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Electronic states of Si(100) reconstructed surfaces
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The detailed electronic structures and geometries of Si(100) reconstructed surfaces are investigat-

ed by a self-consistent calculation with a norm-conserving nonlocal pseudopotential. We concen-

trate on the dimer model and on (2X 1)„p(2X2),and c(4X2) reconstructions which are simultane-

ously detected by recent scanning-tunneling-microscopy measurements. The optimized geometries

of asymmetric {2X1)and c(4X2) systems are reached by minimizing the total energy. Present

study shows that the c (4 X 2) system is the most favorable one at absolute zero temperature; more-

over, the p(2X2) system can also be favored because the total-energy difterence between c(4X2)
and p(2X2) systems is relatively small. Both of them are much more stable than (2X1) buckled

structure. The surface electronic structures ofp (2 X 2) and c (4X 2}systems are analyzed and under-

stood based on the electronic structure of (2X1) asymmetric-dimer model. Both the surface band

structures and optimized geometries of the present calculation are in reasonably good agreement
with experiments.

I. INTRQDUCTIQN

There has been considerable theoretical and experi-
mental interest in the electronic and geometric structure
of semiconductor surfaces, especially of the silicon sur-
face. The silicon (100) surface has been one of the sim-
plest yet still controversial systems, which has been inves-
tigated for about 30 years since Schlier and Farnsworth'
first provided evidence for top-layer atoms pairing lead-
ing to a (2X 1) reconstruction. Many reconstruction pat-
terns have been observed on this surface since then, for
example, (2X1), p(2X2), c(4X2), c(4X4), ' and
also (2 Xn ) (6» n ~ 10)."' Some of them are detected
only within relatively narrow temperature regions. Many
different structural models, which can be grouped into
three classes: (a) dimer models, ' ' (b) conjugated chain
models, ' and (c) vacancy models, ' ' have also been
conjectured. Of the structural models proposed for this
surface, the dimer model (symmetric or asymmetric) is
most widely supported both by experiments and theoreti-
cal calculations. Recently, scanning-tunneling-micro-
scopy (STM) measurement ' ' at room temperature on
the Si(100) surface showed only buckled or nonbuckled
dimerlike structure with random vacancies. Another re-
sult from this experiment is the presence of (2X1),
p(2X2), and c(4X2) domains simultaneously on the
same surface. Although this probably depends on the
preparation method of the clean surface and on remain-
ing surface impurities, there is little doubt that such a
feature is presented on any experimentally used surface.
The coexistence of different reconstructions together with
vacancies on the same surface complicates the interpreta-
tion of some of the experimental results which may aver-
age over a large surface area. At such a case, theoretical
studies on a particular reconstructed surface can be help-
ful and necessary for understanding the properties of a
real surface.

Previous theoretical studies on the dimer model have
all contributed significantly to our understanding of this

reconstructed surface. Qn the basis of the Keating
strain-energy minimization calculation, Appelbaum and
Hamann' showed that the surface dimerization is ac-
companied by substantial subsurface distortions extend-
ing 4—5 atomic layers into the bulk. By using a tight-
binding calculation, Chadi' suggested that the surface
energy could be lowered further by allowing the dimers
to buckle out of the surface plane. Later, the minimum-
energy atomic geometry is presented by computing the
Hellmann-Feynman forces and the total energies with the
local pseudopotential method. ' Other buckled dimer
models have also been presented. ' Ihm et ah. pointed
out that the (2X1) structure is not the ground state of
the Si(100) surface and higher-order reconstructions
should occur on this surface at low temperature. They
also predicted a transition temperature at about 250 K
for the disappearance of higher-order spots. Recent ex-
periments have shown clear c(4X2) low-energy electron
diffraction (LEED) patterns at lower temperature.
However, for all these systems, the available results are
not considered enough to regard the problem as corn-
pletely solved; for example, neither the detailed electronic
structures of higher-order reconstructions nor the reason
for the lower energy of the c(4X2) reconstruction at low

temperature are clear. Also, there are no conclusive
determinations of the atomic arrangement including deep
relaxations for higher-order reconstructions.

In this work, the norm-conserving nonlocal-
pseudopotential approach is used to investigate detailed
electronic and geometric structures of clean Si(100) sur-
faces. We concentrate on the dim er model and on
(2X1), p(2X2), and c(4X2) reconstructions which are
simultaneously detected by STM measurement. The opti-
mized geometries of asymmetric (2 X 1) and c(4X2) sys-
tems are reached by minimizing the total energy with the
guide of Hellmann-Feynman forces. Present study shows
that the c(4X2) system is the most favorable one at abso-
lute zero temperature; moreover, the p(2X2) system
could also be favored because the total energy difference
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II. CALCULATION METHOD

In the present work, we use a norm-conserving pseudo-
potential approach within the Hohenberg-Kohn-Sham
local-density-functional formalism. This approach has
been demonstrated to achieve accurate results in describ-
ing the electronic properties and a variety of structural
properties for both extended and localized systems.
The valence electrons play a dominant role even in the
determination of structural properties of materials; there-
fore, the computation of core states can be reasonably el-
iminated.

