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The exact resonant-tunneling transmission probability for an electron interacting with phonons is

presented in the limit that the elastic coupling to the leads is independent of energy. The phonons
produce transmission sidebands but do not afFect the integrated transmission probability or the es-

cape rate of the electron from the resonant site. In the Appendixes, we evaluate the Green function
that appears in the expression for the transmission probability.

I. INTRODUCTION

The understanding of transport in small semiconductor
structures relies on the assumption of transmission be-
tween ideal leads. This approximation has allowed the
proper identification of the symmetries of transport
coef5cients in a magnetic field, ' quantitative analysis of
four-probe conductance fluctuations, and explanations
of the quantization of conductance through a constric-
tion ' and of the quenching of the Hall effect in narrow
samples. ' ' At the heart of the ideal lead description is
the belief that when an electron enters a lead, it loses
phase coherence so that transport can be described en-
tirely by transmission and refIection probabilities between
leads. However, a complete microscopic description of
this phase randomization does not exist.

To address inelastic scattering in transport from a fun-
damental point of view we study a model problem: reso-
nant tunneling through a single site coupled to phonons.
While inelastic scattering in resonant tunneling has been
addressed before for tunneling through states localized by
disorder' and for tunneling through a double-barrier het-
erostructure' ' (see Fig. 1), all these previous ap-
proaches were phenomenological, with inelastic scatter-
ing included as an effective absorption coefFicient. In a
recent paper, ' we introduced a Hamiltonian formulation
for resonant tunneling with the electron-phonon interac-
tion included on a microscopic footing, and presented an
exact solution for the phonon-assisted transmission prob-
ability. Here we explain in detail how resonant tunneling
with inelastic scattering can be addressed and solved as a
scattering problem. First, the transmission probabilities
are expressed in terms of a two-particle Green function,
which factors into two one-particle Green functions in
the case of no electron-phonon interaction. Second, we
find an exact solution for the two-particle Green function
provided the elastic couplings to the leads —roughly the
density of states in each lead multiplied by the square of
the tunneling matrix elements through the barriers —are

independent of energy. Since the density of states in the
leads will be constant if the band is broad, we refer to the
limit of energy-independent couplings as the wide-band
limit.

From the exact solution in the wide-band limit, we ob-
tain two sum rules restricting T«, (E) the total transnus-
sion probability in the presence of phonons: (1) the in-
tegral of T («e) is independent of phonons so that the to-
tal transmissivity of the structure is conserved, and (2)
the first energy moment of T„,(E) is also conserved, so
that the center of the transmission spectrum remains
fixed. Importantly, the escape rate of an electron placed
on the resonant site is also independent of the interaction
with phonons. Insofar as the tunneling delay time and
the escape time are the same, ' this implies that phonon

FIG. 1. Schematic drawing of a resonant-tunneling structure
under bias. The quantum well of width Lo has a quasibound
state at energy co. In the absence of electron-phonon interac-
tions, the probability for an electron with energy near co to tun-
nel through the structure is a Lorentzian of width I as a func-
tion of the electron's incident energy.
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broadening of the transmission resonance wi11 not
enhance the speed of tunneling.

The same model Hamiltonian for resonant tunneling
with phonons has been studied independently by two oth-
er groups in addition to ourselves. Glazman and
Shekter ' obtained a solution identical to ours via an
equation of motion method, and Jonson, using the tun-
neling Hamiltonian formalism, obtained a solution to first
order in the tunneling strength. While the results are in
agreement, the exact representation of the transmission
probability in terms of a Green function is unique to us.
We believe this Green-function approach is easier to gen-
eralize to treat structures with more than one electronic
state than either the equation of motion method or the
tunneling Hamiltonian approach.

This paper is organized as follows. In Sec. II, we
present the Hamiltonian for resonant tunneling through a
single site coupled to phonons and relate the transmission
probability to a two-particle Green function via the S-
matrix formalism. An exact solution for the Green func-
tion in the wide-band limit is obtained in Sec. III, and
sum rules governing the total transmission probability
are derived and illustrated. Section IV is devoted to a
brief proof that the escape rate from the quantum well is
independent of the interaction with phonons. In Sec. V,
we apply the results for the transmission probability to
calculate the current through a quasi-one-dimensional
resonant-tunneling structure, including an interaction
with polar-optical phonons. %'e generalize our results to
three dimensions in Sec. VI, and calculate the current for
a range of couplings to optical phonons in Sec. VII. Sec-
tion VIII contains our conclusions.

