Band filling and structural stability of cubic trialuminides: YAl₃, ZrAl₃, and NbAl₃

Jian-hua Xu

Shanghai Institute of Metallurgy, Academia Sinica, Shanghai 200050, China

A. J. Freeman

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (Received 12 June 1989)

The electronic structure and the structural stability of the trialuminides YAl₃, ZrAl₃, and NbAl₃ in the cubic $L l_2$ and tetragonal $D0_{22}$ structures were investigated by means of the total-energy allelectron self-consistent linear muffin-tin orbitals (LMTO) method. The variation of the stability across the constituent transition-metal series can be understood simply in terms of the band filling of the bonding states. And surprisingly, the simple rigid-band approximation appears adequate to describe the structural stability of these (*p*-*d* covalent) trialuminides.

The study of the correlation between the electronic structure and the crystal structure of the transition-metal (TM) trialuminides has twofold significance. First, for developing super-aluminum-based alloys for elevated temperature applications, Fine et al.¹ have found lowmismatch (therefore, low interfacial energy) coherent coplanar L1₂ structured precipitates [for instance, Al₃ $(Zr_{0.25}V_{0.75})]$, which can retard the coarsening rate significantly in the Al-based alloys. However, the mismatch between the precipitates and the aluminum matrix depends strongly upon the crystal structure of the precipitates. Secondly, from the experimental observations it has been known that the stable structures of the TM trialuminides always adopt four different structures—the cubic $L1_2$, the tetragonal $D0_{22}$ or $D0_{23}$, and the hexagonal $D0_{19}$ —which vary regularly with the constituent TM atoms. For example, YAl₃ (Ref. 2) has hexagonal $D0_{19}$ -type structure at low temperature and rhombohedral BaPb₃-type structure at high temperature; a third modification (the $L1_2$ structure) has been observed above 950 °C. In addition, the rhombohedral BaPb₃-type structure of YAl₃ can be considered to consist of the purely hexagonal $(D0_{19}$ -type) stacking and the purely cubic ($L 1_2$ -type) stacking. ZrAl₃ crystallizes as a secondary phase in the aluminum solid solution in the metastable cubic $L1_2$ structure;³ after annealing above 510 °C, it transforms into a (stable) tetragonal DO23 structure. Finally, NbAl₃ has no polymorph; the tetragonal $D0_{22}$ structure is a unique stable structure.⁴

In this paper, we investigate the electronic structures and the structural stability of YAl₃, ZrAl₃, and NbAl₃ using the local-density total-energy all-electron selfconsistent linear muffin-tin orbitals (LMTO) method associated with the atomic-sphere approximation.⁵ The calculated total-energy results show that in agreement with experiment the $L l_2$ structure of YAl₃ is energetically favored as compared with the DO_{22} structure; by contrast, for NbAl₃ the DO_{22} structure is energetically more stable than the $L l_2$ structure. Furthermore, the variation of the structural stability with the (4d) TM constituent can be understood in terms of the band filling of the bonding states.

For these three TM trialuminides we considered the $L1_2$ -type and the $D0_{22}$ -type structures. Both structures can be viewed as a face-centered derivative lattice; all atoms have the same coordination number (12) and each atom has the same first-nearest-neighbor environment, i.e., there are no TM and TM-atom contacts, and four TM atoms plus eight Al atoms surround each Al. In the calculations, we adopt the experimental lattice constants a = 6.276 Å and c = 4.582 Å for YAl₃ (DO_{19} -type structure),² a = 4.073 Å for ZrAl₃ (L1₂-type structure),³ and a = 3.845 Å and c = 8.6012 Å for NbAl₃ (D0₂₂-type structure).⁴ We simply assumed that both TM atoms and the Al atom have the same Wigner-Seitz (WS) sphere radii, except that we assumed for YAl₃ that the WS radius of Y (1.77 Å) is larger than that of Al (1.64 Å) because the metallic atomic radius of Y (1.81 Å) is significantly larger than that of Al (1.43 Å). For each aluminide, we calculate the WS radius (r_{WS}) from the experimental lattice constant of its stable structure, and then adopt the same WS radius for the different structures to obtain their lattice constants, which are listed in Table I. For the (hypothetical) $D0_{22}$ structure of the YAl₃ and ZrAl₃

TABLE I. The lattice constants of YAl_3 , $ZrAl_3$, and $NbAl_3$ (in Å). References a, b, and c are experimental values.

