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Self-consistent polaron scattering rates in quasi-one&imensional structures
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We calculate the polaron self-energy in quantum-wire structures. We use the Fock approxima-

tion and consider the interaction of electrons and polar optic phonons in GaAs wires of di8'erent

sizes at 300 K and solve for the self-energy iteratively. The result Z(E,k) is presented as a func-

tion of both E and k. We compare ImX with a simple 6rst-order calculation using Fermi's "gold-

en rule" to investigate the importance of higher-order quantum e8'ects. A constant broadening of
the density of states has been included in Fermi's "golden rule" and is successful in reproducing

the correct scattering rate.

The investigation of quasi-one-dimensional (quasi-1D)
artificial structures is a rapidly growing field chiefly
stimulated by the considerable advances in the fabrication
of highly con6ned electronic systems. New quantum phe-
nomena have been observed at temperatures above 4.2 K. '

%'ith these new developments, transport with dissipation
and electron-phonon interaction is a subject of recent at-
tention. In III-V compounds, high-energy transport is
essentially limited by interactions with polar optic pho-
nons (POP's).

In general, phonon scattering rates in transport simula-
tions are computed according to Fermi's "golden rule"

~(k;,kI) - ( M(ki, kI) ~'bi, , i, ~q

Xb(E(k;) —E(kI) + @co),

where 8'(k;, kI) is the transition probability from an ini-
tial electron state k; to a final state kI, M(k;, kI) is the
corresponding matrix element for the transition, E(k;) is
the initial electron onergy, E(kI) is the final electron en-

ergy, q is the phonon wave vector, and Ace is the phonon
energy. Fermi's "golden rule" is only valid if the scatter-
ing rate is low enough so that the scattering events are
spatially and temporally independent. W(k;, kI) is then
integrated over all final states to obtain the total scatter-
ing rate as a function of the initial electron energy. This
introduces a density of states term D(E; ~ hco),

D(E; ~ l'ito) ——

with m* the effective mass. The functional dependence of
D(E) is a consequence of the semiclassical expression of
energy conservation which ignores any quantum correla-
tions between scattering events. Clearly, this term di-
verges for E(k;) bio.

A more accurate description of the electron-phonon in-
teraction considers the self-energy Z(k, E) which can be
calculated using the Fock approximation. This approxi-
mation is a general method which includes higher-order
quantum effects (including collisional broadening) in the

electron-phonon interaction. In 30 calculations the
strong q dependence of the matrix element makes a self-
consistent treatment of POP's difficult; however, the
slowly varying q dependence in 10 systems make the
problem tractable.

In this Rapid Communication, we include the correct q
dependence in the matrix element and employ an iterative
method to solve the Fock approximation self-consistently.
This approach gives the full k and E dependence of the
self-energy X exactly. 1Ve perform this calculation for
several different sized GaAs quantum-wire structures
where the confinement is due to an infinite square well in

one direction and a semi-infinite triangular potential in
the other direction. The calculation is performed at 300 K
and considers a single subband with inelastic POP scatter-
ing. %'e then compare our results for ImZ with the rates
obtained from Fermi's "golden rule. "

In 1D systems, the Fock approximation for the self-
energy X is given by

~ dq gq(k q)
2tt E —h, to —e(q) —X(q,E—hta)

+ dq g,'(k —q) ( )
2tr E+h toe(q) -Z(q, E+&tu) '

where g, and g,2 are the elec&ron-phonon coupling con-
stants corresponding to mission and absorption processes
which include the 1D form factors. k and q are scalars
corresponding to the components of the electron and pho-
non wave vectors parallel to the wire, and e is the electron
dispersion relationship (assuming the effective-mass ap-
proximation). This equation is then solved self-
consistently for Z.

Because of the divergence in the denominator of Eq.
(3), brute-force integrations (which must be done numeri-
cally) introduce significant round-off error. To circum-
vent this problem, we make two assumptions that allow us
to solve a simpler integral analytically then iterate to solve
the resulting analytic equation for X. We note that if g is
a constant, Z is a function of only E (Ref. 6) and Eq. (3)
can be integrated analytically. By replacing g (k —q) in
Eq. (3) by a value independent of q, g'z(k), we still
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g' (k,E) g (k —q (E))+g (k+q (E)),
where

[2m ' (E —A c0) j ' '
q (E)-

(Sa)

(Sb)

The rationale behind this choice of g' is the following:
When we evaluate Z(k, E) on the mass shell to obtain
Z(E),

2m'E '"
Z(E) Z, E Z(k, s(k) ),

preserve much of the structure of g . Our second sim-
plification is to replace Z(q, E —I'i') with Z(k, E—hco).
With these assumptions, Eq. (3) becomes

Zo(k, E) g' (k,E)
1

dg E —hr0 —(6 q /2m ) —Zo(k, E—hr0)2 2

(4)
which can be integrated analytically (for the sake of clari-

ty, we have omitted a corresponding term for phonon ab-
sorption). Since g varies by several orders of magnitude
over the q range of interest, it is of vital importance to
choose a relevant value for g

' (k,E). We define

In Fig. 1, we show the imaginary part of the self-energy
along the classical energies E s(k). The confinement
conditions correspond to a square-well width of 135 A and
a triangular gate field of 120 kV/cm. (We have also com-
puted Z for a square-well width of 215 A and a triangular
gate field of 29 kV/cm. ) The three curves shown are Zo
[i.e., the result of iterating Eq. (4)l, Z~ [the result ob-
tained by substituting Zo into the integrand of Eq. (3)],
and Z which is obtained by repeated iterations on Eq. (3).
As can be seen from Fig. 1, ImZO has the correct shape
but exceeds the final result by about a factor of 2. The
main discrepancies between ImZO and ImZ are due to the
specific choice of g' which is independent of q in Zo. In
particular we use g

' =0 below E =6m because there is no
way to define a classical phonon wave vector for emission
in this region. This results in a sharp peak at E Ace
without broadening below the phonon energy.