H;„,=c c+Mq(aq+a ),

where c ~ and e are the Fermion operators for the electron
on the resonant site.

Central to our analysis of the transport properties of
the model is the noninteracting, retarded Green function
of the resonant site,

g„'(t)= —i e{t) & ol c(t)c t(0) I 0&,

where

iH t/R —iH t/R

(4)

If we treat the tunneling between the resonant site and
the contacts as a perturbation on the bare Hamiltonian,
we find from the Dyson equation

gR(&) = 1

e —s0 —XR(e)+il (E)/2

where the elastic coupling to the leads 1(e)=l L(e)
+I R(s) depends on the hopping strength and the con-
tact density of states according to

I L (R)(e)—2~ X I I'kL (kR) I'&(s —skL (kR))
k

The real shift in the energy of the resonance,

and ~0& denotes the electron vacuum. Solving the elec-
tronic Hamiltonian is simpler in terms of the Fourier
transform of the Green function,

g0(s) eittlsg0(t)dt
R

II. TRANSMISSION PROBABII.ITY
OF AN EI.KCTRON COUPI. KD TO PHONONS

The Hamiltoniag we use to model resonant tunneling is
the sum of an electron term H„a phonon term Hph and
an electron-phonon interaction term H;„,. The electron
Hamiltonian,

He eOC C +g skL CkL CkL +g skR CkR CkR
k k

+rf ~kL(ckLC+C CkL )+y ~kR (ckRC+C ckR )
k k

describes a single state of energy E0 (e.g., the ground state
of a quantum well) coupled by hopping matrix elements
VkL and Vkz to states of energy ckL and Ekg in ideal leads
on its left and right, respectively. As is usual in the
description of transport in small structures, the leads are
referred to interchangeably as "contacts, "with subscript
L, denoting the left contact and subscript R denoting the
right contact. The phonon Hamiltonian is just a sum of
harmonic oscillators,

Hph =g fit0qaqaq, (2)

and the electron-phonon interaction is restricted to the
resonant site

PL (R)(e) g @e skL (kR)) (10)

will be constant in the region of the resonance. If the
hopping matrix elements also vary slowly with energy,
the couplings to the contacts 1"L and I z will be constant,

~L (R) 2~I &L (R) I s L (R)(e0) ~

2

In this special case, I (e) is independent of energy and the
Green function in Eq. (4) reduces to a pure exponential

g'(t) = —ie(t)e (12)

The special virtue of the wide-band limit is that the ex-
. ponential form of gR(t) permits us to obtain an exact
solution for the transmission probability including the in-
teraction with phonons.

The transmission matnx. We will calculate the proba-
bility T(E', e) that an electron with energy E incident
from the left lead will be transmitted to the right lead
with energy c,', the difterence in energy, c, —c', being

y
de' I (e)
2$' E

is the Hilbert transform of the elastic coupling I (e).
In the u)ide band limi-t, in which the bandwidth in the

contacts is much larger than both the resonance width
and the phonon energies, the contact densities of states
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"left" in the phonon system. T(E', e) is referred to as the
transmission matrix as it is a function of both the incom-
ing and outgoing energies of the electron. Because the
electron-phonon interaction is confined to a finite region
of space, we can apply the S-matrix scattering formal-

isrn to evaluate the transmission matrix T(E', E). We
find (Appendix A) that T(e', e) is given exactly by the
product of the elastic couplings to the two leads and the
Fourier transform of a Green function for the resonant
level,

T(e' e)=r (E)I (e') f f deeds dt ei[{s—s')s+s t —'ss]/i)G(r s t. )L R 2M3
(13)

The transmission Green function in Eq. (13),

G(&,s, t ) e(s)e(t)( &(& s )& (r)&( t)& (0) ) (14)

is evaluated on a state with no electron present, but with
a thermal ensemble of the phonons. The electron opera-
tors are in the Heisenberg representation,

(t) iHt/fic(()) —iHt/h'

dependent, in which case r(eo) can be identified as the
elastic resonance width.

