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We analyze thp transition from the tunneling regime to point contact in scanning tunneling mi-
croscopy. The variation of conductance as a function of tip-sample separation is sample and tip
specific. Tunneling occurs through an eA'ective barrier even if the potential barrier collapses.
Subsequent to the collapse of the eA'ective barrier the point contact is initiated leading to ballistic
transport. The ballistic conductance through uniformly increasing contact area exhibits neither
sharp quantized steps nor pronounced quantum oscillations. The observed oscillations are ex-
plained by the irregular enlargement of the contact area.

The current theory of scanning tunneling microscopy'
(STM) is based on the first-order time-dependent pertur-
bation theory and predicts that the tunneling conductance
is proportional to the local density of states of the bare
sample surface p(rii, EF), evaluated at the center of the tip
and at the Fermi level. This theory has been used with
reasonable success in STM operating in the usual condi-
tions, where the tip and sample are widely separated. This
is the independent-electrode regime. Earlier, the authors
identified two other regimes occurring at small bias volt-
age Vb, in which the tip-sample interaction is significant,
and thus the electrodes are no longer independent. These
were electronic-contact and point-contact regimes. In the
first one, the transport takes place via tunneling through
the strongly disturbed electronic states of the electrodes.
At relatively smaller tip-sample distance d (from ion-core
to ion-core), the potential barrier p (i.e., the saddle-point
value of the electronic potential energy above EF) col-
lapses and eventually point contact is initiated leadiirg to
the ballistic transport. In this paper we present a theoreti-
cal analysis of these two regimes, which is crucial for the
interpretation of STM operating at small tip-sample dis-
tance. Major issues we are investigating are how the tran-
sition from tunneling to ballistic conduction takes place
and whether the conductance is quantized in the ballistic
regime.

As the tip approaches the sample, the potential barrier
is lowered and the tip-sample interaction gradually in-
creases. The electronic charge is rearranged and the ions
are displaced to attain the lowest total energy at the preset
tip position. Owing to the significant overlap at small tip-
sample distance in the electronic contact regime, the tip
and sample states are combined to yield site-specific local-
ized (or resonance) states with a net binding interac-
tion. Moreover, due to the tip-sample interaction the
parallel wave vector k~~ which is normally conserved in the
independent electrode regime, is no longer a good quan-
turn number. For example, in contrast to the case of
STM of graphite in the independent electrode regime, the
apparent barrier should not rise because of transversal
momentum. In the presence of a significant tip-sample in-
teraction, the effect of the local perturbation of electronic
states can be sought in the expression of tunneling

current

f EF+eVI cx: „z Dt(E)D, (E eV) T(E,—Vb)dE .

Apparently, the density of states of the tip and sample (D,
and D„respectively), as well as the transmission function
T(E,Vs) are modified by the local tip-sample interaction
and thus deviate from those corresponding to the bare tip
and bare sample.

The tip-sample interaction at small d has been investi-
gated extensively by the recent studies of Ciraci, Baratoff,
and Batra. Their results obtained from ab initio force
and electronic-structure calculations provide evidence that
the corrugation amplitude at constant tunnel current is
slightly reduced by the tip-induced elastic deformation.
The tip-induced local modifications of the electronic struc-
ture and effective barrier have a much stronger effect on
the STM images. Since the wave function is laterally
confined ' ' between the tip and sample, the energy s~ of
the lowest propagating state may occur above EF even if jji

is collapsed. This forms an effective barrier p,jr-si EF. —
Such a situation is illustrated in Fig. 1 by the contour
plots of the potential energy V(r) and charge density p(r)
of the multiatom Al tip and Al sample calculated by the
self-consistent (SCF) pseudopotential method. Already
at d 4.2 A, p is collapsed and V(r) EF= —1.9 eU, —
whereas the effective barrier jjj,ir is significant and estimat-
ed to be —2.3 eV. On the other hand, the charge density
is enhanced in the dividing plane [in the region where
V( yx, z d/2) (EF]. Therefore, in spite of significant
tip-induced modifications of electronic structure in the
electronic contact regime, tunneling still occurs across an
effective barrier p, tr, but the conductance is no longer pro-
portional to p(ro, EF) of the bare sample.

