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Low-temperature photoluminescence spectrum of amorphous semiconductors
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The low-temperature kinetics of photoexcited carriers in amorphous semiconductors are con-

sidered on the basis of a simple theory, and the shape of the steady-state photoluminescence emis-

sion spectrum is calculated. This allows an explanation of the relationship between spectral width

and Urbach energy that has been found recently in the hydrogenated amorphous silicon-silicon

nitride group of materials. Ad hoc disorder mechanisms previously invoked to account for the

large spectral width are shown to be unnecessary, though they may be additionally present in real

cases.

Photoluminescence in amorphous semiconductors has
been studied for many years. Early work on the chal-
cogenides' was followed by extensive experimental studies
on hydrogenated amorphous silicon (a-Si:H); these have
been comprehensively reviewed. ' There is now a grow-
ing interest in the luminescence of amorphous silicon ni-
trides and carbides.

Low-temperature luminescence in a-Si:H occurs mostly
in a broad featureless band of roughly Gaussian shape
peaked at 1.2-1.4 eV, with a full width at half maximum
(FWHM) of 0.2-0.3 eV. The intensity in good samples is
high; it is much reduced in samples where the defect den-
sity, as measured by ESR, exceeds 10' cm . It falls
sharply for temperatures greater than about 50 K. There
is a small blue shift with increasing excitation intensity.
The behavior of the nitrides and carbides is generally
similar, once allowance is made for the larger gaps in
these materials. They also show subgap absorption of the
Urbach form exp(hv/U) where hv is the photon energy.
Searle and Jackson report a striking correlation in a-
Si~ ~N~ between the FWHM, 8' of the main lumines-
cence peak and the Urbach energy U; they find O'=CU
with C=4.4~0.2 over a wide compositional range ex-
tending from 0 to 0.5 in the nitrogen fraction y.

There is general agreement that the main emission peak
in a-Si:H arises from transitions between states in the
conduction- and valence-band tails, but none on the de-
tails of the analysis. The root of the problem is the large
spectral width, which has been dii%cult to explain without
the ad hoc introduction of disorder effects. One school
holds that the luminescence involves a strong electron-
phonon interaction, which causes not only broadening of
the spectrum but also a Stokes shift. The broadening is
also held to be related to the distribution of tunneling
times between pairs of states with varying spatial separa-
tions. Other models ignore such effects. Dunstan and

)

Boulitrop have presented a picture in which the carriers
thermalize in exponential band tails, radiative transitions
occurring from tail states that are the deepest within a
defined volume; the probability distribution that a given
state is the deepest within that volume induces the spec-
tral width. Their result is, however, only about half the
experimental width. Earlier thermalization models have
also failed to account for the broadness of the spectrum.
Numerical methods have recently been applied' " but
only to the small-signal (linear) transient case, and the
spectral width was not a principal interest.

This paper gives a simple analysis of thermalization and
recombination in band tails, accounting for the lumines-
cence widths without reliance on ad hoc models of disor-
der. C is calculated as 3.9 for a-Si:H, and as close to this
value for the nitrides.

We consider an arbitrary gap density-of-states distribu-
tion g(E) with tails extending from the band edges E, and
E,. Band-to-band excitation is considered, with carriers
excited from below E, to above E, at a rate 6 per unit
volume and time. The model takes explicit account of
thermalization down the band tails followed by tail-to-tail
recombination (direct or via dangling bonds). Direct
band-to-band recombination is not considered; neither is
subgap excitation. Transitions from the conduction band
to the gap states are described by a rate coefticient b„, and
from the gap states to the valence band by a rate coef-
ficient b~. Transitions from gap states of energy E to gap
states of energy E' (E'&E) are described by a rate
coefficient r(E,E'); the gap states are tail states or deeper
(e.g., dangling bond) states. For the low temperatures
considered we neglect upward transitions. Then the rate
equations for the electron-occupation probability f(E) in
the gap, and the free-electron and hole concentrations n

and p, are

f(E) r(E,E') [1 —f—(E') ]g(E')dE'+ [1 —f(E)] r(E', E)f(E')g (E')dE'+ nb„[1 —f(E)] phd f (E) =0, —

t E,
nb [1 —f(E)]g(E)dE „phd(E)g(E)dE G.
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Together with the conservation (neutrality) condition

pE, f Ep

„~ f(E)g(E)dE+n —p =
E g(E)dE (3)

(where EF is the equilibriuin, i.e., dark, Fermi level) the
above equations define the occupation probability f(E).
Once f(E) is known, the luminescence rate 5 at an emis-
sion energy E, is given by