From the 5-matrix calculation, one can also obtain an
expression for the interacting reQection matrix, describ-
ing the probability a particle incident with energy c will
be rejected with energy c'. As shown in Appendix A,
Eq. (A19),

and contain the full electron-phonon interaction.
It is important to note that Eq. (13) applies in both the

"coherent" limit, in which there is no electron-phonon
interaction, and in the "incoherent" limit of strong in-
teraction where the probability of inelastic scattering is
high. The factors of I (E) and 1 (e') represent the tunnel-
ing strength of the incoming and outgoing electron
through the barriers, while the Green function G(r, s, t)
includes all the dynamics, including the existence of the
resonant level. In the absence of electron-phonon in-
teraction the transmission Green function reduces to the
product of two single-particle Green functions,

Go(r, s, t ) =Gti (t)[Gii (s)]',
and the noninteracting transmission matrix is given by

The peak shape of the transmission probability T (E', e)
will be Lorentzian as long as the resonance shift Xz(e)
and the elastic coupling I (E) are not strongly energy

I

+5(e—E') [ I+2rL(E)lm[G„(e)] J,
where Gz (E) is the Green function of the resonant site in-
cluding the electron-phonon interaction.

III. EXACT SOLUTION IN THE %'IDK-BAND LIMIT

The problem of evaluating the Green function of a sin-
gle site coupled to phonons is well known in the context
of core-level x-ray emission. " In the case of energy-
independent couplings, I L and I R, the techniques
developed to treat the interaction of a stationary core
hole with phonons can be adapted directly to evaluate the
transmission Green function G(r, s, t) defined in Eq. (14).
The restriction to constant couplings is necessary so that
the noninteracting Green function in Eq. (4) is a pure ex-
ponential, Gz(t)= —i6(t)exp[( i eoI /—2)t/fi], where
I = rL + I z. The exponential form of Gz (t) allows us to
evaluate G(r, s, t) by a canonical transformation or by
exponential resummation of low-order perturbation
theory (Appendix 8). We find

G( , rt)s=Git(t)[G)'i(s)]*exp

with

2

[( I+2% )Re(fq)+i Im(fq)]
q

q
(19)

1CO t 1CO S 1Ct) ltd 1 CO Sf (r, s, t)=2 —e ' —e '+e '(1—e ')(1—e '),
where A, =g (M /fico ), and X is the Bose-Einstein occupation factor for a phonon mode of energy))'ia) .

CO

Although direct evaluation of the transmission matrix T(e, e) in Eq. (13) for the general phonon spectrum will re-
quire three numerical Fourier transforms, the evaluation of the total transmission probability T„„(e)requires only a
single Fourier transform. T„,(E) is defined as the transmission probability of a particle incident with energy E, regard-
less of its final-state energy,

T„,(E)= f dE' T(e', E)
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In the wide-band limit, the couplings to the contacts wiH be energy independent and the integral over final-state ener-
gies s' can be performed first to give a 5 function 5(t —r). Using the 5 function to integrate over r, we find

( ) I I f f ds ic(t —s)/AG(t t) (21)

It is possible to reduce expression (21) for T«, (s) to a single integral by changing to sum and difference variables
T=(t +s)/2 and o =t —s:

Tioi(E) I L, I ~ f ~ f exp +do ~ dT I T
fi ~u~i2 fi

i (e —Eo+A)o, M
I(1+2% )Re[fq(o )]+i Im[f (o.)]I

q

(22)

i( c, —so+ A, )o

fi

and integrating over the sum variable T gives

~LI R do.
T„„(s)= exp

M
I(1+2'))[ )Re[f (o)]+i Im[f (cr)]}

q q

(23)

where

f (o)=1—e
q

(24)

(25)

as required for an isolated resonance. 9

Since in many cases of interest, e.g. , calculation of a
resonant-tunneling current, only the total transmission
probability is required, it may be convenient to evaluate
T«, (e) directly from Eq. (23) rather than first calculating
the full transmission matrix T(s, s). From Eq. (23) it is

- straightforward to con6rm that the noninteracting total
transmission probability in the wide-band limit is a
Lorentzian, fd«T...(E)=s, ,

I
L R

(27)

also independent of the electron-phonon interaction. To
prove thisre, write T«, (c) in terms of T(e', E) from Eq.
(13):

