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Method for the calculation of scanning tunneling microscope images and spectra
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Most popular methods for calculating electronic structure cannot be readily used in quantitative
calculations of scanning tunneling microscope (STM) images, because they are inappropriate for
describing the wave-function tails far outside a surface. Moreover, the inclusion of a finite volt-

age between surface and tip, which is crucial in STM spectroscopy, is generally not feasible in

calculations for real surfaces. Here, an approximate method is proposed which overcomes both of
these problems. Any standard technique for calculating surface electronic structure, such as those
using plane-wave or local-orbital bases, can be easily adapted to incorporate this approach.

In any microscopy or spectroscopy, it is crucial to be
able to calculate the expected image or spectrum for a
proposed model of the structure, in order to compare with
experiment. For scanning tunneling microscopy' (STM),
such comparisons have been hampered by the difficulty of
calculating the tails of the wave functions far outside the
surface. For spectroscopy, the necessity of including the
effect of the electric field on the wave function renders the
problem intractible at present, except in simple models.

Here, a method is proposed which solves both of these
problems. The tails of the wave functions at arbitrary dis-
tances are obtained by a relatively accurate extrapolation
procedure, which is easily added on to any desired
electronic-structure method. Moreover, the effect of ap-
plied voltage can be included in the extrapolation, permit-
ting the calculation of voltage-dependent images and tun-
neling spectra. It is our hope that the calculation of STM
images and spectra will become routine in the future, be-
cause of the convenience of this approach.

Most electronic-structure methods use a fixed basis set,
and transform Schrodinger's differential equation into an
eigenvalue problem. This approach works well for most
physical properties of interest, such as total energy. How-
ever, serious problems arise in treating the wave-function
tails at distances which are relevant for STM, typically 5
A or more.

A local-orbital basis typically does not have the correct
asymptotic behavior outside a surface, and so can give
qualitatively incorrect results at large distances. On the
other hand, a plane-wave basis is in principle completely
general; but in practice, any tractible number of plane
waves can describe the exponential decay accurately only
over very short distances. The linear augmented-plane-
wave method (LAPW) has been applied successfully to
STM, but is not in such wide use as other methods.

We first describe a method for circumventing these
problems in the case of a free surface, permitting the cal-
culation of STM images at low voltage. The extension to
larger voltages, for application to STM spectroscopy, is
given below.

Calculating STM images or spectra is equivalent to cal-
culating the current J(r, ;V) as a function of tip position r,

and voltage V. In perturbation theory,

Mp„dA' ( /f~ VI/1„1/I~Vl/rp ), (2)

the integral being over a surface T in the barrier.
For small voltages, and for the tip and surface well

separated, it is a good approximation to use wave func-
tions of the free tip and surface. Then, once these wave
functions have been obtained, the calculation of the
current from (1) and (2) is quite straightforward.

The surface wave functions can be readily calculated in
simplified models of the surface, " which have proven
very useful in studying STM. However, to date, only the
LAPW method has been used successfully to quantita-
tively calculate STM images for real surfaces, and at real-
istic distances.

The LAPW method generates the basis functions out-
side the surface by integrating Schrodinger's equation,
and so gives wave functions which are accurate even far
outside the surface. Unfortunately, that method, while
very accurate, is often considered difficult to implement
and expensive to use, so it has not become widely avail-
able. The method here is inspired in part by the very suc-
cessful treatment of the wave-function tails in the LAPW
method.

To calculate the wave-function tails, we assume that the
surface electronic structure has already been calculated,
with a method which is accurate except for its inability to
describe the wave functions far from the surface. In par-
ticular, the potential should be reasonably accurate every-

J= gf(E„)[1—f(E,)] ~ M„, ~ b(E„+V —E„) (1)
p, v

at low temperature, where f(E) is the Fermi function, V
is the applied voltage (in units of energy), E„ is the energy
of the state y„, relative to the Fermi level of that elec-
trode, and subscripts p and v refer to the respective elec-
trodes.

The only difficult part is the calculation of the matrix
element M„„which Bardeen showed could be calculated
directly from the wave functions,
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where, with errors being small relative to the work func-
tion. '

We then divide space into two regions, A and 8, as
shown in Fig. I. The wave functions already calculated
are accurate throughout region A, including the surface S
dividing regions A and 8.

