of the bulk regions

Bulk -
I Interface I Bulk+

FIG. 1. Atomic geometry of a (111) twin stacking fault in an
fcc material, showing the interface embedded in two semi-
infinite bulk regions.
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would be replaced by vacuum incorporating the surface
barrier. The bulk calculation or "supercell" boundary
condition can easily be imposed by periodically repeating
the interface or surface region and replacing the sur-
rounding bulk, or bulk and vacuum regions with this
periodic interface or surface. In a similar manner the
slab boundary conditions can be achieved by replacing
the bulk regions by vacuum, giving two surface barriers
one on either side of the slab.

At the interface, only the potentials on the 1V; interfa-
cial layers are allowed to vary during the course of a cal-
culation. The constraint that the atoms in the bulklike
regions have fixed potentials allows the scattering proper-
ties of the bulk to be built up recursively and is essential
for removing the 3D unit cell necessary for treating the
isolated interface embedded in the solid in a computa-
tionally feasible manner. In the corresponding surface
calculation the vacuum region, surface barrier, as well as
the surface layers X, are allowed to relax and only the
one set of bulk potentials is kept constant. In practice
the number of varying layers will change from system to
system and the accuracy of the approximation that all the
atoms in the assigned bulk layers have the same poten-
tials can only be checked by repeating the calculation
with more varying layers. In metallic systems only a few
varying layers are typically required (three to five usually
suffices) due to screening of electronic perturbations. In
systems where the screening is weak many layers may be
needed. However, Inglesfield and Benesh and Crampin
et al. have found that it is generally the case that as a
result of the correct treatment of the boundary conditions
fewer layers are required than in the corresponding slab
or supercell calculation where there can be significant
coupling between the artificially introduced boundaries.
The accuracy of the solution can be systematically
checked by increasing the size of the interface region.

The calculation of the electronic properties of the sys-
tern proceeds by finding the energy resolved local density
of states (I.DOS) p(r, E) for the interface or surface re-
gion within the one-electron approximation. This is
found in an angular momentum representation about
each unique atom in the interface or surface region. The
LDOS is first related to the imaginary part of the one-
electron Green's function

III. EVALUATION OF THE GREEN'S FUNCTION

In evaluating G we adopt a multiple-scattering ap-
proach in which the scattering paths are separated into
inter- and intralayer scattering events, of which the form-
er are summed in a recursive manner. In keeping with
other KKR-based multiple-scattering theories, ' ' the
crystal potential is replaced by the approximate muSn-
tin form, where the potential within touching atomic
spheres is replaced by its spherical average and in the in-
terstitial region by a constant which is the volume aver-
age over this region. In contrast to KKR theories
though, the usual separation between structure and po-
tential is only partial. The time-consuming 2D structure
constants for each layer, which sum intralayer scattering
paths, separate from the potential, but the construction
of the scattering operators for the semi-infinite bulk re-
gions, which sum interlayer scattering, mix both struc-
ture and potentia1.

The scattering path operator ~, originally introduced
by Beeby ' and generalized by Gyorffy, provides the
simplest way of summing the scattering paths, and we
adopt this approach and the notation of Faulkner and
Stocks (FS) in the derivation of the Green's functions.
The resulting expressions are simplified by utilizing the
2D translational symmetry present within each layer of
atoms, and leads to a k-resolved Green's function which
must be integrated over the 2D Brillouin zone (BZ).
Since the Green's function is always evaluated at energy
E, for notational convenience the energy variable will not
be written.