The ionic pseudopotential representing the eff'ective
core-valence electron interactions used in this study is the
norm-conserving nonlocal one. Because of the large unit
cell, the soft pseudopotential, which is constructed by the
same procedure as in Ref. 28, is used in this work. The
analytical form of this potential is given by Eqs.
(2. 1)-(2.3):

P'10ll p ( ) +Q plOll
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(2.1)

(2.2)

between c(4X2) and p(2X2) systems is relatively small.
Both of them are much more stable than the (2X1)
asymmetric dimer model. The surface electronic struc-
tures of p(2X2) and c(4X2) systems are analyzed and
understood based on the electronic structure of the
(2 X 1) buckled dimer model. In the next section, the cal-
culational procedure is described. Section III is dedicat-
ed to the discussions of the electronic structures of
several Si(100) reconstructed surfaces and to a compar-
ison of results with experiments. Their total energies and
the ground state of the Si(100) surface are presented in
Sec. IV. In Sec. V, optimized geometries of asymmetric
(2X1) and c(4X2) surfaces and discussions concerning
them are given. A summary of the results is shown in the
last section.

TABLE II. Comparison of the calculated and measured stat-
ic properties of silicon.

Calculation
Experiment
Difterence

Lattice
constant

(A)

5.424
5.429

—0.1%

Cohesive
energy

(eV~

4.465
4.63

—3.6%

Bulk
modulus
(Mbar)

0.948
0.99

—4.0%

The values of potential parameters which come from
Ohno are given in Table I. The effect of the soft core of
this potential is checked by its application to the silicon
bulk properties. The comparison of calculated and mea-
sured static properties is given in Table II. The
exchange-correlation interaction is approximated by the
Xa potential with o.=0.7. The cohesive energy was ob-
tained including the spin-polarized correction energy,
which is —0.075 Ry/atom within the Xa potential ap-
proximation. The agreement of the calculated lattice
constant, cohesive energy, and bulk modulus with experi-
ment is satisfactory. Thus this potential may be applied
to a system where Si—Si bond lengths are not so much
diA'erent from that of bulk Si. In the following we sup-
pose that this potential can be applied to our systems.

To facilitate the standard pseudopotential method, the
repeated slab model is used to simulate the actual surface.
The unit supercell consists of ten layers of silicon plus a
vacuum region equivalent to about five layers of Si in
thickness. A plane-wave basis set is employed for the ex-
pansion of the wave functions. The exchange-correlation
interaction is approximated by the Xo. potential with
a=0.7. The plane waves up to 2.4 Ry in kinetic energy
are included in the basis set. The cutoff is increased to
3.0 Ry in the test calculation of the (2X1) system, but
there is no significant change of the band structures of
the system. Hellmann-Feynman forces are also calculat-
ed and the absolute maximum dift'erence between the cor-
responding forces for the two cuto6's is the order of 10

TABLE I. The values of pseudopotential parameters.

Al
A2
A3
A4
Ag

cz&

CX2

CX3

Z, =4.0c""= 1.60541

c2'"' = —0.6054

l =0
—106.508 681 483 5
—713.158 210 338 4

826.097 399481 2
13.151 447 978 4

335.744 985 971 8
229.102 722 325 7

1.10
1.80
2.40

l=l
—127.753 717 108 8
—180.973 295 552 7

313.699 199258 6
15.003 439 488 4

152.934 278 507 3
87.676 513 587 9
0.90
1.40
2.00

~core
1

&core 0 862

l=2
—9853.758 600 006 9

2433.525 959 882 3
7422.255 383 417 5

882.625 296 807 8
4103.286 930091 7
1323.568 741 763 4

1.15
1.45
1.90
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Ry/a. u. , which is small enough to get the same optimized
geometries. Therefore, the cutoF of 2.4 Ry is used for
present calculations of all systems, which leads to
1600—1700 plane waves for p(2 X 2) and c(4 X 2) systems.

Total energy and Hellmann-Feynman forces are com-
puted after the self-consistent calculation. The method is
standard and details of it are to be found elsewhere. '
The optimized geometry is obtained by minimizing the
total energy. For the optimizing process, the next step
geometry is determined by using total energy and its
derivatives of atomic positions (i.e., Hellmann-Feynman
forces acting on each atoms) as a guide. The procedure is
repeated until the forces on every atom of the unit cell
become sufficiently small: for the buckled (2X 1) system,
all force is less than 3.0X10 Ry/a. u. , and for the
c(4X2) system it is less than 4.5X10 Ry/a. u. More
precise optimization has not been performed, because the
results do not change significantly in spite of huge com-
puter time needed for such a large system, e.g. , with 40
atoms and a large vacuum region per unit cell.

0.578
11~

0.149

1.048

i i 0.498

i& 0.225 .085

FIG. 2. Geometry of a single dimer used for comparing cal-
culations of (2 X 1),p(2 X 2), and c(4 X 2) systems; units are A.