Now consider the wave functions in a Laue representa-

tion,

iir„-ga„gexp(iQ x)u,g(z), (3)
Q

where Q ki+G, k~~ is the two-dimensional Bloch wave
vector, and the sum is thus over reciprocal-lattice vectors
G. Substituting (3) into Schrodinger's equation gives the
following equation for the functions u„g (z):

ga„g Vg g (z)u„g+a„g E,+ —
Qg' 2m

d2
Q 'trQ 0

dz
(4)

where Vg(z) is the two-dimensional Fourier transform of
the potential, and the argument z of u„g(z) has been
suppressed for brevity.

Choosing u to be normalized to unity on the plane S,
the coefficients a„g are given by

a„g- iver„(x, z)exp( —iQ x)dx,

using the y, which have already been calculated. The in-
tegral over the two-dimensional unit cell is easily carried
out with the method of Monkhorst and Pack. '

If necessary, the u,g could be determined by solving the
coupled one-dimensional equations (4) in region 8, sub-
ject to the boundary condition of vanishing at large z and
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FIG. 1. Schematic illustration of potential V at a surface
(based on a simple model, not a real calculation). A (100) plane
through an (001) surface is shown. The upper panel shows sur-
face S (dashed-dotted line) dividing regions A and 8; solid lines
are contours of constant potential. Lower panel shows V(z)
along two lines perpendicular to surface; dotted and dashed
curves correspond, respectively, to paths shown as dotted and
dashed in upper panel, with dashed-dotted line indicating Fermi
energy, and zero being the vacuum level.

ft 2 d
Vo(z) E„+ —Q — u„g =0,

2ppl dz
(6)

which can be immediately integrated to give u,g. Note
that in (6), u„g depends on v only through the energy E„,
so it suffices to calculate ug for several values of energy in
the relevant range.

Thus there are two levels of approximation which can
be used here. The simplest, and the one which we antici-
pate will be most useful in practice, is (6), which renders
the problem almost trivial. After the usual surface calcu-
lation, it is merely necessary in addition to calculate the
coefficients (5), and to tabulate the new energy-dependent
basis functions (6).

However, for highly corrugated surfaces, it might be
impractical to take S sufficiently far from the surface to
ensure that Vg=O for QWO; the original calculation
might not be accurate out to such distances. In that case,
one could work directly with (4). Note that only the
lowest few Q need be retained, however; even if the corru-
gation is substantial in region 8, higher Fourier com-
ponents are virtually absent. This fact immensely
simplifies the calculation.

Alternatively, for a highly corrugated surface, one
could match the wave functions on a nonplanar surface S,
which follows the corrugation of the surface. In that way
it becomes feasible to position S so that Vg =0 for QWO
in region 8, and so (6) can still be used. Taking a set of
"special points" x within the unit cell, ' and a correspond-
ing finite set of G, one can write

iir„(x,zs[x] ) exp(ik~~ x)g C„Ga„G,
G

where from (3),

C„G exp(iG x)u~(zs[x]) .

Here, C is implicitly energy dependent, and zs[x] is the z
coordinate of the surface S at x. The determination of a„G
then merely requires inversion of the matrix C G.

Again, as in the alternative approach of solving (4), the
smoothness of the functions in region 8 is essential in
rendering the calculation quite modest. Because the sur-

being unity on S. Note that u,g automatically has the
same logarithmic derivative as the true wave function
across S, so there is no need to match the slope explicitly.

The important simplification is that in region 8, if
Vg(z) is negligible for QWO, the equations decouple, giv-
ing
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face S follows the actual surface topography in this im-
plementation, the wave functions are quite smooth on S.
Therefore quite a coarse grid of x, and a correspondingly
small set of G, can be used, so the matrix Vis small.

%'e now consider the problem of tunneling spectrosco-
py. Here, inclusion of the applied voltage is crucial.
However, self-consistent calculations for real surfaces in
the presence of applied fields are not generally feasible.

An approximate method for calculating tunneling cur-
rent at finitc voltage, using free-surface wave functions,
has been described by Lang, but is accurate only for
small voltages. At the other extreme, Lang et al. have im-
plemented an approach which is essentially exact at any
voltage, but only for a model pair of electrodes.

Here, we use the usual trick of decomposing the actual
system, with applied voltage, into two fictitious nonin-
teracting surfaces. Each surface has an artificial poten-
tial, which reproduces the real potential up to the plane T
used in (2), while satisfying the conditions for the applica-
bility of the Bardeen approach.