We start with the familiar Dyson equation for the
Green's function of the solid G,

G =Go+ Go TGO,

where Go is the free-space Green's function satisfying

Go(r, r') =Go(r —r')

and T is the scattering operator for the whole solid. The
Green's function will be cast in form suitable for expan-
sion about a particular layer i. To achieve this T is ex-
pressed as a sum of the scattering-path operators for all
the atoms in the solid as

p(r, E)= ——ImG(r, r, E),1

where E can be complex. Atomic units in which
A=e =m =1 are used throughout. In this system the
unit of energy is the hartree (l hartree=27. 2 eV). The
ground-state charge density is found from integrals of the
Green's functions and then, from density functional
theory, self-consistent potentials, charge densities, total
energies, pressures, elastic constants, and other physical
properties can be calculated. The Green's function is an-
alytic in the upper half of the complex energy plane,
which is used to advantage in evaluating many of the in-
tegrals needed in the LKKR scheme. The next section is
devoted to the calculation of 6 for a layered system.

where these operators satisfy the following equations of
motion

r t'=t f.,+t G, y
yea

r ~=t o ti+ g r ~Got~.

t is the isolated atomic-scattering operator, and a, P,
and y refer to atomic sites. 6 & is the usual Kronecker 5
function. After some manipulation, described in FS, one
gets the following expression for the Green"s function
about site o. in terms of the atomic Green's function for
that site G and the operator T which sums all scatter-
ing events which neither begin nor end on the site a,
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6 Gcz+ 6QZ AczGQ

with

T«= y
P&o., yea

6 =6+Gt 6

(6) ties, the ~ operators satisfy the following equations of
motion:

rL =(1+v,0+r~ 0)TL

r; =(rL Q+ 1+r~ Q)T;,

r~ =(rL 9+r;9+1)T~+'

Manipulation of these equations gives

The form of (6) is to be expected, since about site a the
full and atomic Green's functions satisfy the same
differential equation and differ only in boundary condi-
tions. The change in the boundary condition when the
atom is embedded in the solid is reAected by the second
term in this equation. Further manipulation of (6) leads
to

=(1+T' Q)T'+'(I —QT' QT'+')

rL =(1+T~Q)TL '(1 —QT~ QTL ')

from which ~; is given by

r, =[1+(1+TLQ)T'+'(I—QT' QT'+')

(14)

6 =6 +(1+G,t )(t ) '(r —t )(t ) '(1+t G, ) .
+(1+T~ Q)TL '(1 —QT~ QTL ') 'Q]T;, (15)

where we have used the fact that (see Appendix A)
(9)

Equation (9) is the operator equivalent of FS's Eq. (2.18)
and is valid for any set of nonoverlapping scatterers. At
this stage it is convenient to make use of the 2D transla-
tional symmetry present in this particular case. The
equations of motion then satisfied by the scattering-path
operators remain essentially the same, except that the
free-space Green's function is replaced by the 2D Bloch
Green's function g, where

TL =T;+(1+T, Q)TL '(1 —QT; QTI ') '(1+ST, ),
(16)

T' = T;+(1+T, Q)T'+'(1 —QT QT'+') '(1+ QT, )

in simplifying the algebra. The scattering operator for an
isolated layer T, may be found by a 2D Fourier transform
of (5) where the sites that appear are restricted to atomic
sites in the layer unit cell. This is directly analogous to
the calculation of the bulk T matrix in standard 3D KKR
theory. The resulting expression is

Q(R) =g' Go(R+RJ )e
J

(10)

The prime on the summation is taken to exclude the J =0
term only when ~Rj=~r —r'~=0. The ~ operators now
depend on k and only couple unique atoms in the 2D unit
cell, and the vectors RJ are the 2D real-space lattice vec-
tors. Equation (9) now becomes

G=G +(1+Got )(t )
' — r (k)dk —t

1

0 n

X(t ) '(1+t G),
where 0 is the area of the 2D BZ. We now perform a
resummation of the paths in ~ showing explicitly the
embedding of layer i in the host and introducing quanti-
ties suitable for computation. To do this we introduce
new scattering path operators ~, , which sums all scatter-
ing paths which end with a scattering event within layer
i, and ~I and ~R which sum those paths ending with a
scattering event within the left and right half-spaces (i.e. ,
all layers up to but excluding layer i from either side).
These operators have an implicit k dependence which we
omit from the expressions. Clearly the sum of all three
operators includes all possible scattering paths,

Having obtained this, we can now write down the expres-
sion for ~, which we have found most convenient for
computation,

(18)

where 8, the effective reAectivity of the solid excluding
layer i is given by

R' = [1+T'+'(1—QT QT'+') '(I+ST;)Qj
XT~ —

~(1 gT~ gT~ —
~)