III. ELECTRONIC STRUCTURES
QF Si(100) ( 2 X 1 ),p ( 2 X 2 ), AND c ( 4 X 2) SURFACES

Figure 1 shows the top view of (2X1), p(2X2), and
c(4X2) systems and their unit cells. All three systems
include asymmetric dimers, identical in character,
difFering only in the way of dimer ordering on the sur-
face. In order to see which way of dimer ordering is the
most energy favorable one and to have a clear compar-
ison of their electronic structures, in this and the next

section all geometries for asymmetric (2X1), p(2XZ),
and c(4X2) surfaces used in the calculation have the ex-
act same subsurface atomic positions (atoins 21, 22, 31,
32, 41, 42, 51, and 52 in Fig. 2) if there is no special state-
ment of the geometry. The geometry used for a single di-
mer is shown in Fig. 2, which is obtained by a
modification of the optimized geometry provided by Yin
and Cohen, ' in order to have the same subsurface
geometries for all the (2X1), p(2X2), and c(4X2) sys-
tems.

A. Symmetric and asymmetric dimer model
of (2 X 1) reconstruction

FICx. 1. Top view and unit cel1 of (2X1},p(2X2), and
c(4X2) systems of the dimer model.

In order to make a comparison with previous calcula-
tions and to check the present one, we have first per-
formed the calculation for the symmetric dimer (2X1)
model. The geometry used is Levine's model ' in which
only the first layer atoms of the surface are reconstructed
to form a symmetric dirner with the dimer bond length
equal to the bulk one. The calculated surface band struc-
ture and charge-density plots are shown in Figs. 3 and 4
together with those of the asymmetric (2X1) case. The
two surface bands of symmetric dimer model are shown
by dashed lines in the Fig. 3. Present calculation shows
consistent results with the previous calculations. ' ' For
example, two parallel overlapping surface bands show the
metallic character of the surface; the theoretical band-
width of the occupied surface band (1.23 eV) is wider
than the experimental ones [0.65 eV (Ref. 32) and 0.80 eV
(Ref. 33)]. More detailed comparison of the (2X 1)
dispersion will be presented later.

For the (2 X 1) asymmetric dimer case, the most strik-
ing feature in this calculation is that the asymmetric di-
mer model results in a metallic surface, although two sur-
face bands are repelled from each other to a large extent
compared with the symmetric dimer case. This feature is
in disagreement with photoemission data ' and earlier
theoretical calculations by Chadi' and Ihm and Cohen. '
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FIG. 3. Surface band structures of (2X1) symmetric- and
asymmetric-dimer models. Bands of the asymmetric-dimer
model are represented by solid lines. In the main gap region,
the surface bands for the symmetric-dimer model are given by
dashed lines.

They both got the semiconducting feature with gaps of
0.6 eV and about 0.1 eV, respectively. However, a recent
study by Kruger and Pollman using the Green's func-
tion scattering formalism also obtained metallic surface
bands. Moreover, Pandey's calculation also showed a
metallic surface for the buckling dimer model using the
self-consistent pseudopotential method. The main
feature of those calculations is consistent with the present
one. The reason for the different results is discussed
below.

Chadi s calculation was done using the tight-binding
method, which usually cannot predict the energy gap
quantitatively. As for Ihm and Cohen's calculation, the
pseudopotential used is the local one together with a rela-
tively small number of basis sets. We have performed the
same local-pseudopotential calculation by using the same
geometry and also by the Xo. exchange-correlation poten-
tial. It showed that the semiconducting surface was ob-
tained only at low cutoff with +=0.8. Increasing the
cutoff or decreasing the 0. value to 0.7 will cause the band
gap to vanish. As for the inAuence of the thickness of the
slab used on the surface band structures, we have
checked the results for the (2X1) system by using a slab
with 12 silicon layers. It shows no substantial change of
the conducting feature of this surface, see Fig. 5.

In the experiments, a semiconducting surface for the
(2 X 1) structure is observed. ' The discrepancy be-
tween theoretical calculations and experimental measure-
ments may be due to several reasons. The present calcu-
lations are based on the local-density-functional approxi-
mation. It has been widely shown in the past that such
an approximation greatly underestimates the band gap.
Another possibility for the difference is that the sample
surface used in the experiments at finite temperature is

{C}

FICi. 4. Contour plots of square of wave functions at the J'
point in (2X1) BZ. (a) Surface bonding and (b) antibonding
states for symmetric dimer model. (c) Surface bonding and (d}
antibonding states for the asymmetric dimer model. The plots
are in a (110) plane cutting the surface at a right angle. The
solid circles represent the Si atoms lying on the plane, and the
solid lines between them represent the hypothetical covalent
bonds. Si atoms not on the plane are denoted by open circles.

EF

I J
FIG. 5. Surface bands of asymmetric (2X 1). (a) Using a slab

of 10 silicon layers; (b} using a slab of 12 silicon layers.
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not a perfectly buckled (2X1) structure, but with the
random mixture of the microdomains of c(4X2) or
p(2 X 2) structures. It remains unknown whether the per-
fect (2X1) surface of asymmetric dimers is metallic or
semiconducting.

B. p(2X2) and c(4X2) reconstructions

The electronic feature of the p(2 X 2) surface is metal-
lic, like that of the (2X1) asymmetric dimer one, as
shown in Fig. 6(a). However, that of the c(4X2) surface
is semiconducting with a very small indirect gap ( -0.01
eV) between the m band state at point J and sr* at Y as
shown in Fig. 7(a). These results can be understood on
the electronic structures of the asymmetric (2X 1) model,
because p(2X2) and c(4X2) surfaces are both obtained
by arraying the (2X1) buckled dimers on the surface,
differing only in the way of ordering of dimers.

