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Energy-momentum relation for polarons in quantum-well wires
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The static and dynamical properties of electrons confined in quantum-well-wire structures are
modified because of the interaction with unconfined phonon modes. The interaction with virtual
phonons leads to a mass renormalization, a binding energy, and a nonparabolic energy-momentum
relation. Using the improved %'igner-Brillouin perturbation theory, we have investigated the
energy-momentum relation for electrons confined in rectangular quantum-well wires of GaAs sur-
rounded by Ga& Al, As, as a function of the transverse sizes of the wire. There is observed a
sigmficant energy lowering when the electron momentum k approaches k&o, and this bending over
of the dispersion curve increases when the electron confinement is enhanced.

High-quality quasi-one-dimensional (Q1D) semicon-
ductor structures have been constructed with the ad-
vances in material fabrication techniques. The electron
confinement can be realized by etching techniques, ' by
selective-ion implantation, ' by using the field effect to
create quasi-one-dimensional conducting channels ' or
by pinching off a two-dimensional conducting channel us-
ing a split gate. "' From a fundamental point of view
there are many fascinating and interesting reasons to
study quasi-one-dimensional systems. On the other hand,
the technological importance in high-speed-device appli-
cations has motivated theorists as well as experimental-
ists to investigate various properties of such systems.

Recently the mobility modulation was observed' as an
increase in the mobility in the lowest subband of the Q1D
wires as suggested by Sasaki. ' The static and dynamical
conductivity have been also measured. ' '. Most of the
theoretical studies have investigated the static and
dynamical conductivity, ' ' collective excitations, ' mo-
bility of electrons scattered by ionized donors as well as
by the optical and acoustic phonons, ' binding ener-
gies of hydrogenic impurities, and excitons. '

The electron-phonon interaction in quantum-well wires
of GaAs surrounded by Ga& Al As was studied recent-
ly by Degani and Hipolito, ' who calculated the pola-
ronic corrections to the electron ground-state energy and
the effective-mass renormalization as a function of the
transverse sizes of the wire.

In this paper we will focus our attention on the
energy-momentum relation for quasi-one-dimensional po-
larons in an ultrathin wire of GaAs in a con6ning barrier
material of Ga& „Al As. The theory of the dispersion
relation for tridimensional electron-phonon coupling has
been given by Whitfield and Puff and by Larsen. By
the arguments of Whitfield and Puff, the dispersion curve

I

must bend over at one phonon energy above the shifted
ground state of the system. We will show that this effect
is more pronounced in the quasi-one-dimensional systems
and increases when the electron confinement is increased;
this occurs because in this system the electron-phonon in-
teraction is stronger than in the tridimensional systems.
In two-dimensional systems, Devresse and Peeters have
found a similar behavior in the region before the thresh-
old.

In order to make the calculation feasible we will use
the infinite confining potential approach, the
electron-LO-phonon coupling is assumed to be described
by the Frohlich Hamiltonian, and the LO phonon is con-
sidered in the bulk phonon approximation instead of the
confined phonon modes, i,e., the quasi-one-dimensional
confined electrons are interacting with the bulk LO pho-
non mode. Although crude, this model works well for
a two-dimensional electron gas. In a quasi-one-
dimensional system, the subband structure, which arises
from the two-dimensional confinement of the electronic
motion, plays an important role. Otherwise, for wires
with a large transverse cross section, the subband struc-
ture cannot be neglected. In the present study all sub-
bands will be taken into account.

We will consider an electron confined in a two-
dimensional potential V(y, z) and free to move along the
x direction. The energy-momentum or dispersion rela-
tion for the weakly interacting electron-polar optical-
phonons system is calculated using the improved
Wigner-Brillouin perturbation theory. 28 The quasiparti-
cle energy-momentum relation is obtained as the solution
of the self-consistent equation

E(k)=k + ReX(k, E),
where

F„„(q)dq
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and F„„,„(q) is the form factor of a glD systemnnmm
which is given by
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FIG. 1. Energy-momentum relation for polarons confined in
quantum-well wires with rectangular cross section. The dashed
line is the parabolic dispersion, and the other two curves are the
dispersion relation for two different transverse sizes of the wire,

O 0

Ly Lz 50 A and Ly Lz 200 A The dispersion curves be-
come strongly nonparabolic near the region where k =kLo and
this effect increases when the electronic confinement is in-
creased.

Here 4 's are the electron wave functions for the motion
along y or z directions of an infinite one-dimensional well
and q'=(q +g )', a is the standard Frohlich coupling
constant which is equal to 0.07 in GaAs. We have used
energy in units of AcoLO and length in units of k Lo, which
is defined as the wave vector of an electron with kinetic
energy equal to the longitudinal optical-phonon energy
AcoLo. L and L, are the transverse sizes of the wire, and
n, n„m, m, are the subband index.

The numerical solution of Eq. (l) was obtained for the
case where n„=1 and n, = 1 for two different transverse
'zes of the wire, L =L, =50 A, and L =I,=200 A. I

Fig. 1 we have plotted the dispersion relation as a func-
tion of klkLo and for the sake of comparison we have
plotted the parabolic dispersion. We observe that for low
momentum the dispersion is essentially parabolic, there-
fore when k approaches kLo there is a significant energy
lowering and the dispersion becomes strongly nonpara-
bolic. This bending over of the dispersion curve increases
with the electron confinement because phonons with
larger transverse momentum can contribute to the energy
lowering. This bending over is similar to that predicted
by Withfield and PufF and by Larsen for three-
dimensional polarons with intermediate coupling, but the
energy shifts are much larger in the quasi-one-
dimensional case, even for small coupling materials such
as GaAs.

We expect that effects of the bending over should ap-
pear in the transport characteristics of polarons. As we

have seen in Fig. 1, the electron-phonon interaction in-
duces a negative effective-mass region below the optical-
phonon energy. A polaron moving in the x direction un-
der the inAuence of a weak electric field accelerates nor-
mally until it reaches the negative-efFective-mass region,
therefore the strong contribution of the electron-phonon
interaction to the effective mass slows, and eventually
stops the polaron motion. In other words, the group ve-
locity reaches a maximum and then decreases until zero.
Above the threshold, for large momentum, the effective
mass tends to the bare value because sufFiciently fast elec-
trons in the band do not polarize the lattice.

In conclusion, we have calculated the energy-
momentum relation for polarons confined in GaAs
quantum-well wires with rectangular cross sections as a
function of the transverse sizes of the wires using the im-
proved Wigner-Brillouin perturbation theory. We found
that the dispersion relation bends over when k =k„z and
this effect is increased when the cross section is reduced,
i.e., the electron confinement is increased. The dispersion
relation for polarons confined in quasi-one-dimensional
systems is qualitatively similar to the tridimensional case,
but quantitatively is enhanced.
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