(
	$L1_2$	D 0 ₂₂		D 0 ₁₉			
	a	а	с	а	с		
YAL	4.275	4.123	9.194	6.276	4.582ª		
ZrAl	4.073 ^b	3.928	8.759				
NbAl ₃	3.991	3.845	8.601°				
D C				<u></u>			

^aReference 2. ^bReference 3.

^cReference 4.

tererence 4.

TABLE II. The total energy (-E) (in Ry/f.u.) and the total density of states at $E_F[N(E_F)]$ (in states/eV f.u.) of YAl₃, ZrAl₃, and NbAl₃ in the L_{1_2} and $D_{0_{2_2}}$ structures, obtained using 18, 60, and 45 k points in the irreducible Brilluoin zone for YAl₃, ZrAl₃, and NbAl₃, respectively.

	\mathbf{YAl}_{3}		ZrA	.13	NbAl ₃	
	-E	$D(E_F)$	-E	$D(E_F)$	-E	$D(E_F)$
$L1_{2}$	8215.236	1.10	8641.993	1.68	9084.172	2.16
D 0 ₂₂	8215.200	2.85	8641.996	1.79	9084.250	0.17

aluminides, we assume the ratio of c/a = 2.23—chosen from the (approximate) experimental c/a ratio of the $D0_{22}$ TM trialuminides. Note that the discrepancy between the calculated (4.275 Å) and the observed (4.323 Å (Ref. 6) lattice constant for cubic YAl₃ is only about 1%, which is generally considered to be about the error found when the calculated (equilibrium) lattice constant is obtained from the total-energy minimum.

The calculated total energy (-E) and the density of states at the Fermi level $[N(E_F)]$ for these three trialuminides (YAl₃, ZrAl₃, and NbAl₃) in the two ($L l_2$ and DO_{22}) structures are listed in Table II. As shown in Table II, the total energy of L_{1_2} -structure YAl₃ is about 36 mRy/[formula unit (f.u.)] lower than that in the $D0_{22}$ structure; in contrast, the total energy of $L1_2$ -NbAl₃ is about 88 mRy/f.u. higher than that in the $D0_{22}$ structure. The total-energy calculation clearly shows that in agreement with experiment L12-structure YAl3 is energetically favored as compared with the $D0_{22}$ structure,⁷ and the $D0_{22}$ NbAl₃ is the stable structure. On the other hand, it is rather difficult to judge the phase stability between these two $(L1_2 \text{ and } D0_{22})$ phases of ZrAl₃ due to the closeness of their calculated total energies which is less than 1 mRy per atom (cf. Table II). However, the results still provide a clear trend of increasing (or decreasing) the phase stability of the $D0_{22}$ (or $L1_2$) phase on going from YAl₃ to NbAl₃. Moreover, it is interesting to note again that the stable structure is always associated with a lower⁸ $N(E_F)$.

To gain insight into the phase stability of the TM aluminides and its variation with the TM constituent at the microscopic level, we investigated the electronic structures of these three trialumindes in the L_{1_2} structure. Figure 1 shows the calculated TM 4d and Al 2p partial density of states (DOS). It is seen that the covalent interactions are so large that the TM 4d and Al 2p states almost overlap (or hybridize) completely in the whole energy region from the bottom of the band up to E_F . As seen in Fig. 2, a broad and prominent peak at about -1.5 eV (for YAl₃) and -3 eV (for ZrAl₃ and NbAl₃) arises from the TM 4d -Al 2p bonding states, and a deep valley, or pseudogap⁹ between the bonding states and the nonbonding states located at about 0.5 eV for YAl₃, -0.5 eV for ZrAl₃, and -1.0 eV for NbAl₃.