—~g

+ [1+Tt '(1 —QT; QT~ ') '(1+QT, )9]
X T~+'(1 QT~ QT~+')— (19)

The second term in (18) corrects for the embedding of
layer i in the host crystal. Evaluating the effective
reflectivity is the most demanding stage in the calculation
of the Green's function. The half-space operators can be
found from the two-center formulas in Appendix A, sum-
marized by

T,2= (1—T, QT2Q) 'T, (l+QT2)

+(1—T2QT, 0) 'T2( 1+QTi ) (20)
T TL + TI'+7+ e (12)

We denote by 1; the scattering operator of layer i and by
T~ ' and TR+' the scattering operators of the left and
right half-spaces, where these operators sum all paths
within the relevant subspace. In terms of these quanti-

through the use of layer doubling and layer coupling al-
gorithms, details of which are given in the next section.
The formal solution for the E-resolved Green's function
for an atom in a layer embedded in a host crystal is given
by (11),where the site diagonal blocks of r are most easily
found from (18).
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IV. IMPLEMENTATION

In this part of the paper we will calculate the matrix
elements of the scattering operators introduced in Sec.
III, necessary for the evaluation of the Green's function
of the solid.

complete layers of atoms is achieved by the introduction
of four operators T;

—— representing reAection from or
transmission through either side of layer i [see Fig. 2(a)],
where

A. Scattering by the isolated mufFin tin
T;+ =I +T;I, T; =1+I T,-I

(24)

The solutions to the isolated muon tin needed for con-
structing the atomic Green's function and t matrix are
found in the usual way. Since this theory is well known
we refer the reader to Refs. 32, 40—42, or 44 for a discus-
sion of scattering from an isolated mufFin-tin potential.

B. Scattering by an isolated layer

The intralayer scattering is also expressed solely in the
angular momentum basis set. Taking matrix elements of
T, in (17) gives

[T, '] ' '=—&I.a, IT, 'II-'P, )

(21)

The angular momentum matrix elements of g are the 2D
KKR structure constants. These Green's functions
have real- and reciprocal-space representations. The
latter can be shown to be uniformly convergent for z )0,
and this forms the basis for coupling the layers together
(Sec. IV C). However, for small and zero z, the expansion
is too slowly converging and has to be calculated by an
Ewald approach by partitioning into convergent real- and
reciprocal space summations. The derivation is compli-
cated and details of this along with all the various expan-
sions of g are given in a series of papers by Kambe, ' to
which we refer the reader. This work is a generalization
to 2D of the work of Harn and Segall. "

C. Coupling layers

All the layers are coupled together in a plane-wave
basis. Thus terms in (15) which correspond to interlayer
scattering will be solved in this basis set and then
transformed back into the angular momentum basis set.
The plane-wave basis functions are given in a coordinate
representation by

&rIK;)=e (22)

where

I —project incident plane waves into an angular momen-
turn basis in which the intralayer-scattering paths may be
summed before projecting back into plane waves with
p+

iK—
r&

~ +

I,+~ =4—vari'( —1) e '
Y( (Ks~),

(25)—i K—.rp
+.

(Ks).p+Lg 27Tl
e

I~A (Ks+ ),
It is most convenient to evaluate the scattering matrices
(24) for each layer with reference to an origin within that
layer, which makes it necessary to introduce propagators
to translate the origin. Within the plane-wave basis the
propagators translating the origin from layer i to layer
i + 1 and vice versa are denoted by P;—which are, in fact,
just the plane-wave matrix elements of the Bloch Green's
function g

K—
(

— )

P,„=&-K,;IgIK;)=n„, (26)

where c,- is the origin of layer i. Using these propagators
and the layer scattering matrices it is also possible to de-
scribe the total scattering by two layers by T operators,
found by coupling together the individual T,——in the fol-
lowing manner [see Fig. 2(b)]:

