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First-principles calculation of the elastic constants of AIAs
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We use an ab initio pseudopotential method within the local-density approximation to determine
the full set of elastic moduli of A1As which have not been directly established experimentally. We
6nd Cll =1.16 Cl2=0. 55, and C44=0. 57 Mbar, close to those known for GaAs. Since similar cal-
culations for GaAs and other materials produce results in close agreement with experiment, we con-
clude that our results for A1As are also reliable.

I. INTRODUCTION

There is presently a great interest in superlattice struc-
tures made from Al„Ga& As alloys. Although superlat-
tice layers can be made containing Al-rich alloys and
A1As itself, bulk A1As is not stable because of its hygros-
copic nature. Among the properties of A1As not well es-
tablished experimentally are its elastic constants, which
are relevant in the superlattices whenever strain is
present. For example, analyses of experiments on super-
lattices under pressure' have depended crucially upon the
magnitudes of the elastic constants as a function of Al
composition in the Al Ga, As alloys.

Essentially all previous work has assumed that there
are only small variations of elastic constants from GaAs
to A1As, which is supported by a number of studies of
overall trends among the III-V materials. In 1962
Key es showed that the dirnensionless reduced bulk
modulus and shear moduli (i.e., the elastic constants mul-
tiplied by the nearest-neighbor distance to the fourth
power) exhibited smaller variations for difFerent com-
pounds of the same structure (diamond, zinc blende, or
wurtzite) than did the original constants. Since A1As and
GaAs have essentially the same lattice constants at room
temperature and pressure, this implies that the elastic
properties of A1As and GaAs should be extremely simi-
lar. Wiley used this empirical result to tabulate elastic
constants for A1As which have been widely used. In a
similar vein, Adachi in 1985 used a linear relation be-
tween the elastic rnoduli and lattice constants of III-As
compound materials to predict results for AlAs, which
are virtually identical to GaAs.

Calculations of elastic constants for A1As have been re-
ported by Kagaya and Soma who used the empirical
pseudopotentials of the Ashcroft and variations of the lo-
cal Heine-Abarenkov forms. Because their calculations
are not self-consistent, they found a range of results de-
pending upon the approximations for the electronic
screening (e.g., C44 ranges from 0.195 to 0.394 Mbar).

In this paper, we present ab initio calculations for the
elastic moduli for AlAs using a norm-conserving nonlocal
pseudopotential. The methods of calculation have been
developed by Nielsen and Martin ' where they computed
elastic constants for Si, Ge, and GaAs using the direct
calculation of the macroscopic stress and force on the

atoms in the solid. Based upon the previous successes of
such calculations for related materials, especially GaAs,
we believe that our results for AlAs are just as reliable
and can be used to predict the elastic properties which
are not yet experimentally established.

In previous work on A1As, Froyen and Cohen' used
ab initio methods to find the lattice constant and the bulk
modulus, the latter derived from the equation of state.
Similarly, Chang and Cohen" have calculated phonon
frequencies and longitudinal effective charges with good
agreement with experiment. de Gironcoli, Baroni, and
Kesta' introduced a way to calculate linear-response
functions and they computed piezoelectric constants,
zone-center phonon frequencies, internal strain parame-
ters, effective charges, and static dielectric constants for
A1As and many other III-V crystals. In related work
Barino, Giannozzi, and Testa' ' had earlier shown how
to calculate linear elastic constants, however, they have
given results only for Si.

In Sec. II we present a brief account of the method and
in Sec. III we compare our work with other results. Fi-
nally, we draw some concluding remarks in Sec. IV.

II. METHOD

%'e have calculated the elastic properties of A1As by
computing the components of the stress tensor for small
strains using the same methods as Nielsen and Martin.
The C&& and C,2 elastic constants are derived from the
harmonic relations C» =cr &/e& and C, z =cr2/e~ where o;
and e; represent, respectively, the stress and the applied
strain using the Voigt' notation. The macroscopic stress
in the solid may be computed for a small strain by the use
of the stress theorem, and the forces on the atoms derived
from the Hellman-Feynman theorem. There are internal
displacements of the sublattices for an e~ strain (uniaxial
strain in the [111]direction) and the atomic positions are
not determined by the symmetry alone. Kleinman'
defined an internal strain parameter g that describes the
actual displacernents of the atoms. Nielsen and Martin
prescribe two independent calculations of stress and force
which determine the three independent quantities C44, g,
and the optical I -phonon frequency ei-, with one addi-
tional consistency check. The final stress-strain relation
that they derive is
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TABLE I. Lattice constant ao, bulk modulus B, shear modulus C„and the elastic constants C;, of AlAs. The "bare" elastic con-
stant C44, the optical I"-phonon frequency co„, and the internal strain parameter g.

