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Bound-to-bound transitions at neutral zinc in silicon: Effective-mass-like
states and hole-hole interaction
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We present infrared absorption measurements on the neutral charge state of the double-
acceptor zinc in silicon. An effective-mass-like Py2 spectrum for the excitation of the secondarily
bound hole is found. The ground state is calculated to be 319.1+ 0.3 meV above the valence
band. The observed splitting of the ground state into three sublevels is assigned to the hole-hole
interaction and crystal-field splitting. The results are compared with recent findings on double ac-
ceptors in germanium.

I. INTRODUCTION II. EXPERIMENTAL DETAILS

Neutral zinc has the electron configuration 3d' 4s .
When it is incorporated into silicon on a substitutional site
four electrons are participating in the bonds leaving the d
shell in the configuration 3d . Therefore zinc is expected
to act as a double acceptor.

In germanium, two acceptor levels are introduced by
zinc, with ionization energies of 33 and 87 meV, respec-
tively. ' The double-acceptor character of these levels is
identified by infrared absorption measurements. A hydro-
genlike and a heliumlike series, found for the Zn and the
Zn charge state, respectively, are well understood within
the effective-mass theory (EMT). '

Similar line spectra for Si:Zn were not reported up to
now. Early Hall experiments on Zn-diffused silicon
showed two levels which were attributed to the double ac-
ceptor. These levels, 0.31 eV above the valence band and
0.55 eV below the conduction band, respectively, were
identified with the Zn (Refs. 3 and 4) and the Zn (Ref.
4) charge state. Further experiments focused on the pho-
toionization of the various charge states of zinc in n- and
p-type silicon, like measurements of photocurrent, ' ab-
sorption, ' and photocapacitance. The optical cross
sections obtained from the latter two methods were ex-
plained in the simple model of Lucovsky. ' Thermal-
emission rates of holes and electron-capture rates were
measured with thermally stimulated current-capac-
itance ' and transient-capacitance techniques. "' The
values of the Zn -level position reported in the litera-
ture' ' vary between 0.31 and 0.33 eV above the valence
band.

All these previous studies are concerned with the rates
of carrier emission and capture. In this Rapid Communi-
cation, we report bound-to-bound transitions at Zn,
namely, the excitation of the secondarily bound hole.

For optical measurements, samples from boron-doped
Aoat-zone silicon crystals (10' cm ) and phosphorus-
doped Czochralski material (2&& 10' cm and 4X 10'5
cm ) were cut and cleaned. The samples were then
sealed in a quartz ampoule together with zinc ingots and
heated up to 1200'C for 40 h. After the diffusion step,
the ampoule was quenched in water. An additional heat
treatment at 600 C was performed for 2 min, to incorpo-
rate most of the zinc atoms into the double-acceptor
configuration. Finally the samples were mechanically pol-
ished to remove metallic zinc and to obtain surfaces of
good optical quality.

The absorption spectra were taken with a Fourier spec-
trometer (Bomem DA 3.01), equipped with a cooled InSb
detector. A fiow cryostat was used to cool the samples, al-
lowing temperatures from 300 K down to 6 K.

Spreading resistance profiles of similarly treated sam-
ples show that the homogeneity of the zinc distribution
over the whole sample is better than 10% of the total zinc
concentration. From Hall measurements, the zinc con-
centration is determined to be (9+'3)X10's cm . All
samples resulted in p-type conductivity after the zinc
diffusion.

III. RESULTS AND DISCUSSION

Absorption and photoconductivity spectra were mea-
sured from 1800 cm '

up to 9000 cm ' (230-1100
meV). At 40 K, all zinc-diffused samples investigated
show a strong onset in the absorption spectra at around
2500 cm ' (310 meV). We found an identical onset in
photocurrent measurements. No other spectral feature in
the absorption is observed at that temperature. In previ-
ous studies on absorption, ' photocurrent, and photo-
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capacitance of silicon diA'used with zinc this spectroscop-
ic structure was found, too, and attributed to the photo-
ionization of the Zn double-acceptor level. In our case,
the zinc concentration dominates the shallow dopants and
thus determines the Fermi-level position. This explains
the observation of the Zn center in nominally boron-
doped and nominally phosphorus-doped samples. %'ith
the zinc concentration obtained from Hall measurements,
we calculate the maximum of the optical cross section to
be crm,„(0.5+'0.2) &&10 ' cm . This value is in fairly
good agreement with the previously reported value of
(1-2)X10 ' cm (Ref. 7) and 1&&10 ' cm .