The decomposition of the potential is illustrated in Fig.
2. The full potential, Fig. 2(b), is decomposed into two
free surfaces, Fig. 2(c). Each of these is identical to the
full potential up to the plane T. The current can be calcu-
lated by applying (2) to the wave functions of the ficti-
tious free surface at the plane T.

Unfortunately, it is not practical to calculate the poten-
tial of the full system self-consistently, including applied
voltage, except in simple models. Therefore we assume
that the electric field is fully screened in region A, and
completely unscreened in region 8. In that case, the po-
tential in region A is simply the original self-consistent po-
tential for the unperturbed free surface; in region 8, the
original potential has added to it a term linear in distance
z, going from zero to V+hp in the region between the

(b)

(e)

F&G. 2. (a) Two neutral surfaces give a zero-field (not zero-
voltage) junction; F.„,is the vacuum level. (b) This initial po-
tential is assumed to be modi6ed simply by a linear variation be-
tween the planes S and S'. (c) The potential is then divided into
two effective free-surface potentials, each of which equals the
original potential only up to the plane T.

planes S of the respective surfaces. (Here V is the volt-
age, and hp is the work-function difference between sur-
face and tip. ) Figure 2(b) illustrates how the zero-field
potential of Fig. 2(a) is modified, in this approximation,
by the electric field.

This assumption should be particularly accurate when
the tunneling gap is wide, since then the voltage drop
occurs in the low-density region, and the precise position
of S relative to the surface atoms is unimportant. But in
any case, this approach is much more accurate than the
best approximation suggested to date, that of Ref. 3. In
particular, the approach is not confined to small voltage.
However, at high voltages the plane T should be taken
nearer to the negative electrode, to ensure that the corre-
sponding fictitious free surface still has all the relevant
states well confined.

Having specified the potential for our fictitious surface,
it remains only to calculate (6) with the appropriate
Vn(z). This is the only calculation which must be repeat-
ed for different voltages; the original calculation of elec-
tronic structure, and (5), need be done only once.

Implicitly, we have introduced an approximation here,
by neglecting the effect of the field in region 8 on the wave
functions in region A. This means that, strictly speaking,
the logarithmic derivatives no longer automatically match
across S. However, since the change in the potential is
significant only in the region where the wave function has
little amplitude, this should be reasonably accurate.

Finally, a word about the treatment of the STM tip is in
order. So far we have implicitly assumed that the tip
could be treated in the same manner as the surface, and
have made no distinction. For spectroscopy, the tip could
indeed be modeled as a planar metal surface. However,
for calculating STM images, one is interested in a sharp
tip.

At low voltages, the simplest option is to use the s-wave
tip model of Tersoff and Hamann. In that case, the im-
age can be inferred directly from the calculated electronic
structure of the bare surface, rendering the problem par-
ticularly simple. This approximation is rather accurate in
most cases, and the conditions for its applicability have re-
cently been discussed. '

There is no problem in extending the s-wave tip model
to higher voltages, if one is willing to treat the electric
field as still planar. In particular, one can simply take the
plane T right at the tip, again avoiding the need to do any
actual calculation other than for the bare surface.

In fact, neglecting the lateral variation in the field may
not be a bad approximation. While the exact structure of
the tip is unknown, a reasonable model is a single atom
uppermost on a surface with a radius of curvature of
R —500 A. Because of the exponential nature of tunnel-
ing, the single atom dominates in the current. But for the
long-ranged electrostatics, it is the larger radius of curva-
ture which is most relevant. Since the tunneling gap is
much smaller than R, the electric field is not so different
from a planar junction in the region of interest.

To summarize, the STM image or spectrum is readily
calculated from (1) and (2), if the wave-function tails
outside the surface are accurately known. These tails can
be calculated most conveniently by solving (6), and
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matching the solutions u,g to the solutions obtained with
any convenient standard method.

Alternatively, for particularly corrugated surfaces, the
method can be made more accurate either by performing
the matching on a nonplanar surface which follows the
surface topography, or by solving the coupled equations
(4). In either case, only a few Fourier components need
be retained.

The same approach can be used to model the case of an
applied voltage, by adding to the free-surface potential a

linear "ramp" in the vacuum region, as illustrated in Fig.
2. Since only the simple calculation (6) need be repeated
for diA'erent voltages, the numerical calculation of tunnel-
ing spectra represents no problem.

The additional calculations required are minor com-
pared with the unavoidable initial calculation of the sur-
face electronic structure. Because the method is as simple
numerically as it is conceptually, it should make feasible
the routine use of theoretical calculations in the interpre-
tation of STM data.
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