ao
(A)

8
(Mbar)

C,
(Mba r)

Cl ]

(Mbar) (Mbar) (Mbar)
C44

(Mbar)

Calc.
Wiley, Ref. 3

Adachi, Ref. 4
de Gironcoli et al. ,

Ref. 12
Expt. , Ref. 22

5.58

10.89

0.617

5.59+0.01 0.75+0.01 0.31+0.01 1.16+0.01 0.55+0.01 0.80+0.01 0.57+0.01 10.8+0.2 0.58+0.03
0.773 0.358 1.250 0.534 0.542
0.779 0.318 1.202 0.567 0.589

~ =[C&4 —& @(tao/4) 1&4=Cm&4

where C44 is the elastic constant in the absence of inter-
nal displacements and @ is the calculated force equal to
prus where p is the reduced mass; ao is the equilibrium
lattice constant and 0 the cell volume.

In the present work we use the Kerker norm-
conserving nonlocal pseudopotentials which were derived
from all-electron local-density-approximation calcula-
tions of the free atoms employing the Ceperley-Alder'
form for the exchange and correlation energies. Kinetic
energy cuto8's of 18 and 24 Ry were applied to the Ham-
iltonian in a plane-wave basis and our results show good
convergence for total energies, forces, and stresses at 18
Ry. We use an ellipsoidal cutoff in the strained lattices to
include the same plane waves as in the undistorted crys-
tal. Ten special points were used for the Brillouin-zone k
integration' ' for the undistorted lattice. For the lower
symmetry strained lattices there are 20 and 30 points for
strains applied in the (100) and (111) directions, respec-
tively. The calculations were done at the theoretical lat-
tice constant of 5.59 A determined at both 18 and 24 Ry
by fitting the total energies to the empirical Murnaghan
equation of state.

III. RESULTS

In Table I we present our results at 24 Ry and 10 spe-
cial k points which differ negligibly from the results at 18
Ry. The bulk modulus is defined as 8 =(C»+2Ci2)/3
and the shear modulus as C, =(C» —C,2)/2. We com-
pare our results with references mentioned in Sec. I.

We use strains of e, =+0.004 to compute the C» and
C&2 constants. A relative displacement of the atoms by u
and a strain of the lattice by e~ along the (111)direction
provide the two independent calculations that determine
Czz. The change of the (111)bond length in the strained
lattice by (1—g)e4a&3/4 defines the internal strain pa-
rameter g which is found to be in the range 0(g'( 1. For
a particular e4 strain of the lattice the efFect of the rela-
tive displacement u is to produce zero force on the atoms.
We performed our calculations with u =+0.002a and

e4 =+0.004.
We carried out similar calculations for GaAs using the

Kerker pseudopotential at 18 and 24 Ry for which the
equilibrium lattice constant was found to be 5.47 A—
much lower than the experimental value of 5.642 A.
Despite this difference, our elastic constants compare
very well with experiment and with the results of Nielsen
and Martin who used the potential of Bachelet, Hamann,
and Schliiter. ' The calculated (experimental) values in
Mbar of Cii, Ci2, and C44 were 1.38 (1.22), 0.55 (0.57),
and 0.66 (0.60), respectively. We note that it is apparent-
ly very important to calculate elastic constants at the
theoretical lattice constant since very different results are
found if the experimental lattice constant is used.

IV. CONCLUSIONS

We have used an ab initio pseudopotential in a plane-
wave basis with kinetic energy cutoffs of 18 and 24 Ry to
compute highly converged total energies, forces, and
stresses in A1As and GaAs to arrive at the elastic moduli
of these materials. Because all our calculations are ab in-
itio with no adjustments, we believe that the results of
Table I for AlAs should be as accurate as those for CsaAs,
and can be considered as a prediction for AlAs.

Our first-principles calculations give additional support
for the scaling of the elastic moduli proposed by Keyes
and the use of this idea in the empirically predicted con-
stants for A1As given by Wiley.
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