T++ T++(1 P+T+ —P —T—+
)
—1P+T++

T, ~ =T~ (1 P, T, +P+T+ —) 'P, T,
T+ — T+ —+ T+ +P+ T+—

1,2 1 1 1 2

X(l P, T, +P,+T—~+ ) 'P, T,

T12+ =T2 ++ T2 P1 T1+

X(1 P,+T2+ P, T—, +
) 'P,+T2++

k+g+&2E —Ik+gI'z, 2E & Ik+gI'
K—=-

2 (23)k+g+iV Ik+gI 2E z, 2E ( Ik+—gI
T. +

l

T+—
12

T-+

The + refers to the propagation direction in the z
direction, and as one goes out in the 2D reciprocal lattice
with increasing IgI, Ks, has an increasing imaginary
component with the result that the amplitude of the basis
vector on the next layer becomes increasingly less impor-
tant. This attenuation allows a truncation of the basis set
after only a modest number of vectors, typically 10—20.
Within the plane-wave basis, inclusion of scattering by

T++12

layer

FIG. 2. Schematic illustration of (a) the four-layer scattering
matrices for layer i —T,++, T;+, T; +, and T; —and (b) the
four coupled layer matrices T&+2+, Tl+2, T,2+, and T, 2
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These are just the plane-wave matrix elements of the
two-center scattering equations given in Appendix A.
Further layers may be incorporated into this scheme by
treating T& 2 as a single layer, and solving Eqs. (27) with

P—, ~Pz to give T —, 3. R.epeated application of this pro-
cedure eventually assembles the full three-dimensional
solid by stacking one layer at a time. In the case where
similar units of layers are involved this calculation may
be greatly accelerated by a technique known as layer dou-
bling. Such a situation arises within the layers on either
side of the interface region, where semi-infinite periodici-
ty exists. Bulk scattering operators are found first by
building the repeat unit of layers for the relevant half-
space using equations (27). Then, setting both T +, +and- —

Tz —equal to the scattering matrices of this repeat unit a
larger repeat unit may be found by again solving (27).
Recursive application of this algorithm using the scatter-
ing matrices of the previous "double" assembles the lay-
ers at an exponential rate rather than linear as simple ap-
plication of (27) achieves.

D. Matrix elements of ~

20

10

0

]0

-20

0 2 4 6 8 10 1214161820
NUMBER OF OOUBLES

FIG. 3. Graph showing the convergence, monitored by S„
(defined in Sec. IVC), of the layer doubling algorithm for bulk
Ni along the (111) direction. The solid line shows the behavior
of S„ in the presence of an extended state. The dotted line indi-
cates convergence is obtained when E; =10 '. The dashed line
is evaluated where E; =0 and no extended state exists and also
shows convergence.

In determining ~;, the reAection operators of the two
half-spaces are required. These are simply

(K, IT' IK+ ) =[T:+]„,
&K,+IT,'IK, ) =[T,

,+:]„ (28)

To simplify notation in the rest of this section we intro-
duce R; =P; T:+, and R; =P;+,T;+ . The deter-
mination of these matrices assumes that the layer-
coupling scheme will converge after the incorporation of
a finite number of layers. In general this is not
guaranteed at real energies, where an extended Bloch
state may propagate to the furthest layer included,
scatter into another extended state, and propagate back.
It is therefore necessary to introduce a small imaginary
component into the energy which results in all states de-
caying in a finite length and so ensures the convergence
of the half-space reAection matrices after a finite number
of layers. We illustrate this in Fig. 3 for Ni where the

I

convergence of the doubling algorithm is measured by
the largest relative change S„ in any element of the bulk
reflection matrix between the nth and (n —1)th doubling,

IR'; —R';-'
IS = gg gg

/Rl, , n —
1/

gg

(29)

where the superscript n is the result of the reAection ma-
trix after n "layer doubles. " We note that at a real ener-
gy where an extended Bloch state exists no convergence
is obtained even after the inclusion of 2 X 10 layers. The
addition of a small imaginary component (E; =10 har-
tree) to the energy is seen to produce convergence, and
after 18 layer doublings S„ is less than 10 . Similar
convergence is rapidly obtained even at real energies pro-
vided there are no travelling Bloch states present.