The perforation of the potential barrier (i.e., &~0)
sets in even before the outermost tip atom enters in the
strongest attraction of the sample. However, the point
contact is initiated only if the energy of the lowest state
quantized in the orifice (i.e., first-subband energy) ai, dips
below EF and becomes occupied (i.e., p, tr collapses). This
way a new channel of conduction is opened, and conse-
quently the character of the conductance undergoes a
qualitative change. The gradual collapse of the barrier
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and its effect on the current have been illustrated experi-
mentally by Gimzewski and Moiler in studies of the tran-
sition from tunneling to point contact between the Ir tip
and Ag sample. Their logI(d) plot at constant bias volt-
age shows that the current I increases first exponentially
with decreasing d. This implies a tunneling behavior. The
discontinuity observed at small d was attributed to the
mechanical instability (or hysteric deformation). ' The
recorded values of the conductance just after the discon-
tinuity was only —80% of the unit of' quantum conduc-
tance, " (2e /h ). Upon further approach of the tip, I con-
tinues to increase and exhibits an oscillatory behavior.

Lang' simulated the point contact realized in the
above experiment by two jellium electrodes, one of them
having an Na atom attached to the jellium edge and thus
representing a single atom tip. He found that the conduc-
tance 6, saturates at the value r12e /It and forms a pla-
teau when d is in the range of the distance from the Na
core to the positive background edge of the tip electrode.
The value of q is only 0.4 for Na, and is found to depend
on the identity of the tip. Within a tight-binding approxi-
mation and using the nonequilibrium Green's-function

FIG. 1. Contour plots of the Al tip and the Al sample with
d=4.2 A. (a) Atomic arrangement. (h) SCF potential V(r) in

a horizontal plane bisecting d indicated by dashed-dotted line in
(a). Dotted contours indicate V(r) & EF, and contour spacing is
20 mRy. (c) Total charge density in the same plane. Contour
spacings are 2 x 10 e/(a. u. ) 3.

TABLE I. a and p as functions d —do. Values of p are
given only for g(d) & 0.

d —dp (A) 0.0 1.0 2.0 3.0
a (eV/A ) 2.11 0.94 0.48 0.27

p (A) 1.62 1.55 1.02

4.0
0.16

5.0
0.10

6.0
0.07

method, Ferrer, Martin-Rodero, and Flores' a1so found
that G, reaches & 2e /It at the smallest d. Apparently, it
is not clear so far whether the transition from tunneling to
ballistic regime takes place at small d, and how a plateau
can occur prior to the plastic deformation. Moreover, in
both calculations' ' the mechanism related to the experi-
mentally observed increase of 6, following a discontinuity
is not included. Gimzewski and Moiler give an estimate
for the dimension of the contact area, which lies in the
range of XF. If so, the observed transport beyond the
discontinuity has to be associated with the quantum ballis-
tic transport. '"'

In what follows we will show that after the point of
discontinuity the conductance 6 normally increases as the
tip continues to be pushed towards the sample, and its ob-
served behavior is compatible with the ballistic transport.
However, the initiation of the point contact and the varia-
tion of the conductance depend on the material of elec-
trodes and the shape of the tip, as well. Since the length
of the orifice between the tip and surface is small ( & XF),
the quantization with sharp steps in 6 does not take place.
Therefore, the pronounced large-period oscillatio'ns super-
posed on the logI(d) curve are possibly related to the ir-
regular evolution of the contact.

