Errata

Erratum: Optical studies of bonding in coevaporated amorphous silicon-tin alloys [Phys. Rev. B 39, 3711 (1989)]

A. Mohamedi, M. L. Thèye, M. Vergnat, G. Marchal, and M. Piecuch

The last three sentences of Sec. III C should read as follows: "For the Si-rich alloys ($x \le 0.19$), E_W decreases linearly with E_0 , with a slope nearly equal to 1, indicating that the width of the (pseudo) gap follows the bonding-antibonding splitting, as expected from a simple tight-binding model. For the Sn-rich alloys ($x \ge 0.31$) E_W decreases more rapidly than E_0 . This different behavior suggests that, at high Sn concentrations, alloying affects more strongly the bulk of the bands, which determines the average bonding strength, than the band edges. This should be verified by photoemission experiments."

© 1989 The American Physical Society

Erratum: Electronic instabilities of the quasi-two-dimensional monophosphate tungsten bronze P₄W₁₂O₄₄ [Phys. Rev. B 39, 12 969 (1989)]

Enoch Wang, Martha Greenblatt, Idris El-Idrissi Rachidi, Enric Canadell, Myung-Hwan Whangbo, and S. Vadlamannati

Given an extended-zone representation, the two-dimensional Fermi surfaces of Fig. 7(b) are made up of four cornersharing rhombuses centered at Γ , X, Y, and M, which give rise to the nesting vectors q_{Γ} , q_X , q_Y , and q_M listed in Table I. The one-dimensional Fermi surface of Fig. 7(c) leads to the nesting vector q_{1D} . Thus, the three Fermi surfaces of $P_4W_{12}O_{44}$ have five different nesting vectors. In terms of the Fermi-surface size and the extent of nesting, q_X and q_Y are the most important ones.

40 11 964