Figure 6(b) shows the surface band structure obtained
directly from the folding of the energy bands of the asym-

metric (2 X 1) surface in the Brillouin zone (BZ) of
p(2 X 2) symmetry. Comparing the real bands of the
p(2X2) surface with the folded ones of the (2X1) sur-
face, slight lowering and raising of the occupied and
unoccupied surface bands are observed around the Fermi
level for the real p(2X2) calculation, but otherwise band
structures are substantially the same. The result implies
the weakness of inAuences on the electronic behavior of
the system when neighboring dimers of the same dimer
row buckled in different directions. From the calculated
Fermi surfaces of the p(2X2) system and the folded one
from the (2X1) surface, as shown in Figs. 10(d) and
10(b), it shows that "electron-hole" interactions are weak
when the system changes from (2X1) symmetry to
p(2 X 2) symmetry, and the metallic character of the sur-
face is not changed. If we look at the wave functions at
the I point for the bonding and antibonding surface
states of the real p(2 X 2) structure, they show nearly the
same character as those in the (2 X 1) case at the J' point,

(a) (a)

C)
C)

J Y

C)
C)

C)
C)

P4Qog O

E EF

—'J'r2

FIG. 6. Band structure of p(2X2) with the geometry of Fig.
2. (b) Band structure gained from folding (2X1) bands for
p(2X2) symmetry.

J A Y

FIG. 7. Band structure of c(4X2) with the geometry of Fig.
2. (b) Band structure gained from folding (2X1) bands for
c(4X2) symmetry.
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which is folded to the I' point at the p(2X2) BZ [see
Figs. 4(c) and 4(d)]. This implies that the mixing is weak
between bonding and antibonding states of surface dan-
gling bonds when the ordering of surface dimers changes
from the (2 X 1) structure to the p(2 X 2) one.

In contrast with the case of p(2X2), the c(4X2) sur-
face becomes semiconducting while the surface bands
folded from the (2X1) surface are clearly metallic, as
seen in Figs. 7(a) and 7(b). The change of the conducting
feature from metallic to semiconducting can be under-
stood similarly from the analysis of wave function and
the Fermi surface. Figures 8(c) and 8(d) show the square
of the wave functions of the c(4 X 2) system and Figs. 8(a)
and 8(b) show the corresponding quantity for the (2X1)
structure. Shown are both the surface bonding (rr) and
antibonding (m*) states at a point A along the J—Y line
in the c(4 X 2) BZ, where the Fermi surfaces of the folded
(2X 1) band have a region of overlapping [see Fig. 10(c)].
Comparing the wave functions for the two cases, it is
shown that the bonding and antibonding states of the real
c(4X2) system have the character of strong mixings of
the bonding and antibonding states of surface dangling
bonds of the (2X1) surface. It means that the hybridiza-
tion between Bloch sums contributed from the dangling
bonds on the up-buckled dimer atoms and that from the
down-buckled dimer atoms is reduced around the
point in the c(4X2) case. This reduction leads the wave
function at the A point of the c(4X2) BZ to have the
same feature as that shown in Figs. 8(c) and 8(d).

Qo
(a)

o
oQo

The reason for this large mixing between m and m*

states at the c(4X2) case is explained as follows. By
changing the symmetry of (2X 1) to c(4X2), the rr state
at J' comes to interact with the m state at J [point J' in
the (2X1) BZ comes to overlap with point J in the
c(4X2) BZ, see Fig. 10]. As shown in Fig. 9,
there emerges the matrix element between the two
states, (~ (J')~H, ~4„2~~m(J)), whereas the correspond-
ing matrix elements (~*(J')~H~2„,~~m(J)) and
(~'(J')~H ~2x2~~m(J)) vanish because of the symmetry.

Folding the Fermi surface of the ( 2 X 1) system into the
c(4X2) BZ shown in Fig. 10(c), it can also be seen that
strong electron-hole interaction may appear around the
region J—Fof the BZ boundary when the system changes
from the (2X1) symmetry into the c(4X2) one. Both
properties of wave functions and Fermi surface are quite
diFerent from the p(2X2) case where the mixing and in-
teraction are rather weak.

The above characters of electronic interactions lead to

Qo Qo
o oS

(c) (d)

(c)
o

o o

FICx. 8. Contour plots of the square of wave functions at
point 2 in e(4 X 2) BZ. (a),(b) Surface bonding and antibonding
states of the (2X1) system. (c),(d) Surface bonding and anti-
bonding states of the c(4X2) system. The plotting plane and
notation are the same as in Fig. 4.

FICJ. 9. Schematic illustrations of (a)-(c}, the electronic po-
tential distribution on the surfaces of c(4 X 2), p(2 X 2), and
asymmetric (2X1), respectively. Larger circles represent more
attractive regions; (d) phase of the wave functions. Circles
above the dashed line in every (2X1) surface region represent
the phase of the wave function of surface antibonding state ~
at point J'; similarly, circles below the dashed line represent
that of surface bonding state m at point J.
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yS

Q

r4

J Y

FIG. 11. Band structure of the geometry-optimized c(4X2)
surface.