Sum rules. Certain sum rules and simple analytic re-
sults valid for all phonon spectra in the wide-band limit,
i.e., where the energy dependence of I can be neglected,
are derivable from the general solution (19) for G(r, s, t ).
First, integrating the total transmission probability
T«, (E) in Eq. (23) over incident energies were find

f dE T„,(E)=2mI I I i, /I (26)

independent of the electron-phonon interaction. Second,
the center of the transmission resonance is Axed at

(s ) — f de~ fds sI I f f f r s ei[(r.—c')~+ t —EEs)/AG( t)
L R 27763

(28)

The factor of c can be turned into a time derivative by
se '" "=if&(d/ds)(e '"~ ). Following integration by
parts over s, the energy integrals can be performed to
produce 5 functions of the time arguments, yielding

T

5(s ) = f des [T„,(e)—T„,(E)]
I

2 7T

(31)

(e, )= iI f dt G(t, s, t)—d
ds 's =t

(29)

The derivative of G(t, s, t) is straightforward to obtain
from Eq. (19),

G(t, s, t)
d
ds s=t

=[0(t)(ie,—I /2)/6+5(t)/2]e (30)

so that by inspection (s) =so. The same procedure ap-
plied to the second energy moment gives the phonon
broadening of the transmission resonance,

a quantity which is evidently always positive. Although
the second moment af T«, (e) itself cannot be defined be-
cause the line shape decays as 1/e in the tails, a useful
estimate of the phonon-induced broadening can still be
obtained from Eq. (31) if the important contributions to
5(s~) are from the region near the resonance. This con-
dition is satisfied in the case of an Einstein band of
phonons —which we analyze next —where 5(E ) ap-
proaches its asymptotic value within a few phonon ener-
gies of the resonance center.

Einstein phonons. We have explicitly evaluated the
transmission matrix T(E e) for',the simple case of an Ein-
stein band of phonons with energy Acoo at zero tempera-
ture (Appendix C),
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r

g
Pl

T(E,E)—I t I ~e s +,5(e e' —mhcoo) g ( —1)~
Oef (32)

5(e )= f des [T„,(e)—T„,(e)],—hc
(33)

where the coupling constant g =gz~Mz/A'coo~ . In Fig. 2,
we have plotted T,«(E) for the Einstein model with cou-
pling constants g=0. 1, 0.2, 0.5, and 1.0 and with no
electron-phonon coupling for comparison. The sum
rules, Eqs. (26) and (27), imply that the integrals under all
ihe curves are equal and that their centers are at the same
energy. At zero temperature, no phorions are present and
the phonon-assisted resonances appear only at energies
above the elastic resonance. The centers of the transmis-
sion curves remain fixed, however, because of the overall
shift downward in energy by A, =gkcoo associated with the
deformation of the lattice about the tunneling electron.
In Fig. 3 we have plotted the phonon-induced broaden-
ing,

transmission probabilities all have diverging second mo-
ments [recall that the noninteracting transmission spec-
trum T„,(e) is a Lorentzian (25)], the broadening 5(E )
is always well defined, and reaches its asymptotic value of
g(fuuo) within a few phonon energies of the resonance
center.

IV. ESCAPE RATE FRAM THE QUANTUM WELL

In addition to the sum rules governing T„,(e, ), another
model property that proves to be independent of the
electron-phonon interaction in the wide-band limit is the
escape rate of a particle from the resonant site. If an
electron is placed on the site at to =0, then the thermally
averaged probability of ending it still there at time t )0
is

for the transmission spectra from Fig. 2 as functions of
the cutoff Ac. of the region of integration in c. %'hile the

I
l

i

]&O,af ~c(r)ct(0)~o, tz, ) ['P(r)= g
af, a.

=(c(0)c (t)c(t)c (0)) . (34)
— (a)

0.8—
I

II
II
II
I )
I

l
I
I)
l~
I

I)
I

I
il
I
l

The expectation value for P (t) in Eq. (34) is just a specific
case of the Green function G(r, s, t), namely G(t, t, t).
From Eq. (19) we can immediately determine the proba-
bility of remaining on the site since f (t, t, t) =0,

m I I ( I —I

[

0.8—
(c) j

l1

!