Additional absorption features of the neutral zinc
center appear below 40 K. Transitions from the ground
state (Zn acceptor level) to eA'ective-mass-like excited
states are observed between 2450 and 2550 cm '. The
lines I~ through I4, shown in Fig. 1, are due to these tran-
sitions. This conclusion is drawn by comparing the I'
series with the absorption spectra of the shallow group-III
acceptor indium. ' Accordance is also found with the re-
cently reported EM-like spectra of the Au and Pt accep-
tor' or the various Be acceptor centers. ' ' In all cases,
the spectra are like the I' series regarding spectroscopic
spacings and line intensities. %'hile the Zn ground state
is deep the excited states are satisfactorily described by
the EMT, originally developed for shallow single accep-
tors. The observed lines are due to transitions between a
I 8+ ground state and odd-parity EM states originating
from the Py2 valence band. The excellent agreement be-
tween EMT and the experiment is shown in Table I. This
fact allows an accurate calculation of the Zn level posi-
tion, by adding the binding energy of the excited state—obtained from EMT—to the energy of the correspond-
ing transition. The ground-state level is found to be
319.1+0.3 meV above the valence-band edge. The previ-
ously reported values for the Zn level obtained from elec-
trical measurements ' ' and optical methods agree
well with the value presented here. The photoionization
onset at around 2520 cm ' that governs the absorption
spectrum above 40 K is present in Fig. 1, too. A minor
low-energy shift of the photoionization onset compared to
the series limit obtained by EMT might be caused by a
small relaxation of the center. '

An additional spectrum with an EMT series is observed
in the boron-doped sample. These lines (J series in Fig. 1)
belong to an independent center Zn(X2) (Ref. 18) with
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FIG. 1. Zn absorption lines (I series), due to the excitation
into the EM-like states; EMT series limit as indicated. J lines
belong to the center Zn(A'2) (Ref. 18).

the ground state 337.5 meV above the valence band; see
Fig. 1 and Table I.

Additional lines that are weak at 6 K show up with rais-
ing temperature in the I' spectrum of the Zn center.
Two new lines at 2459.9 cm ' (I~q) and 2466.8 cm
(I2), respectively, can clearly be resolved at 10 K. Anoth-
er structure which is found at around 2430 cm ' shows a
twofold shape, too. The thermally activated lines are ap-
proximately as strong as the remaining I' lines when the
temperature reaches 18 K. The lines of the I' series be-
come more intense than the lines of the I series. Finally
at 30 K, the I' series is weaker than the "hot lines" and
additionally all lines are considerably broadened. Be-
tween the thermally activated lines the same spectroscopic
distances can be found as in the low-temperature spec-
trum. Generally, to each of the lines I& through I4 exists a
counterpart in the series I and I' as indicated in Fig. 2.
The temperature dependence of the three identical series
I', I, and I' is characteristic of a ground state that is split
into three sublevels a, b, and c. From the shift of the three
series, we obtain the ground-state splitting (relative to the
lowest level a) &F-, b =1.9 meV and AF, , =2.8 meV (see
Fig. 3). A splitting of the excited states as found for
Ge:Be (Ref. 19) is not observed. It could be hidden by the
linewidth only and hence must then be smaller than 0.2
meV.

For the line I2, I2, and I2, a quantitative analysis of, the
temperature dependence is possible. Since I2 and I2 can-
not be resolved over a large temperature range, the sum of

TABLE I. Spectroscopic values (v) of the Zn center and the Zn(A2) center (Ref. 18), binding en-
ergies (Eb) of the EM states, and ground-state position (E;„)relative to the valence band.

v (cm ')

Ii 2451.1

I2 2482.5
I3 2513.9
I4 2524.7

Zn
Eb (meV)

15.2
11.3
7.4
6.1

v (cm ')

J) 2598.6
J2 2629.0

J4 2673.6

Zn(X2)
Eb (meV)

15.3
11.5

6.0

EMT'
Eb (meV)

15.5
11.4
7.3
6.0

Etptt 3 19.1 meV E;„337.5 meV

'Reference 2.
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both intensities was evaluated. The logarithm of the ratio
(I2+I2)/I2 vs 1/T is plotted in Fig. 3. A linear relation is
found in this Arrhenius diagram demonstrating that the
intensities reAect the thermal population of the ground-
state levels. For the activation energy, we obtain
DEth„= 3.3 + 0.5 meV. The small deviation from the
expected value (AE, ,b+hE, ,,)/2 2.4 meV is not fully
clear yet.