In terms of the left and right space reAectivities R is
given by

(La, ~R,
' ~L'/3, . ) = (La, ~[1 —R, , +I +(1—R. P T +) 'R. . P T. R. ](1 . R, R, .) 'P,+—

, I +.

+[I +R ~ +I-—
(1 RL P+ T+ —

)
——'R t. P+ T++R ~ ](I R IR ~

)
—'P. I— ~L'P )(30).

where the terms above correspond to the possible directions of the outgoing and incoming waves arising from multiple
scattering with the rest of the solid. Combining this expression for R with (18) gives site diagonal matrix elements of

The Green's function at energy E and crystal momentum k is found from the matrix elements of (11), where we
identify

RL'(r)=(La, ~i+Got '~r) (31)

which is the regular solution to the Schrodinger equation for the isolated muon-tin formed as the product of the solu-
tion to the radial equation and a spherical harmonic. Thus we arrive at the central equation for the LKKR Green s
function, namely

G(r, r')= 4iwg R—L'(r )RL '(r) )
— g RL'(r')(tI ') ' f dk~LL (k) 5LL t(

' (t(. ' —) 'RL'(r)
L I.L' 0

(32)
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(1)a,.
where r& /r& the greater/lesser of r and r'. AL '(r& ) is
the corresponding irregular solution to the isolated
muon tin. The tilde has been used to denote a complex
conjugate of the spherical harmonic only. The matrix
elements of ~; are given in terms of R,' by

(33)

V. BAND STRUCTURES

The partitioning of the system into layers provides a
method for the calculation of the bulk band structure
K(E) both on the real-K axis of conventional calcula-
tions and into the complex plane where information re-
garding the nature of localized states may be found.
Wood and -Pendry have shown that the 3D band struc-
ture can be found from an eigenvalue problem by apply-
ing a Bloch condition on the wave functions on either
side of the bulk repeat layers. In systems of reduced sym-
metry for which the LKKR approach has been
developed, the bulk band structure is projected onto a 2D
analogue. The infinite repeat distance in the z direction
results in a BZ with no K, dimension. This projected
band structure (PBS) is important for the electronic
description of both surfaces and interfaces, allowing an
identification of regions of E-K space where extended
states exist and hence pointing out pockets where local-
ized states may be present.

Within the LKKR formalism the PBS may be obtained
by attempting to converge the bulk reAection matrices on
the real-energy axis using the iterative layer doubling
method. This procedure fails to converge whenever there
is an extended Bloch state present, thus the PBS may be
mapped out by noting at which given E and k points the
bulk reAection matrices fail to converge. This also en-
ables a search for localized states to be made. For a given
interface, areas of E-k are identified where no extended
states occur. In these regions the reAection matrices
T +, and T;++& may therefore be calculated, and thus
the Green's function for the solid may also be calculated
for this particular E and k. If the DOS is calculated from
the imaginary part of G, then interface states can be
identified as sharp peaks in the k resolved DOS, which
are localized around the interface.

VI. SELF-CONSISTENT SOLUTION

Self-consistent solutions to the one-electron
Schrodinger equation are essential to systems where there
is charge rearrangement in forming the surface or inter-
face. These solutions are found iteratively as in most oth-
er electronic structure techniques by constructing the po-
tential for the next iteration from the charge density
found in the calculation. In the LKKR scheme the
charge density about each atomic site is found from the
trace of the imaginary part of the Green's function using
(32) as a suitable expansion. In constructing the total
charge density the Green's function is integrated over
both E and k. The 2D BZ integration is approximated by
Cunningham's algorithm of special points. Since there
are many more 3D bands projected into the 2D BZ this

dE„', Im6 r, r', E„'
(E„E„')+E, — (34)

We sample the contour with a Gaussian integration tech-
nique which never samples the end points of the contour
(hence avoiding any problems at E, =0), and so provides
a fast and accurate calculation of the valence charge den-
sity. In addition the new contour also improves the accu-
racy of the BZ sampling, since this algorithm is more
effective for smoother charge densities. Typically eight
energy and six to ten special k points are sufficient to con-
verge self-consistent charge densities.