)I

I
I

(%tao) O.4—
(c)

0
~o Ztl cUo 2%duo

6-6p
0 25cvo

FICi. 2. Total transmission probability T„,{c)vs incident en-
ergy for an electron interacting with Einstein phonons as it tun-
nels through a double-barrier structure, for four different cou-
pling strengths: (a) g =0.1, (b) g=0.2, (c) g=0.5, and (d)
g =1.0. In each case, the elastic resonance width is I =0.2Auo
and the noninteracting probability is plotted as a dashed curve.
If the couplings to the leads, I z and I z, are not equal, then the
transmission probability is reduced by a factor 4I ~ I z /I". The
phonon-assisted transmission resonances lie one or more pho-
non energies above the main, elastic resonance. Because the lat-
tice temperature is T =0 K, there are no resonances associated
with phonon absorption. Sum rules guarantee that the integrat-
ed transmission probability and the center of the transmission
curves in energy are independent of the electron-phonon in-
teraction.

j
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ '~

'0--'
2

(b)

~ ~ ~ ~ ~ ~ ~ ~ t ~ 0 I ~ ~ ~ ~ ~ ~ 0

,
(o)
8 IO

FICx. 3. Differences 5(e ) between the normalized, second
energy moments of the interacting and noninteracting transmis-
sion probabilities plotted as functions of the energy range Ac
over which the differences are calculated, (33}. The curves cor-
respond to the different couplings used in Fig. 2: dotted,
g =0.1; dashed-dotted, g =0.2; dashed, g =0.5; solid, g = 1.0.
In all cases, 5(e ) approaches its asymptotic value g(%~0)
within a few phonon energies of the resonance center. There-
fore, formula (31) for 5(e2) provides a useful estimate of the
phonon-induced broadening, even though the transmission
probabilities decay as I/e in the tails so that only the difference
in second moments can be defined.
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P(t) =G(t, t, t) =
~ GR(t) ~'=e (35)

A particle placed on the resonant site escapes into the
contacts with a decay lifetime A/I', independent of the
strength or spectrum of the phonon coupling.

By considering the elastic transmission amplitudes as
analytic functions of energy, Price showed that each
transmission resonance of a one-dimensional potential is
associated with an exponentially decaying solution of the
Schrodinger equation. The elastic escape lifetime ~,&,

which is the inverse of the rate of decay, is therefore
necessarily related to the elastic transmission width I by

The results of the preceding two sections demonstrate
that this equality does not extend to the inelastic
transmission width and escape lifetime in the presence of
phonons. From Eq. (35) the inelastic lifetiine and the
elastic lifetime are equal, but the inelastic transmission
width is always greater than the elastic width (31). In the
case of an Einstein band, the interaction with phonons
generates transmission sidebands each of which still has
the elastic width I. Relation (36), therefore, applies to
each sideband individua11y, but does not apply to the to-
tal transmission spectrum since its width is set by the en-
Uelope over the sidebands. In the case that the phonon
frequencies are smaller than the elastic width so that the
sidebands overlap, there will appear to be a single broad
resonance; however, the resonance width which deter-
rnines the characteristic decay time will continue to be
that of the individual sidebands, i.e., I .

Mp(q)
&& /'2 (38)

where V is the volume, p(q) is the qth component of the
electron density, and the coupling strength M can be ex-
pressed in terms of of the high- and low-frequency dielec-
tric constants as

M =2me %co
1 (39)

Since g is sensitive only to the size of the electronic state,
not to the detailed shape, it is convenient to assume a
spherical wave function

P(r) = )1 /2
1

r +(Lo/2)
(40)

which has a characteristic full width Lp at half max-
imum. The electron density at wave vector q then has the
simple form

near the zone center, the LO phonons can be approxirnat-
ed by an Einstein band, for which the transmission ma-
trix T(e, e) is given in Eq. (32). It remains to determine
the coupling constant

M„
(37)

flcop

which appears in T(e', e. ) in terms of the confinement size
of the electronic state and known material parameters.