In Figs. 2(a) and 2(b), we show the results for ReZ and
ImZ plotted as functions of both k and E. Although we
calculate Z over an energy range of —30-180 meV and a
k range from 1X10 cm ' to 1x10 cm, the plot cov-
ers a smaller area due to convergence problems near the
borders. The energy axis ranges linearly from zero to 140
meV and the k axis varies logarithmically from 1x10
cm ' to 2x10 cm '. The plots reveal two branches in

then g2(k, E) becoines equal to the classical coupling con-
stant, which has the form g (qz+)+g (q~ ) where qu-
are the classical phonon wave vectors associated with for-
ward and backward emission.

We solve Eq. (4) including absorption and emission
over an energy range of —30-180 meU and use 150 k
values to obtain Zo(k, E) at room temperature. We can
then interpolate between k values to obtain Zo(E). Equa-
tion (4) converges after approximately 30 algebraic itera-
tions; its output is then used as input to a numerical in-

tegration program which solves Eq. (3) exactly. The out-

put from the analytic stage of the calculation is very close
to the final result, therefore Eq. (3) converges after only
two interations.
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FIG. 1. Convergence of ImX(E). Dotted line: Xo [the result
of iterating Eq. (4)]. Dashed line: Xi [the result of inserting Xo
into Eq. (3)l. Solid line: Z [the result after two iterations on
Eq. (3)l.

FIG. 2. Plot. of Z(k, E). The energy axis ranges linearly from
0 to 140 meV and k ranges logarithmically from 1 x 10 cm ' to
2& 107 cm '. (a) ImX(k, E); (b) —ReX(k, E). The phonon-
like branch at E h. m and the electronlike branch along
E s(k) are visible in both plots.
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FIG. 3. Contour plot of the spectral density p(k, E). Energy
ranges linearly from 0 to 140 meV and k ranges linearly from 0
to 6 x 10 cm '. The isolated peaks in p are due to the finite
mesh employed in the plot. The inset shows a perspective view

of p from the same viewing angle.

the self-energy, an electronlike branch and a phononlike
branch. The sharp discontinuity just above E Am is par-
ticularly noticeable in ReZ (for ImZ the discontinuity is
just below the emission threshold and not visible in Fig. 2)
and corresponds to the phononlike branch. The electron
branch starts near E @co and curves towards larger k
and E, roughly following E s(k). The jagged peaks in
ImX along this branch are artifacts from the finite mesh
and plotting package employed. The large peaks in both
the real and imaginary parts occur at the phonon energy;
however, they do not occur for the same k value nor do
they lie along E s(k). The peak in ReZ corresponds to
the minimum value of the denominator in Eq. (3) while

g (k —q) reaches its peak value. From ReZ we can see
that there are states away from the classical regime but
the lifetime of these states is short due to the large value
of ImX. Further information above the excitation spec-
trum can be obtained from the spectral density p(k, E),

—2ImZ(k, E)
[E—s(k) —ReZ] + (ImZ) '

p(k, E) is interpreted as the probability of the electron to
have the energy E while in state k. Figure 3 is a contour
plot of p as a function of both k and E. It is obvious from
the plot that p is negligible except along the classical
dispersion E s(k). Although there are states away from
this dispersion, they have short lifetimes due to the high
scattering rate. The electron can thus be described in
classical (quasiparticle) terms.

In Fig. 4 we compare the self-consistent scattering rate
2lmZ/5, with the rate obtained from Fermi's "golden
rule" and a modified golden rule calculation where a
broadening factor is used to "fudge" the quantum
broadening effects in the final density of states. We per-

FIG. 4. Comparison of X with rates obtained from Fermi's
"golden rule. " Solid line: 21mZ/h. Dashed line: rates from
Fermi's "golden rule. " Dotted line: Fermi's "golden rule" using
a density of states broadened by 2.5 meV.

form a convolution of the density of states with a Gauss-
ian,

D(E)- 1

t r4z~,

i/2
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fi OO —E'2/2r 2
eJ —E

1 dEg
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(g)
where the amount of broadening I is set equal to 2.5 meV.
As can be seen, both classical rates are good approxima-
tions away from the peak. The broadening smooths out
the divergence in the scattering rate at the peak and al-
lows for a much better fit there; it has a negligible effect
on the rates away from the peak.

We have computed Z and p and find that the spectral
density function is essentially independent of the external
potential for the different conditions considered. The
self-energy is a function of the confinement, but its gen-
eral shape remains unchanged. In addition, a good agree-
ment can still be obtained between ImZ and the scattering
rate from Fermi's "golden rule" by use of a 2.5 meV
broadening factor.

In conclusion, we have calculated the self-energy Z(k,
E) for the electron-phonon interaction in ID systems. Al-
though Z has a phononlike branch and shows significant
features away from the classical dispersion, the spectral
function is essentially zero away from the noninteraction
energies which implies that the system can be described
adequately in terms of a quasiparticle model. We have
compared ImZ to the rates from Fermi's "golden rule"
and find the semiclassical result to be an excellent approx-
imation away from the peak; a constant broadening factor
in the final density of states accounts for the general
feature of quantum effects in the scattering rates at the
peak.
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