We model the tip-sample system by the two jellium
electrodes separated by a potential barrier depending on
d. Only at the point of the contact is an orifice formed.
Since the SCF calculations of a sharp tip facing the metal
sample surface predict a parabolic potential in the gap,
the potential of the orifice for a given d is represented by

V(d, p, z) = p (d, z)

+a(d)p l9(z+do/2)8(z —2+do/2), (2)

with p (d,z) calculated from the jellium model. ' The
maximum of p~(d, z) —EF is g(d), and g=p if g) 0. do
is twice the distance between the first atomic plane and
the jellium edge. Subsequent to the collapse of the poten-
tial barrier the diameter of the orifice at EF, p =4—g/a,
increases as d decreases. Note that the material- and tip-
specific features of the contract are represented by a(d).
For the particular contact system treated here a(d) is ob-
tained by using the diameter of the point contact given by
the experiment and by scaling those calculated for Al as
a function of d, and also by using electronic parameters of
Ag for jellium electrodes. The calculated values of a and

p are given in Table I.
In order to calculate the conductance we consider the

current carrying states. These are the three-dimensional
(3D) plane waves in the electrodes and quantized
transversal momentum states in the orifice. The wave
functions of these orifice states consist of products of 2D
isotropic harmonic-oscillator solutions and 1D solutions
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corresponding to the potential p (d,z). The coefficients
of these states are obtained from the boundary conditions
at the edges of the orifice (z = —dp/2 and d —dp/2). Fi-
nally, we use the conductance expression derived earlier'
within the linear-response theory:

2
G = fe (kii)I e(k ) —& (kii)I R&(k,i)ri ~ "s kz(k~1)

100

10

10

+2Im[e (k~~)I 18,(k~~)]l, (3)
10

where FS denotes the Fermi surface and e and h, are the
coe5cients of the right- and left-going orifice states, re-
spectively, for an incident plane wave with wave vector
k =k~~+ k, z. Since the tunneling conductance of the
evanescent waves are taken into account by the third
term, the above expression of G has a wide range of appli-
cation and thus is appropriate for our study covering
baOistic as well as tunneling regime. The ballistic trans-
port of electrons through a quasi-1D constriction was
studied by using a similar approach, ' and for long con-
strictions (d~ 5XF) the conductance was found to be
quantized in units of 2e /h with resonance structure su-
perimposed on the plateaus. However, the tapering at the
entrance, impurity, and roughness in the constriction
prevent the conductance from exact quantization but
yields plateaus at relatively lower values. In the present
case, the orifice in the potential barrier is a tubelike con-
striction through which the electrons pass from one elec-
trode to the other. Since the diameter of the constriction
is in the range of XF, the electrons have a quantum regime
diff'erent from that in the 3D electrodes. Their mean free
path is larger than the length of the orifice, so the energy
dissipation in the constriction is neglected. We believe
that our model is realistic and comprises the essential in-
gredients of the point contact. It can be extended to treat
a hornlike entrance to the orifice and the nonuniformities
in V(d, p, z) by using a z dependent a. In this case a
transfer-matrix method is used for multiple boundary
matching. '

Figure 2(a) presents the results of our calculations. In
agreement with previous calculations, ' ' the conduc-
tance associated with a uniform orifice set up by a single
atom at the vertex of the tip has a value less than 2e /h.
Since the length of the orifice is finite and in the range of
the internuclear distance ap (i.e., sum of the atomic radii),
this result implies that the energy of the first subband e& is
still above EF, (i.e., p,s & 0), and hence the conductance
is dominated by tunneling. Apart from the contact system
given in Table I we also analyzed the conductance by us-
ing a(d) corresponding to diA'erent tips. We found that
depending on the shape of the tip the form of G(d) may
diA'er from Fig. 2(a) even qua/itarively For example, if.
p is allowed to be less than the atomic radius of Ag, 6
decreases passing through a maximum (—2e /h). This
form is reminiscent of G(d) obtained by Ferrer et al. '