FIG. 10. Fermi surfaces of (2X1},p(2X2), and c(4X2) sys-
tems. (a) Calculated one for (2X1); (b) folded from (2X 1) for
p(2 X2) symmetry; (c) folded from (2 X 1) for c(4 X 2) symme-
try; (d) calculated one for the p(2 X2) system.

the surface bonding m and antibonding m bands at the
(2X 1) symmetry to be pushed away from each other for
the case of the real c(4X2) system, and to open a small
band gap (then the Fermi surface disappears). As seen
from Fig. 7, the overlapping surface bands around the
Fermi level in the folded bands [Fig. 7(b)] are separated
from each other for the real case [Fig. 7(a)].

Some detailed differences of band structures among
(2X1),p(2X2), and c(4X2) structures are seen from the
above calculations. For example, the whole bandwidth of
the occupied surface band is decreased to 0.9 eV for the
c(4X2) system, and to 1.0 eV for the p(2X2) system,
compared with the 1.15 eV for the asymmetric (2X1)
system. The decrease of bandwidth is mainly due to the
increase of distance between the nearest up-buckled
atoms of the surface dimers, and therefore the weakening
of interactions between them.

C. Band structures of geometry-optimized surfaces

The band structure of the geometry-optimized c(4X2)
surface is given in Fig. 11 (optimized geometry of this
surface will be presented in Sec. V). It shows that this
surface is semiconducting with a very small indirect band
gap (-0.01 eV). The lowest unoccupied band minimum
is at the I point, which is different from the case of using
the unoptimized c(4 X 2) geometry. The highest occu-
pied band maximum is not largely shifted compared with
Fig. 7(a); however, the whole m and n.* surface band

dispersions are greatly modified. These results suggest
that the surface band dispersion would be significantly
changed when the surface reconstruction has a transition
from the c(4 X 2 ) structure at low temperature to the
(2X 1) one at higher temperature. Therefore, it seems to
be very interesting for the experiments to be performed
on the pure c(4X2) reconstructed surface at low temper-
ature.

For the band structure of the geometry-optimized
asymmetric (2X 1) surface, it is substantially the same as
that in Fig. 3, and we will not present it here again. For
the p(2 X 2) system, we have not optimized its geometry.
Therefore, the real band structure of this surface is not
clear. However, we expect that the real surface band
structure of this reconstruction could not be substantially
different from that presented here, because of the weak
mixing and interaction between m and m' surface states
when symmetry changes from (2X1) to p(2X2) (see the
analysis given in Sec. III 8).

It is necessary to point out that the thickness of the
slab (10 layers) used in this calculation is relatively thin.
Interactions between two surfaces of the slab are not
small enough to be ignored, and therefore the splittings
between bands associated to two surfaces of the slab are
large as seen from the band structures shown here. How-
ever, the features of their electronic structures are essen-
tially reasonable and cannot be substantially changed
when the thickness of the slab is increased, as we have
seen in the case of the (2X1) system, presented in Sec.
III A (see Fig. 5).

D. Comparison with experiments

Comparisons between experimentally observed occu-
pied surface bands and the theoretical ones are given in
Figs. 12(a)—12(c). Two experimental results are plotted
in the figure, both with the angle-resolved ultraviolet
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photoelectron spectroscopy (ARUPS) method. A re-
cent experiment on a single-domain surface by Kono's
group is compared to our work in Fig. 12. The experi-
mental data have been shifted upward in energy by 0.5 eV
to give the best overall agreement with the calculations.
Qualitatively, the agreement between the observed and
calculated bands is rather good. However, for the
single-domain experiment, there appear two additional
high-intensity branches, one along 1 to J, another along
I" to J', as shown in Fig. 12(a) by open circles, which
cannot be theoretically explained for the ideal (2 X 1) sur-
face. Moreover, the calculated bandwidth of the occu-
pied surface band is 1.15 eV, which is larger than the ex-
perimentally observed ones (0.65 eV from Ref. 32 and
0.80 eV from Ref. 33). Also, two small peaks along J—K
and I —J' in the calculated dispersion are not observed by
the experiments. One possible explanation for these
difFerences is the presence of c(4X2) and p(2X2) recon-
structions on the experimentally used surface.

As shown in Figs. 12(b) and 12(c), where we have re-
plotted the experimental data of Ref. 33 in p(2X2) and
c(4X2) BZ together with the theoretically calculated
band dispersions, both the two additional branches in
Fig. 12(a) which cannot be explained by single-domain
(2 X 1) BZ have here their corresponding branches of sur-
face bands. Therefore, the coexistence of these higher
reconstructions could be the reason for these additional
observed branches.

As for the wider bandwidth obtained from calculation
compared with experimental ones, there are several
reasons. The bandwidths of the occupied surface band
near the Fermi level of p(2X2) and c(4X2}surfaces are
both decreased compared with that of the (2X 1) surface,
with values of 0.15 and 0.25 eV, respectively. Therefore,
the influence of additional domains of higher-order
reconstructions will lead to a smaller bandwidth detected
in the experiments. Also, results from experiments show
different values of this bandwidth. Two experiments
shown here have results of 0.65 eV (Ref. 32) and 0.80
eV, respectively. Another factor in accounting for the
wider theoretical bandwidth is the thickness of the slab
used in the calculation. It leads to a 10% decrease ( -0.1

eV) of this bandwidth when a slab with 12 silicon layers is
used in the calculation of the (2 X 1) system.