The new potential is constructed from the calculated
charge density as a sum of a Coulomb contribution aris-
ing from a solution to Poisson's equation and the
exchange-correlation potential. In order to prevent in-
stabilities arising from the strength of the Coulomb po-
tential a small amount of the calculated potential is
mixed with the potential of the previous input to form
the potential for the next iteration. The Coulomb poten-
tial, within the muon-tin approximation, is given for site
n, by

Z

+ r p r dr
0 l

a.
I+MT. . . a,

+4vr f r'p(r') dr'+ V ',
r I

a,.
where z is the nuclear charge, and V ' the boundary

I

condition on the atom resulting from the long-range
Madelung sum due to all the other atoms (see Appendix
8).

Once the self-consistent solutions have been found, the
electronic total energy and pressure can be computed.

approach should have better convergence properties than
in three dimensions. The energy integrations which run
from —~ ~E& are first split into core and valence con-
tributions, where core is taken to mean a state with negli-
gible dispersion. The former are treated as an atomic cal-
culation while the contribution from the latter can be ex-
pressed as an integral from the bottom of the band to E&.
This real energy contour is deformed into the upper half
of the complex energy plane where the Green's function
is analytic. A schematic diagram of this analytic struc-
ture of the Green's function is shown in Fig. 4(a) along
with a typical contour. A simple application of Cauchy's
theorem shows that the contribution from this deformed
contour is the same as that calculated along the real-
energy axis provided the new contour begins and ends at
the same points, since the Green's function is an analytic
function of energy in the upper half-plane. This has the
advantage that many fewer energy sampling points are
needed, since the Green's function is smoother as a func-
tion of energy in the complex plane. This may be seen
from the Kramers-Kronig relation in which the Green's
function at imaginary energy E; is given by the convolu-
tion of a Lorentzian with the Green's function evaluated
at E; =0. Hence one obtains broadening of the order of
E, in the structure of the Green's function,

Im6 (r, r', E„+iE, )
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We have found that calculating the total energy from the
sum of kinetic, Coulomb, and exchange correlation, as
outlined in Skriver, ' is numerically more stable than us-
ing the simplification scheme suggested by Janak,
though we use the core cancellation suggested by Janak
in the pressure calculation.

(a)

cores band states
Er

0.4-

CD
CD

0.3-
G5

0.2-

0.1-

r

/, ...i

0.0 0.1 0.2 0.3 0.4

Er (hartree relative to muffin-tin zero)

FIG. 4. (a) The analytic structure of the one-electron Green's
function in the complex energy plane showing poles at the core
eigenvalues and a branch cut corresponding to band states. The
charge density follows from an integration of the Green's func-
tion along a contour parallel to the real-energy axis, which in
the calculation is deformed into the triangular contour. (b)
Contour plot of the MTDOS for bulk Ni in the complex energy
plane. The contour values are uniformly spaced in steps of 6.5
electrons/hartree. The first contour value is at 6.5
electrons/hartree. Above the real energy axis the MTDOS is a
much smoother function.

VII. APPLICATION TO A TWIN FAULT
IN ALUMINUM

TABLE I. Peak heights (hartree ') of the two localized
states (s& at =0.285 hartree and s& at =0.31 hartree) found at
the K point as a function of layer. Absolute heights are depen-
dent upon the imaginary energy, due to the Lorentz broadening,
but relative heights are not.

Layer

1(s )

2
3
4
5 (bulk)

Si

77.6
25.6
37.2
22.0

7.33

Sp

37.1

121.0
39.1

12.5
39.0

In this section we will apply the formalism described in
the previous sections to a twin fault in aluminum. This
defect is formed along the [111]direction of fcc Al by
reversing the . ABCABC . stacking sequence to
form a locally hcp environment which is