According to Friedel's theory of the cohesive energy for TM (Ref. 10) and William's conceptual picture of chemical bonding for ordered TM and nontransitionmetal compounds,¹¹ the essential contribution to the cohesion of the TM compounds is the broadening of the

FIG. 1. TM 4d and two times the Al 2p partial density of states for (a) YAl_3 , (b) $ZrAl_3$, and (c) $NbAl_3$: solid line—TM 4d states, dashed line—Al 2p states.

TM d band and the hybridization between the TM d states and the Al p states; filling bonding or antibonding states will increase or reduce the cohesion (or stability). Similarly, we expect that the phase stability will depend upon the band filling of the bonding states we denote the width of the occupied states by W_{occ} and the width of the bonding states, W_b , as the distance from the bottom of the band to E_F and to the pseudogap, respectively; hence, W_{occ}/W_b can adopted to evaluate the occupied portion

FIG. 2. The total density of states for (a) YAl₃, (b) ZrAl₃, and (c) NbAl₃.

TABLE III. The width of the occupied states (W_{occ}), of the bonding states (W_b), W_{occ}/W_b , W_{pd} , and the number of valence electrons to be accommodated in the bonding states (n_b) for YAl₃, ZrAl₃, and NbAl₃ in the cubic L l₂ structure (width in eV, n_b in electrons)

	W _{occ}	W_b	$W_{\rm occ}/W_b$	W_{pd}	n _b
YAl ₃	9.34	9.87	0.95	7.87	12.37
ZrAl ₃	10.71	10.21	1.04	7.82	12.36
NbAl ₃	11.04	9.93	1.11	7.93	12.28

of the bonding states, i.e., the band filling of the bonding states.

For these three trialuminides, W_{occ} , W_b , and W_{occ}/W_b are listed in Table III. In addition, the distance from the bottom of the band to the main peak of the (TM 4d –Al 2p) bonding states, W_{pd} , and the number of valence electrons (VE's) to be accommodated in the bonding states, n_b , are also listed in Table III. It can clearly be seen that $W_{\rm occ}$ is systematically widened upon going from YAl₃ (9.34 eV) to ZrAl₃ (10.71 eV) to NbAl₃ (11.04 eV). With an increase in the number of VE's, on the other hand, $W_b(n_b)$ exhibits no systematic variation, but keeps nearly the same value of $\sim 10 \text{ eV}$ (12.3 electrons) [the maximum difference of $W_b(n_b) \le 0.4$ eV (0.1 electrons) i.e., $\Delta W_b / W_b(\Delta n_b / n_b) \le 4\%$ (1%)]. Considering the increasing number of VE's ongoing from YAl₃, ZrAl₃ to NbAl₃, the same size of $W_b(n_b)$ means that the bonding states have enough room to accommodate the VE's for YAl₃, but not for NbAl₃, with ZrAl₃ perhaps in between.

In fact, for YAl₃ all (12) VE's are being filled into the bonding states, and are nearly fully $(W_{occ}/W_b = 0.95)$ occupying the bonding states; hence we expect that $L l_2$ -YAl₃ is a strongly bonded structure as compared with $D0_{22}$. For ZrAl₃, W_{occ}/W_b (=1.04) is slightly larger

FIG. 3. Comparison of the total density of states for YAl₃, ZrAl₃, and NbAl₃; the bottom of the density of states of YAl₃ (ZrAl₃) has been shifted down 1.7 eV (0.3 eV) to coincide with that of NbAl₃; dashed line—YAl₃, dotted line—ZrAl₃, and solid line—NbAl₃. E_F^1 , E_F^2 , and E_F^3 denote the Fermi level of YAl₃, ZrAl₃, and NbAl₃, respectively.