Further detailed comparison between the energy
dispersions from theory and experiments would be
diScult. However, considering that the existence of
p(2X2) and c(4X2) domains on the (2X1) surface will
make two peaks along J—K and I —J' lines of the (2X 1)
dispersion even weaker, the fact that they have not been
observed by the experiments is reasonable.

IV. TOTAI. ENERGIES AND GROUND STATE
OF Si(100)2X 1,p(2 X2), AND c(4X2) STRUCTURES

1

Q ~
04
N
fQ

, , EF

The differences of energy components among (2X1),
p(2X2), and c(4X2) systems are presented in Table III.
The main results of their energy difference are as follows:
the c(4X2) system has the lowest total energy, 0.023
eV/dimer lower than that of the asymmetric (2X 1) sys-
tem, and 0.011 eV/dimer lower than that of the p(2X2)
one. The p(2X2) system also has lower energy than the
asymmetric (2 X 1) system by 0.013 eV/dimer.

The total energy can be decomposed as

(4 1)
c).
ICf

04
IQ

f4

I ~ F
i 0

Y

FICx. 12. Comparison of energy dispersions with ARUPS ex-
periments (a) in a (2X1) Bz, (b) in a p(2X2) Bz, and (c) in a
c{4X2) BZ. Solid triangles represent experimental data from
Ref. 32. Solid and open circles represent the data from Ref. 33.

The individual components can be interpreted as the elec-
tronic kinetic energy (Ek;„), the electron-core interaction
energy E, „the electron-electron Coulomb energy E, „
the electronic exchange and correlation energy E„„and
the core-core Coulomb energy E, „respectively. As seen
from Table III, the lowered total energy of the p(2X2)
structure compared with the (2X 1) structure is due to
the decrease in core-care Coulomb energy E, , and
electron-electron Coulomb energy E, „and also in
exchange-correlation energy E„,. The decrease in E, ,
and E, , can be understood from their different atomic
configurations of p(2X2) and (2X 1}on the surface, that
is, the distance between up-buckled atoms or down-
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TABLE III. Di8'erences of energies among asymmetric (2 X 1),p(2 X 2), and c(4X2) systems. Their.
geometries have the same subsurface atomic positions as shown in Fig. 2.

Energy component
(eV/dimer)

El
El

Exchange

Ep(2x2) —E(2x ~)

—0.616
—0.933

1.545
0.013

—0.022

E,(4xz)
—E(zx ~)

0.204
0.398

—0.671
0.064

—0.018

Ec{4x2) Ep(2 x 2)

0.820
1.331

—2.216
0.051
0.003

Total energy —0.013 —0.023 —0.011

buckled atoms in the p(2X2) system is largely increased
compared with the (2 X 1) case. As for the energy-
increase parts, they are the kinetic energy and electron-
core interaction energy. These energy increases are
mainly due to the charge increase around the up-buckled
dimer atoms in the p(2X2) case. As shown in Fig. 13,
which is the contour plot for the total charge density
differences between p(2X2) and (2X 1) systems at the di-
mer with the same buckling direction, the electronic
charge density around the up-buckled dimer atom is in-
creased in the p(2 X 2) system.

As for the energy lowering for the c(4X2) surface
compared with the (2X1) surface, the decreased energy
components are the electron-core interaction energy E, ,
and the exchange-correlation part E„,. In contrast with
the case of the p(2X2) surface, the core-core Coulomb
energy E, , and the electron-electron Coulomb energy
E, , are increased. The charge difference between
c(4X2) and (2X 1) systems shows the same character as
that of p(2X2) and (2X1) systems, similar to Fig. 13,
but with a slightly larger increase of electronic charge

around the up-buckled dimer-atoms, and a decrease
around the down-buckled dimer atoms, compared to the
p(2 X 2) case. The differences of the above energy parts
are similarly due to the diferent atomic configurations on
the surface together with the diA'erent ionic degree of the
surface dimer atoms.

The comparison of energies between c(4X2) and
p(2 X 2) systems can be helpful in understanding the
ground state of the Si(100) surface. It shows that energy
components are decreased only in the electron-core in-
teraction part and all other energy components are in-
creased. The reason for the above result can be under-
stood as follows: the significant m and m. * mixing as ex-
plained in Sec. III 8, which occurs only in the c(4X2)
case, will cause the electronic charge to accumulate
around the up-buckled dimer atoms, as shown in Fig.
8(c). These charges feel a deeper potential of the core of
the on-site and also intersite up-buckled dimer atoms,
compared with the case of p(2X2). This effect contrib-
utes to the lowering of the electron-core energy F... as
shown in Table II. It also leads to the lowering of total
energy in the c(4X2) system, because it overwhelms the
summation of all the increased energy components, that
is, the Coulomb repulsive energy, kinetic energy, and
exchange-correlation energy.