. ABCABACBA . This structure is illustrated in
Fig. 1. In calculating the electronic properties of the
stacking fault we first performed a self-consistent bulk
calculation, the results of which were used in construct-
ing the scattering matrices of semi-infinite half-spaces by
layer doubling. In the self-consistent calculation the
iterations were performed with a basis set that included s,
p, and d partial waves (l =2), 13 plane waves (g =13),
eight energy ordinates, and six special k points. In
evaluating the DOS the energy contour was offset from
the real-energy axis by 0.001 hartree, and in this case it
was found to be necessary to include 375 k points in the

irreducible wedge of the BZ to converge the DOS.
The fault was modeled with a nine-layer interface region
where the potentials were allowed to relax from bulk
values embedded in an otherwise perfect host, and no
structural relaxation was taken into account. The energy
of this twin fault was found to be —120 mJ/m, com-
pared to an experimental value of —170 mJ/m . The
level of agreement is satisfactory since the experimental
value is inferred from elasticity theory and miscroscopy
measurement and so has a large uncertainty associated
with it.

The same size basis sets were chosen for the fault cal-
culation as in the bulk. Each iteration takes approxi-
mately 1 h on a VAX 3000 workstation, or 1 min on a
CRAY 1-S. The muon-tin DOS (MTDOS) at the twin
fault is shown in Fig. 5. The changes observed in
MTDOS are most pronounced on the central-fault layer
and heal towards bulk values over the nine-layer interface
chosen. These changes can largely be attributed to the
change in the environment at the fault, in particular per-
turbations resulting from hybridization changes in the
electronic states arising from the mirror plane. Layers
close to the fault show much less structure than the bulk.
This is because peaks and troughs in the density-of-states
profiles result from critical points in the band structure,
some of which arise from the periodicity in the [111]
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FIG. 5. MTDOS for atoms at an Al(111) twin stacking fault
evaluated at 0.001 hartree above the real axis. Shown are the
densities of States for the stacking fault layer ( ) the adja-
cent layer ( ———) and the bulk ( —) ~

direction which is now broken by the fault. States lower
down in the band are much more free-electron-like,
showing an E' behavior, and thus are negligibly per-
turbed by the fault. In Fig. 6 we show the projected 2D
band structure; localized states may exist in the gaps in
this band structure. For example, we have located such a
state at the K point in the 2D zone in the gap where lo-
calized surface states have also been found. ' The
MTDOS at the K point, Fig. 7, shows the sharp singular-
ities in the DOS at the band edges at =0.275 and
=0.320 hartree with respect to the muffin-tin zero. In
the gap there are two states seen as sharp peaks in the
MTDOS. Neither of the states are strongly localized spa-
tially, and still have significant amplitude on the fifth lay-
er away from the fault. In order to difFerentiate the spa-
tial decay of the localized states more easily, the peak
heights as a function of layer are given in Table I.

In this paper we have described in detail a layer-KKR
scheme developed specifically for the correct treatment of
a surface or interface embedded in an otherwise perfect
host crystal. This embedding is achieved via the recur-
sive calculation of bulk half-space scattering matrices us-
ing layer coupling algorithms to avoid the use of a slab or
supercell. The approach does, however, have the Aexibil-
ity to study slabs and supercells if desired and may pro-
vide an e%cient solution of complicated crystals. We
present the first fully self-consistent all-electron calcula-
tions of a truly isolated metallic interface, a twin fault in
Al, and find that the technique is both accurate, compa-
rable to bulk KKR methods, and computationally fast.
The changes in the electronic structure found at the in-
terface are consistent with symmetry considerations at
the fault. These perturbations heal slowly into the bulk
due to the free-electron nature of the host. At present
the technique is being used on both more complicated in-
terfaces and on the role of segregated impurities. These
results will be reported elsewhere.
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APPENDIX A: TWO-CENTER SCATTERING
FORMULAS

A recurring theme in the derivation of the LKKR
equations is the solution of the scattering problem for
two scatterers, with scattering operators T, and T2. The
resulting scattering operator T&2 is given by

12 1 2~

where the ~ operators satisfy the equations of motion

(Al)
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FIG. 6. The 2D projected band structure for the Al(111) twin

stacking fault showing gaps where localized states may exist.

~i = T) +&26o T),
2= T2+&,GOT2 .