than 1, which means that the bonding states of cubic ZrAl₃ already have no room for accommodating all its 13 VE's; ZrAl₃ can only accommodate the same number (12.36) as that of YAl₃, the extra 0.64 of a VE must occupy its nonbonding states. As a consequence, its E_F lies on the shoulder of nonbonding states, resulting in a metastable cubic phase of ZrAl₃. For cubic NbAl₃, the ratio of W_{occ}/W_{h} equaling 1.11 means that only 90% of the VE's can be accommodated into its bonding states; hence, the remaining 10% must go into the high-energy region of the nonbonding states. These results in the high instability of L_{1_2} with respect to¹² DO_{2_2} . Moreover, note that in Fig. 3 the overall features of the total DOS for these three cubic trialuminides resemble each other. Especially after we shift the bottom of the DOS of YAl₃ and ZrAl₃ to coincide with that of NbAl₃ the total DOS curves for these three systems fall onto the almost same curve (cf. Fig. 3); the distances W_{pd} from the bottom of the band to the peak of the p-d bonding states are nearly the same (=7.9 eV) for these three systems (cf. Table III).

The stability of the $L1_2$ phase decreases on going from

- ¹M. E. Fine, Metall. Trans. A **6**, 625 (1975); Y. C. Chen, M. E. Fine, J. R. Weertman, and R. E. Lewis, Scr. Metall. **21**, 1003 (1987).
- ²Structure Reports for 1967, Vol. 32A of Structue Reports, edited by W. B. Pearson (Oosthoek, Scheltema, and Holkema, Utrecht, 1975), p. 14.
- ³T. Ohashi and R. Ichikawa, Metall. Trans. 3, 2300 (1972).
- ⁴W. B. Pearson, A Handbook of Lattice Spacing and Structures of Metals and Alloys (Pergamon, New York 1958), or Smithells Metals Reference Book, 6th Ed., edited by E. A. Brandes (Butterworths, London, 1983).
- ⁵O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
- ⁶Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, edited by K.-H. Hellwege (Springer-Verlag, Berlin, 1971), Vol. III/6.

⁷In agreement with observation, the hexagonal $D0_{19}$ phase has

YAl₃ and ZrAl₃ to NbAl₃, and eventually leads to a phase transformation to a DO_{22} phase in NbAl₃. It thus appears that this can be understood in terms of band filling in the sense of a rigid-band model, because the valence electrons fill the bonding states up to E_F^1 in YAl₃, then begin to fill the nonbonding states up E_F^2 in ZrAl₃, and, finally, fill to a peak of the nonbonding states E_F^3 in NbAl₃. Therefore, the simple rigid-band concept appears to be adequate to explain the structural stability of these (*p*-*d* covalent) TM trialuminides.

This work was supported at the Shanghai Institute of Metallurgy by the National Natural Science Foundation of China (NSFC) and at Northwestern University by the U.S. Air Force Office of Scientific Research (Grant No. 88-0346). One of us, (J.-h. Xu) is indebted to Z.-l. Wu for his constant encouragement, and thanks the Shanghai Institute of Computing Technology for their understanding and support of this collaborative program between the Shanghai Institute of Metallurgy and Northwestern University.

the lowest total energy (-8215.285 Ry/formula unit).

- ⁸J.-H. Xu, T. Oguchi, and A. J. Freeman, Phys. Rev. B **35**, 6940 (1987).
- ⁹A. Pasturel, C. Colinet, and P. Hicter, Physica B+C 132B, 177 (1985).
- ¹⁰J. Friedel, in *The Physics of Metals*, edited by J. M. Ziman (Cambridge University Press, London, 1069), p. 340.
- ¹¹A. R. Williams, C. D. Gelatt, Jr., J. W. D. Connolly, and V. L. Moruzzi, in *Alloy Phase Diagrams*, edited by L. H. Bennett, T. B. Massalski, and B. C. Giessen (North-Holland, New York, 1983), p. 17.
- ¹²For NbAl₃ in the DO_{22} -type structure the occupied portion of bonding states, W_{occ}/W_b is 0.99; in other words, there are just enough VE's to fill the bonding states, resulting in a strongly bonded structure.