Since geometries used for the above systems are not the
energy-minimum ones, the atoms in the unit cell are con-
strained for p(2X2) and c(4X2) systems. The energy
difFerence presented here only shows that the ordering of
surface dimers with c(4X2) symmetry can be relatively
more stable than that with p(2X2) symmetry. It pro-
vides evidence for supporting the c(4X2) structure as the
ground state of this surface.

Larger energy di6'erences are expected between the
above systems after the optimization of their geometries.
We have optimized the geometries of c(4X2) and asym-
metric (2X1) systems, which will be presented in the
next section. The difference of total energy between
geometry-optimized c (4 X 2) and (2 X 1 ) becomes —0.067
eV/dimer.

FIG. 13. Contour plot of the total charge difference between
p(2 X 2) and asymmetric (2 X 1) systems. Solid and dashed lines
represent increase and decrease regions, respectively. The plot-
ting plane and notation are the same as in Fig. 4.

V. OPTIMIZED GEOMETRIES OF ASYMMETRIC
{2X1)AND e{4X2)SYSTEMS

The optimized geometries of asymmetric (2X1) and
c(4X2) structures are given in Tables IV and V together
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0
TABLE IV. The atomic displacements {units of A) of the asymmetric {2X1}surface obtained by theoretical calculations and ex-

periment (R.ef. 35). YC refers to the result of Yin and Cohen (Ref. 16). The coordinates for the ideal surface are given by the indices
(k, l, m), R =(k Xa/2X&2, l Xa/2X+2, rn Xa/4), in which a is the lattice constant of bulk silicon, and the coordinate frame is
defined in Fig. 14.

Atoms
(k, l, m)

(0,0,0)
(2,0,0}
(0,1,—1)
(2,1,—1)
(1,1,—2)
(3,1,—2}
(1,2, —3)
(3,2, —3)
(0,0,—4)
(2,0,—4)

0.500
—0.900

0.094
—0.105
—0.016
—0.002

0.026
—0.032

Expt.
5y

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—0.250
—0.614
—0.022

0.055
—0.146

0.131
—0.112

0.100

O.S91
—1.045

0.115
—0.140
—0.059
—0.005

0.006
—0.007
—0.078

0.085

Present calc.
hy

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—0.106
—0.471

0.012
0.021

—0.196
0.177

—0.155
0.136
0.007

—0.012

0.573
—1.038

0.093
—0.115
—0.007
—0.034

0.061
—0.060

YC
Ay

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—0.159
—0.468
—0.047

0.020
—0.185

0.129
—0.135

0.103

with those determined by experiments or other calcula-
tion. The important difference for optimizing the
geometries of (2X 1) and c(4X2) structures is the atomic
relaxation freedoms. For the c(4X2) system, atoms can
relax along all directions; however, relaxations for the
(2X1) system are confined only in the x-z plane [the
coordinate frame is defined in Fig. 14 for both the (2X 1)
and c(4X2) systems]. This difference also contributes to
the relative stability of the c(4X2) structure at low tem-
perature.

From the coordinates given in Table IV for the asym-
metric (2X1) structure, we can compute the bond
lengths between the atoms. The dimer bond length in

this calculation (2.22 A) is shorter than the bulk single-
bond length (2.35 A) and longer than the double-bond
length (2.14 A), as similar to Yin and Cohen's (YC) re-
sults (2.25 A), ' but the tilting angle of surface dimer at
the present calculation (9.5') is larger compared with
that calculated by Yin and Cohen (8'). The backbond
length between atoms 1-5 (see Fig. 14) is 2.33 A, nearly
the same as the bulk one. Another backbond length be-
tween atoms 2 and 6 is 2.29 A, compressed by a small
amount (2.5%). The remaining bonds in the system are
changed less than 2% of the bulk values. Since many
geometries for the (2X 1) surface have been presented by
experiments, we select the recent one. In this analysis,

TABLE V. The atomic displacements (units of A) of the c(4X2) surface obtained by the present calculation and experiment (Ref.
36). The coordinate frame and other notations are the same as in Table IV.

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Atoms
(k, l, m)

(0,0,0)
(2,0,0)
{6,0,0)
{4,0,0)
(0,1,—1)
(2, 1,—1)
(4, 1,—1)
{6,1,—1)
(1,1,—2)
(3,1,—2)
(5,1,—2)
(7,1,—2)
{—1,2, —3)
(1,2, —3)
(3,2, —3}
(5,2, —3)
(0,2, —4)
(2,2,—4)
(4,2, —4)
(6,2,—4)

0.593
—0.954
—O.S93

0.954
0.092

—0.092
0.092

—0.092
0.000
0.000
0.000
0.000
0.000

—0.033
0.000
0.033

—0.056
0.027

—0.027
0.056

Expt.
Ay

0.000
0.000
0.000
0.000

—0.113
0.113
0.113

—0.113
0.000
0.004
0.000

—0.004
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.170
—0.460

0.170
—0.460

0.071
0.071
0.071
0.071

—0.057
0.166

—0.057
0.166
0.137

—0.029
0.127

—0.029
0.035
0.056
0.056
0.035

0.667
—0.957
—0.667

0.957
0.122

—0.122
0.139

—0.139
0.000
0.021
0,000

—0.021
0.000

—0.012
0.000
0.012

—0.096
0,082

—0.082
0.096

Present calc.
hy

0.012
0.010

—0.012
—0.010
—0.077

0.077
0.091

—0.091
0.000
0.005
0.000

—0.005
0.000
0.005
0.000

—0.005
—0.002

0.010
—0.010

0.002

—0.034
—0.577
—0.034
—0.577
—0.030
—0.030
—0.020
—0.020
—0.241

0.153
—0.241

0.153
0.123

—0.193
0.123

—0.193
—0.014
—0.008
—0.008
—0.014
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FIG. 14. Coordinate frame defined for (2X1) and c(4X2)
systems.