On the other hand, G(d) may reach a plateau' before the
point of discontinuity if a is very small. This suggests that
p,s collapses prior to the hysteric deformation, and the
value of G at the plateau may be smaller than 2e /h owing
to the scattering by the ions in the orifice. Certain con-
tacts may have several subbands close to EF, each contrib-
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FIG. 2. (a) G, vs d curve (or logI vs tip displacement for bias
Vb 20 mV) calculated for two Ag electrodes. The dotted curve
is the contribution of the first subband. The distance where the
first mechanical instability was observed in the experiment is
marked by the arrow. Inset shows the apparent barrier height
calculated from the current. (b) 6 vs p of the Ag electrodes
calculated for d 2 A ( ~ ap), d A,F, and for the exact quanti-
zation (dashed-dotted line).

uting to tunneling. In this case, plateaus do not occur but
G(d) increases almost linearly. For a flat tip (with several
atoms at the apex) the contact area is large and hence G
rises above 2e /h already before the tip-induced plastic
deformation sets in. Of course, all these arguments are
based on the assumption that there is neither an oxide lay-
er nor a flake between the tip and sample, which influence
the variation of G(d) in an essential manner.

According to the experiment it appears that the ballis-
tic regime starts subsequent to the structural instability
occurring at d & ao. Under normal circumstances, if one
continues to push the tip further, d saturates at =ao, but
the contact area expands with an enhanced plastic defor-
mation followed by the adhesion of several nearby atoms.
The actual form and size of contact after the point of
mechanical instability is uncertain and depends on several
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parameters (such as the detailed atomic structure at the
apex of the tip, intraelectrode and interelectrode interac-
tion energies, etc.). For example, the tip atoms in the
repulsive force range are displaced in such a way that the
aperture of the orifice may be reduced incidentally caus-
ing 6 to decrease temporarily in the course of tip ap-
proach. Nevertheless, the value of conductance with
respect to the displacement of the tip can be related to the
radius of the orifice p, which normally increases with the
continuing plastic deformation. Depending on the aper-
ture of the orifice several subband states which are quan-
tized in the orifice can be occupied. Each subband occu-
pied contributes to G by 2e n/h (n is the degeneracy) and
thus yields a step structure. The perfect quantization with
sharp steps occurs if d&)XF and p~(d, z) =0, however.
We extend our model to include the plastic deformation
region, where a significant hysteresis is observed in the ex-
cursion of the tip. Keeping p (d,z) =0, we calculate the
conductance as a function of p =(FF/a)' for the fixed
length of the orifice. Clearly this will be the continuation
of the G(d) shown in Fig. 2(a) after the point of discon-
tinuity.

The variation of 6 with the radius of the contact in the
plastic deformation region is presented in Fig. 2(b). Since

(d,z) =0, the first channel is already opened at
p =1.5 A and the value of G rises by —2e /h. Addition-
al channels are opened sequentially as p increases. Pro-
nounced quantum oscillations (or smeared-out step struc-
ture) of the G(p ) curve are apparent for d XF, and are
compared by the sharp steps corresponding to the exact
quantization. However, for d =ao, weak oscillations are

washed out in the logarithmic scale and hence G(p ) be-
comes almost featureless. It appears that the point con-
tact through a short constriction prevents 6 from exact
quantization or from having pronounced quantum oscilla-
tions, and the ballistic transport takes place in the "quan-
tum" Sharvin regime. ' ' Earlier, assuming an infinite
potential well in the contact, the observed oscillations of
the logI(d) curve were attributed to the quantization of
the conductance. ' The present results suggest that the
pronounced quantum oscillations would appear in the
logI(d) curve only if the length of the orifice were large
( XF). This situation would appear for the tip having a
very unusual shape. These oscillations possibly originate
from the irregular motion of the atoms as the tip is uni-
formly pushed towards the sample causing irregular en-
largement of the contact area. Also the atoms of a blunt
tip may undergo sequential contacts each time opening a
new orifice and leading to abrupt changes in the current.
Both cases give rise to the variation of logI(d) as observed
experimentally.

In conclusion, the character of transport and the varia-
tion of conductance as a function of d are not generic, but
strongly depend on the properties of the tip and the sam-
ple. In particular, the appearance of a plateau before the
point of discontinuity occurs only at certain conditions.
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