For the case of longitudinal-optical phonons of energy
Amp, the electron-phonon matrix elements reduce to

V. THE RESONANT-TUNNELING CURRENT —qLO/2
p(q) =e (4l)

To predict the experimental effects of electron-phonon
interaction in a resonant-tunneling structure it is neces-
sary to calculate the current. Since our calculation of
tunneling probabilities to this point has been restricted to
one dimension, we wiH first evaluate the current for
a quasi-one-dimensional resonant-tunneling structure.
Efforts are presently underway to observe one-
dimensiona1 resonant tunneling by transverse confine-
ment of the electronic wave functions. Already, in the
GaAs/Al Ga, As system, electrostatic confinement to

0
approximately 600 A has been achieved. ' We calculate
the one-dimensional current for the important case of
polar-optic phonons using the result, Eq. (32), for the
transmission probability T„,(e) in the presence of an Ein-
stein band of oscillators. The signature of optical-phonon
interactions is found to be the appearance of phonon re-
plicas of the main elastic peak in the valley region follow-
ing the first transmission peak in the current-voltage
characteristic. %'e begin by calculating the electron-
phonon coupling constant g appropriate for polar-optical
phonons in a quasi-one-dimensional structure.

The coupling of a localized electronic state to the
three-dimensional phonons of the host material is well
known in solid-state physics. Since the dominant
electron-phonon coupling in GaAs and other polar serni-
conductors is to longitudinal-optical (I.Q) phonons, we
focus on these modes. Because of their Nat dispersion

Consequently, we find the coupling of a localized state of
width J o to longitudinal-optical phonons to be

2
Mq ] —

qDLO(l —e ).
&~o Ep

e 1

7TL 0~COO e m

&DLOThe correction e comes from the cutoff of the pho-
non spectrum at the Debye wave vector qa and is negligi-
ble for a state which extends over many lattice constants.

For the III-V compound semiconductor GaAs, the
relevant material parameters are A~p =36 meV,
e =10.9, and op=13. 18, leading to a coupling strength

go,~, =2.02/Lo(A), (43)

gcdr =9.59/Lo(A), (44)

an enhancement of almost a factor of 5 over CiaAs.
The total current J through a quasi-one-dimensional

resonant-tunneling structure in the absence of scattering

where Lp is the full width in angstroms of the localized
state. The coupling to optical phonons is stronger in the
II-VI compounds. In the case of CdTe, the material pa-
rameters are Scop=21.2 meV, e„=7.21, and op=10.6,
leading to
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where q is the carrier charge, UkL and vkz are velocities,
fL(e) and fR(e) are the occupation functions in the left
and right contacts, and T«t(e) is the elastic transmission
probability. By changing variables to energy, the density
of states factors cancel the velocities, vk =(I/A')dek/dk,
leaving

Jo=(q!m%)f dE T,„(e)[fL(e) fR(s—)] . (46)

The fact that the transmission probability at a given ener-

gy is the same for left- and right-going particles ensures
that no net current will Aow at equilibrium. Typically,
the incident distributions will be of Fermi-Dirac type, in
which case

Jo=(q/vrA) f de Ttpt(e)[fFD(e) —fFD(E+bp)], (47)

can be expressed as a difference between right- and left-
Aowing currents. Speci6cally,

Jo=(q/~) f, dkL UkLTtpt(&kL)fL(&kL)[i fR(&kL)]

—(q/~) f, dkR kRTt. t(ekR)fR(EkR)[ fL(ekR)]

(45)

ence of electron-phonon interactions is therefore approxi-
mately given by

J=(q/M) f dE T„t(s)fFD(E), (48)

where the elastic-transmission probability T„t(s) has
been replaced by the total transmission probability

T„t(e)=f de' T(E', E), (49)

with T„,(E)=0 for E & 0. Under the assumption that the
elastic couplings I L and I"z can be taken constant, the
exact solution for T(e', e) obtained for an Einstein band
of phonons (32) can be substituted into Eqs. (48) and (49)
to obtain the current including t4e interaction of the tun-
neling electrons with optical phonons.

In Fig. 5, we have plotted the current J in Eq. (48) for
four different coupling constants, versus the energy of the
resonant level. To make direct comparison to experi-
ment, one must additionally relate the resonant-level en-
ergy to the total bias via a calculation of the self-
consistent potential. However, since the relation be-
tween resonant-level energy and bias is smooth, the shape
and magnitude of the structure due to electron-phonon
interaction will be the same in a current-voltage plot as in

where Ap is the difference in chemical potentials between
the two leads, as indicated in Fig. 4. Energies are mea-
sured with respect to the conduction-band edge in the
upstream lead so that T„,(s)=0 for s (0.