The observed threefold splitting of the ground state
cannot be described in terms of a single acceptor, e.g., by
a relaxation of the atom from the highly symmetrical Td
site to a site of lower symmetry. Since a I 8+ state of Td
symmetry splits into two levels when the symmetry is
lowered, only a twofold splitting of the line is expected.
Hence, an additional interaction is needed in the present
case. This is a strong indication that hole-hole interaction
together with the crystal field causes the three ground-
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FIG. 3. Thermalization of the lines If, If, I$; see text.
Scheme of the ground-state levels.
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FIG. 2. Thermally activated absorption lines of the Zn
center. All lines ~ith corresponding transition starting from the
same ground-state level are lumped together. Indication I', I,
and I' refers to the specific ground-state level; see level scheme
in Fig. 3.

state levels, as expected for a double acceptor. Taking
into account the Pauli principle the coupling of two I"8+

hole states leads to three levels: I ~, I 3, and I"q. In terms
of the j-j-coupling scheme, which is not strictly correct,
two J —,

' states couple to J 0 (I &) and J-2 (I 3+r,).
The latter state may be split further into I"3 and I q by the
crystal field. For several double acceptors in germanium,
a twofold splitting into J 0 and J 2 is found: Ge:Hg
(0.7 meV), Ge:Zn (2.4 meV) (Refs. 21 and 22) and
Ge:Mg (1.8 meV). In the latter two systems a threefold
splitting might be possible as well, but could not be
resolved, because of the insuf5cient experimental signal-
to-noise ratio. A complete splitting into the three sub-
states as presented here has not yet been reported for dou-
ble acceptors. Gn the other hand, previous absorption
measurements on excitons bound at the group-III accep-
tors Al and Ga in silicon (A X) show a threefold exciton
ground state. The interpretation given there deals with
hole-hole interaction and crystal-field splitting, too. Like
in our case, see discussion below, the authors conclude the
ground-state level to be I ~.

Information about the ordering of the ground-state lev-
els is obtained from temperature-dependent measure-
ments. The high-temperature limit of the ratio (I2
+I2)/I2 yields 6.9+ 1.5. This value is determined by the
entropy factors of the ground-state levels only. Since I &

is onefold, I 3 is twofold, and I 5 is threefold degenerate,
the lowest ground-state level must be I ~ while the upper
ground states are I 3 and I 5. The resulting intensity ratio
should then be 5, which is close to the measured value.
The ordering of I 3 and I 5 is more di%cult to decide. The
faster increasing thermalization of I2 suggests the assign-
ment of b with I 3 and c with I 5. An J-0 (I ~) ground
state was found also in the system Ge:Zn. ' The oppo-
site case, a ground state of J 2 (I"3+I 5), is realized in
Ge:Hg. For the latter double acceptor the exchange in-
teraction seems to be more important than in the lighter
zinc impurity in germanium and silicon. An exchange
term results in the "normal ordering" according to Hund's
rule with J 2 the lowest. On the other hand, the
central-cell corrections seem to dominate in Ge:Zn and in
Si:Zn. The central-cell corrections are expected to affect
the I"& state more strongly than I 3 or I 5, which leads to
the so called "inverted ordering" with I i as lowest
ground-state level.

Substitutional beryllium as a group-II element is anoth-
er possible candidate for a double acceptor in silicon.
Several centers show up after beryllium diffusion in ab-
sorption ' ' and deep-level transient spectroscopy
(DLTS). It is assumed that the Bel center (E.+192
meV) belongs to the substitutional double acceptor. ' A
splitting of the ground state has not been observed. '

Hence the data presented here are the first example for
the ground-state splitting of a double acceptor in silicon.
A comparison of our results with published data for
Ge:Zn (Refs. 21 and 22) demonstrates that the hole-hole
interaction of Zn in silicon and germanium is of the same
size. Fano resonances of the Q" phonon as found in the
absorption spectra of shallow group-III acceptors or
deep acceptor centers in silicon are observed in addition
to the I series and will be reported else~here.
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