(A2)

Solving these coupled equations we get the general solu-
tion

T,~= (1 —T, G0T260) 'T, (1+G0T, )

+(1 T2GOTIGO) Tz(1+G0TI ) (A3)

Written as such T&2 is in multicenter form, having origins
on both scatterer 1 and scatterer 2. Within the layer for-
malism we find it most convenient to associate with each
layer an individual origin. When coupling layers togeth-
er, for example, the resulting scattering operators have
separate origins for incoming and outgoing scattering
paths. For computation we manipulate (A3) into the fol-

lowing forms:
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GpT&26p= (1 +GpT1 )(1 GpT26pT1)

XGp(1+ T~Gp) —1,
GpT126p = (1+ GpT2 )( 1 Gp T~Gp T2 )

X Gp(1+ T, Gp) —1,
G0T12GO GOTi Go

+ (1+GpT, )GpT~(1 —GpT, GpT~)

XGp(1+ T, Gp),

(A4a)

(A4b)

(A4c)

0 12 0 0 2 0

+ (1+GpT~)GpT, (1—GpT26pT, )

XGp(1+T26p) . (A4d)

The Fourier transforms of these equations merely change
GO, the free-space Green's function into 9', the Bloch
free-space Green's functions. The ~ and T operators are
then k resolved.

MTDOS at K point
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FIG. 7. The MTDOS at the K point in the 2D Brillouin zone evaluated at 10 hartree above the real axis. Note the sharp band
edges at =0.275 and =0.320 hartree and the presence of two states in the gap, which are spatially localized on atoms close to the
stacking fault.
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APPENDIX B: THE SOLUTION OF POISSON'S
EQUATION

In solving Poisson s equation, the interstitial charge
density is replaced by a constant (p ), determined by the
bulk. Thus in the interstitial the potential can be found
from the solution to the Ewald problem for a 20 lattice,
whose solution can be written formally as

i(g+k ) r

V(r)= Jdk, g p(g, k, )
(g +k, )

(Bl)

If g&0, then (Bl) can be evaluated by contour methods
to give

V, (r)= g'g q,

ig (r —r. ) —gIz —z.
~

e ja (82)

d V~(z)
[p(z) —( p )fl ], (83)

where p(z) is the g=0 Fourier coefficient of the charge
density. The general solution is

The summation over o. runs over all the atoms in the 20
cells of each layer j. The position of these atoms are
denoted by r, , with a z coordinate of z . The Ewald lat-
tice has 5-function charges q on each of these sites neu-
tralized by the uniform compensating charge of (p ) . We
have substituted the appropriate Fourier coefficients of
such a charge density into (81) in deriving (82). The
solution to the g =0 is most easily found from the
diff'erential equation

where the j summation is now restricted to the interfacial
layers. The last two terms are the solution to Laplace's
equation and are fixed by the boundary conditions that
the edge atoms outside the interface region are bulklike.
In the bulk regions we have

ig (z —z. )4~ z ja
V2(z) = g' g gj g2

(85)

where the j summation runs over all the layers in a bulk
cell of length I. and the reciprocal lattice vectors are
therefore given by g, =2nilL. The summations can be
performed since the atoms are periodically arranged on a
lattice whose repeat spacing in the z direction is c. Tak-
ing the limit L ~ a& (85) becomes

V2 (z) =—g qti
p

(z —zp) —2~z —zp~+ —,(86)

V(r)= + (p)r +A
3

where the sum on P is over the unique atoms in the bulk
unit cell.

The boundary conditions on each sphere V ' can now
be found as follows. Since the Ewald solution averages to
zero over the unit cell, then the appropriate muffin-tin
form can be found subtracting from this solution the in-
tegral over each muffin-tin sphere. A convenient way of
integrating the Ewald solution over the mu%n-tin spheres
was suggested by Slater and de Cicco. The spherical
part of the Coulomb potential, about site a, on the Ewald
lattice can be written as

4a
V2 (z) = — g q~

jn

iz —z, /
z'

2
" —n(p) + az+a

2

(84)

which can be trivially integrated over the sphere. The
constant 2 is found from the Ewald solution by taking
r ~0 of Vt(r)+ Vz(r) [Eqs. (82) and (84)] after removing
the divergent 1/r term.
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