&(E,) =)~~ f(E)g(E)r'(E, E—E, )

x [1 —f(E —E,)]g(E—E, )dE (4)

where r' is the radiative contribution to r.
To begin with, we consider the simplest possible model,

in which r is a constant independent of E and E'. lt can
be confirmed that an exact solution of the rate equations is
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The latter is an approximate form for the case when n and
p are small compared to the trapped-carrier concentra-
tions (usually so at low temperatures) and g(E) falls
sharply away from the band edges. The main expression,
used in the numerical work, is for arbitrary g(E), and
does not depend on an assumption of exponential band
tails. To test the model for a-Si:H, g(E) was taken as a
pair of exponential band tails, of characteristic energies
EI -27 and E2=48 meV, enclosing a broad (0.4 eV
wide) Gaussian distribution of deep (nontail) states cen-
tered 0.75 eV above the valence-band edge; r' was taken
to be nonzero only for tail-tail transitions. Given the
above analytical form for f(E), the integral in Eq. (4)
was evaluated numerically. The resulting spectrum,
shown as a dashed line in Fig. 1(a), is surprisingly broad
and symmetrical. It comes from a convolution of a peak
in f(E)g(E) in the conduction-band (CB) tail and a peak
in [1 —f(E)]g(E) in the valence-band (VB) tail, which
are sho~n as solid lines in Fig. 1, and between which the
luminescence transitions occur. Around midgap f has a
fairly constant value, so that fg cc g. As E increases there
comes a point at which f begins to fall rapidly, as a result
of the downward transitions within the tail. !tcan be de-
duced from Eq. (5) that f falls finally as g, so that
fg~g ', this rise as g+' and fall as g ' describes the
symmetry of fg. Having an explicit form for f(E), we
can study the peak in fg in detail. With no Gaussian
states its F%'HM turns out to be 2.8Ei, and the lumines-
cence width is then roughly 2.8(E~ +E2)'t =0.16 eV;
this is a minimum value that can be increased by the in-
troduction of the Gaussian states.

Figure 1(b) shows a set of calculations in which the
height of the Gaussian-state density was varied so as to
simulate a variation of dangling-bond density %DB, WD&
being defined here as the integral over the Gaussian-state
distribution. For small 2VDp the luminescence is hardly
aA'ected; as NDq increases the recombination path
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FIG. l. (a) Calculations for single rate coefficient model with
r 10 ' cm s ' and NDg 1.1X10'6cm . Dashed line: Lu-
minescence spectrum. Solid line: Electron density fg and hole
density (1 f)g responsi—ble for the spectrum. Generation rate
10 cm s . (b) Fall of luminescence intensity with NDs (as
defined in the text) on the same model. The dashed lines enclose
experimental results of Ref. 12 on a series of 31 samples, NDS
being in this case identiied with spin density.

switches rapidly from tail-tail to tail-dangling-bond and
the luminescence disappears. Experimental results of
Street, Knights, and Biegelsen' on a series of 31 a-Si:H
samples of di6'ering spin density lie between the dashed
lines in Fig. 1(b), showing a similar shape for the decay of
emission intensity with Nna (on the assumption that spin
density would be proportional to WDa). Street et al. attri-
buted this shape to a distribution of pair separations; in
the present theory it is a simple consequence of the recom-
bination statistics.

The simplest (constant-r) model thus accounts quite
well for some aspects of luminescence in a-Si:H. Howev-
er, there is no reason to suppose that the rate coe%cients
are really the same for transitions within a tail as for tran-
sitions from one tail to another or for transitions between
tail and deeper states. A more versatile model has there-
fore been developed in which these rate coefficients (de-
nominated U, u, and w, respectively) are distinguished, u
being taken as radiative; the gap is correspondingly divid-
ed, at energies E„and Ez, into three regions: VB tail (E„
to E~), deeper states such as dangling bonds (E~ to E„),
and CB tail (E„ to E,). b„ is also distinguished for deep-
state (B„)and CB-tail (b„) transitions, and similarly for
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b~; CB to VB-tail and CB-tail to VB transitions are
neglected. Let P and P' be the concentrations of holes
trapped in the first and second regions, respectively, and N
that of electrons trapped in the third region. Exact solu-
tion of the nonlinear rate equations now gives for f(E) in
the CB tail

1 —l
[I —2f(E)] '
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with a similar expression for 1 f(E) in—the VB tail. N,
P, P', n, and p are related by the following five algebraic
equations:

+En
N+n =P+p+P' —

z gdE,

(nB„+wN )P' = (pB& +wP ) (N na —P'),
r

(uP+wP')N =nb„rE gdE N—
r E,

6 =nB„P'+nb„J E gdE —N

(7)

(8)

(9)

(10)
I Ep6 =pB~ (Non —P') +pb~ gdE P. (1—1)

Here NDB is the total state concentration between E~ and
E„. Equation (7) is the neutrality condition; Eqs.
(8)-(11) are integrals of the rate equations over the
defined regions. Equations (7)-(I I) can be solved numer-
ically for the total concentrations, and the distribution of
electrons in the CB tail is then given by Eq. (6).