the bond length of the surface dimer is 2.47 A, longer
than that of the bulk bond. The tilting angle of the dimer
is 8.5', a little smaller than that of the present calculation
(9.5 ). Bond lengths of two backbonds of atoms 1-5 and
2-6 are 2.26 and 2.18 A, both more compressed compared
with our calculation.

For the optimized geometry of the c(4X2) system,
some features of atomic relaxations along the y direction
have been seen. For example, there is a very small shift
of the surface dimers along the y direction that is not yet
detected by experiments. Also, present theoretical calcu-
lation reveals that the up-buckled surface dimer atom
pulls two neighboring atoms of the second surface layer
inward, and accordingly, the down buckling of the sur-
face dimer atom pushes two neighboring second-layer
atoms outward. These features are similar to those ob-
tained by ab initio molecular-dynamics calculation on the
Ge(100) c(4X2) surface. There is a common feature in
the atomic relaxation for the dimerized surface, that is,
the top-layer atomic dimer will cause the second-layer
atoms to move close to each other in the same direction
as the dimerization, although in a largely reduced magni-
tude. These features of distortion are in good agreement
with the experiments.

From our calculation, the surface dimer bond length of
c(4X2) is 2.27 A, which is a little longer than that of the
(2X 1) case (2.22 A) but still shorter (3.4%%uo) than the bulk
one. The tilting angle of the surface dimer is 14', which
is larger than that of the asymmetric (2X1) system
(8.5'), showing larger dimer buckling. The backbonds of
atoms 1-5, 1-7, 2-6, and 2-8 are 2.34, 2.33, 2.30, and 2.33
A, respectively, and all are near the bulk value. In the ex-
periment, the bond length of the surface dimer is 2.37
A, nearly the same as the bulk value. Backbonds of sur-
face dimers are also all around 2.37 A. These values are a
little longer than the calculated ones. The tilting angle of
the surface dirner is 15.5 from this experiment, in good
agreement with the theoretical prediction. For deeper
layers, the directions of atomic distortions and the orders
of distortions are all in good agreement with experiment
and present calculation. Generally speaking, the agree-
ment between experiment and present calculation for the
c(4 X 2) geometry is reasonably good.

VI. SUMMARY

In this paper, we have presented theoretical studies of
electronic and geometric structure of several reconstruct-
ed surfaces of silicon (100), i.e., (2X 1) surfaces with sym-

metric and asymmetric dimers, p(2X2), and c(4X2)
reconstruction s, by using the self-consistent norrn-
conserving nonlocal pseudopotential method with a re-
peated slab model. Our study concentrated on the dimer
model which is now most widely accepted. Main results
of present work are summarized as follows. (a) Sym-
metric dimer model of (2X1) surface results in metallic
surface bands. Total energy of this model is 0.25
eV/dimer higher than that of asymmetric model. This is
consistent with past theoretical calculations. (b) An
energy-minimized geometry of the asymmetric (2X1)
system is presented, which has 0.14 eV/dimer energy
lower than available theoretically optimized geometry by
using the local pseudopotential method. ' Atomic distor-
tions up to Ave surface layers are given for the new
geometry. (c) Although the buckling of dimer atoms
pushes two surface bands remarkably away from each
other, the surface bands of the asymmetric dimer model
of the (2X1) surface still remain metallic. (d) Surface
electronic structures of p(2X2) and c(4X2) systems are
presented. The electronic feature of the p(2X2) surface
is also metallic like that of asymmetric (2X1) surface,
however, that of the c(4 X 2) surface is semiconducting.
These results are analyzed and understood based on the
electronic feature of the (2X1) asymmetric dimer sur-
face. (e) The surface band dispersions are compared with
ARUPS experiments. It shows reasonably good agree-
ment. (f) We have calculated the total energies of (2X 1),
p(2 X 2), and c(4 X 2) systems with the exact same sub-
surface relaxations and same buckling amount of a single
dimer. Results show that the c(4X2) system has the
lowest total energy with 0.011 eV/dimer energy lower
than that of the p(2X2) system, and 0.023 eV/dimer
lower than the (2X1) system. Therefore, by the present
calculation, the c(4X2) system can be the most favorable
one in energy at low temperature. (g) Optimized
geometry for the c(4X2) system is presented, in general-
ly good agreement with experiment. The energy
difFerence between the c(4X2) and asymmetric (2X1)
systems becomes —0.067 eV/dimer after the optimiza-
tion of their geometries and the conduction-band
minimum of the c(4X2) surface comes to I point with a
very small indirect band gap.
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