Let us now consider the shape of the peak in f(E)g(E)
in the CB tail as a function of the intratail rate coefticient
v. For v =0, of course, fwould be independent of energy.
However, the integral of g near E, is so large that when
multiplied by even a small value of U it dominates the
numerator of Eq. (6). Then using Eq. (10) we obtain

1
I

46/v
[1 —2f(E)] fE g(E')dE'+Z

(12)

where Z= (uP+wP' —nb„)/v —N. Maximizing fg for an
exponential g(E) is then equivalent to maximizing a func-
tion F(x)—= (x —p) [1 —x/(1+x ) '~

1 with respect to
x=—(Etg+Z)/(46/v) '~, where P—=Z/(46/v) '~ . The
FWHM of the peak can be found in terms of g and then
converted to width in energy. The resulting width, in
units of the characteristic energy E&, is shown inset in Fig.
2 as a function of p. It begins at 2.8E~ at p 0 and tends
to 3;5E& at large p; at p=1.4 it has already reached
3.4E~. There is thus a large range of values of the param-
eter p, and thus equivalently of v, in which the width is
roughly 3.5E~. As the luminescence spectrum is obtained
by convoluting the peaks in the CB and VB tails, the
FWHM is 3.5(Ej~+E2) '1. For a-Si:H, where Ei =E2/
2, this gives 3.9E2. For the nitrides little information is
available on E~, but if it scales with E2 we shall again ob-
tain 3.9E2 for the luminescence width; in general we ob-
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FIG. 2. Calculated luminescence spectrum for multiple rate
coef5cient model with u, v, w 10 ', 10 '", 10
respectively. WD& 1.3 x 10 ' cm; generation rate 10
cm s '. The dashed line shows a Gaussian fit. The peak is at
1.39 eV; FWHM 0.20 eV. Inset: Luminescence width, based
on exponential density of states, in units of characteristic energy
EI, against parameter p defined in text.

tain 3.5E2(1+E~/E$) '1 . The exponential subgap ab-
sorption in a-Si:H and related materials is usually con-
sidered to reAect the exponential distribution of states in
the VB tail, so that U= E2. The present theory thus ac-
counts very well for Searle and Jackson's experimental re-
sult.

The precise value of the parameter p depends on the
solution of Eqs. (7)-(11) in a given case. These simplify
drastically if Np~ is small, since the neutrality condition is
then simply P=N. If w is small, then from Eq. (9)
N= (G/u)', and thus 2p (u/v)' 2 —(v/u)' 2; thus

P & 1.4 if u & 9.8v. However, such simplification of Eqs.
(7)-(11) is too drastic, as it exaggerates the blue shift
with excitation intensity, giving shifts as high as 0.08 eV
for a tenfold increase in intensity. It is likely that in real
cases NDp and w are not negligible quantities, and the
recombination statistics represented by Eqs. (7)-(11)
may be complex. This does not detract from the relative
success of Eq. (6) in explaining the luminescence width;
any nonexponential contribution to the density of states
will in eFect increase Z and p [see Eq. (12)],giving again
the value 3.5E2 for the width.

Figure 2 shows an example of a spectrum calculated nu-
merically from Eqs. (6)-(11)without any of the approxi-
mations mentioned in the last paragraph; the density of
states is taken largely from an analysis of photoemission
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data by Jackson, Tsai, and Kelso. ' The dashed line in
Fig. 2 shows a Gaussian fit. It is well known that the ex-
perimental low-temperature spectrum in a-Si:H is essen-
tially Gaussian in shape, with a slightly greater distortion
on the low-energy side. The calculated curve is clearly
very close to Gaussian; greater distortion on the low-
energy side would result from a higher value of NDB, but
there are too many unknown parameters for a fitting pro-
cedure to be meaningful at this stage.

The physical assumptions of this theory are contained
in the rate coefficients. The tunneling transition probabili-
ties involved in these have a spatial dependence, which has
been eliminated (conceptually) by performing configura-
tional averages. Disorder, as such, is only present in this
theory in the existence of gap states, and in the small
values adopted for the rate coefficients; these are reduced
from typical values for crystalline semiconductors by a
factor representing the low average probability of finding
a neighboring state within tunneling distance.

The basis of the present theory has been very simple:
one-electron theory, rate equations, constant or piece-
wise-constant rate coefficients, and disorder manifested
only by the presence of states in the gap, in contrast to the
conceptually more complex theories referred to in the in-
troduction. The theory is no more than an exact treat-

ment of the consequences of these simple assumptions. In
real a-Si:H the more complex effects may also be expected
to occur. But it is remarkable that the present theory
gives a good account of much of the phenomenology: the
decrease of intensity with increasing dangling-bond con-
centration, the generally Gaussian shape for the spectrum,
with a width that is both adequate in size and somewhat
insensitive to the values of the rate coefficients, the rela-
tionship W=4U, and (following from that insensitivity)
why it can hold in a series of nitride samples in which one
would expect the rate coefficients to be quite different.
The model thus shows considerable promise, at least for
the VB tail, which accounts for most of the spectral width
and shape; conditions in the CB tail may be more com-
plex.

The kinetic theory developed here is of wider applica-
tion in the field of amorphous semiconductors, and is not
restricted to luminescence. The special case represented
by Eq. (5) may also be useful as an exact check of numer-
ical algorithms.
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