In the I'nteracting system, the expression for the current
as a sum over independent channels is no longer exact.
Since electrons can scatter during tunneling, both the ex-
clusion principle and Coulomb shifts of the resonant-level
energy inAuence the transmission probability. At the
high biases typically required to bring the resonant level
below the Fermi energy, however, both the backward
current from the right lead and the exclusion from filled
final states will be small effects, causing contributions to—Ap/k~ T
the current of order e . The current in the pres-

l.2—

0.6—

l.2—

(a)

(c)

I
I

(b)
I

(d) r,
f

I

I

I

I

I

0 ——
2)l Qlo

I I

2fl (do 0
6'o-(E'F / 2)

6F
gn g

FIG. 4. Schematic drawing of a resonant-tunneling structure
carrying a current Jbetween two doped contacts with Fermi en-

ergies c,F. The current as a function of bias bp depends on the
interacting transmission spectrum T„,(c, ), an example of which
is sketched in the well region.

FIG. 5. Current vs resonant-level energy for a quasi-one-
dimensional resonant-tunneling structure, at four different cou-
pling strengths: (a) g=0. 1, (b) g=0.2, (c) g=0. 5, and (d)

g =1.0, calculated from Eq. (48). In each case, the Fermi ener-

gy is taken to be half the optical-phonon energy c~ =0.5Rcoo, the
resonance width is l =0.2Acoo, and the dashed curve is for no
electron-phonon interaction. The replica peaks to the right of
the main current peak are due to phonon-emission-assisted reso-
nant tunneling of electrons beginning one or more optical-
phonon energies above the resonance. At T =0 K there are no
thermal phonons to give rise to phonon-absorption peaks. The
first, Eq. (26), and second, Eq. (27), sum rules governing T„,(c, )

ensure that the normalization of the current and its first energy
moment &ep) ep/2 are independent of the interaction with
phonons. For convenience the current is plotted in units of
2ql"L I & c+/fi cooI so that the integrals are normalized to 1.
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2qI LI ~a~
dE,p J cp (50)

f dEoeoJ( E)o

(eo) =
fdEOJ(E ) 2

f dcoEO[J(EO) —Jo(eo)]

f dEO J(EO)

(51)

(52)

It is to illustrate these sum rules that the currents in Fig.
5 are plotted in units of 2qI LI ~a~/A ~pI, giving an
overall normalization of 1, and are centered at
(E, ) =eR/2.

In Fig. 6, we have plotted the current for a coupling

— (o)
~l
~l2.0—

(b)

I.O—

0

a plot versus resonant-level energy. Even for the smallest
coupling constant, the current has a phonon-assisted
transmission peak at an energy for which there is
insignificant elastic transmission. In a current-voltage
plot, this peak would fall in the valley region between the
first and second transmission resonances and could there-
fore be clearly resolved. Because the transmission proba-
bilities T«, (E) are evaluated at T=O K there are no
peaks due to phonon absorption.

The sum rules in Eqs. (26), (27), and (31) governing the
total transmission probability T«, (c, ) have counterparts
governing the current as a function of resonant-level en-
ergy. Because T„,(E) in the wide-band limit depends
only on the energy difference c.—cp, the integral over c at
fixed cp and the integral over cp at fixed c. are equal.
Therefore, the following sum rules apply to the one-
dimensional current (48) at T=O K:

g=0. 5 over a range of Fermi energies. Because of the
factor of cF in the normalization, the true current in-
creases with Fermi energy; however, the resolution of the
peaks is diminished. The width of each peak is roughly
c~, the separation between peaks is Scop, and the falloff of
each peak occurs over an energy I . The peaks can there-
fore only be resolved as long as the Fermi energy is small
compared to the phonon energy. In typical structures
the elastic width I is much smaller than either cF or Scop.

VI. THREE DIMENSIONS
AND TRANSVERSE SCATTERING

The results in the previous section for the one-
dimensional resonant-tunneling current are predictions of
what will be observed in structures with strong transverse
confinement of the electron wave function. The body of
existing measurements, however, has been performed on
structures with no confinement in the transverse direc-
tion. While it is straightforward to derive an expression
for the transmission matrix for three-dimensional struc-
tures, it is no longer possible to evaluate the transport
Green function G(r, s, t) exactly, even in the wide-band
limit. There are two ways to confront this difficulty: (1)
In order to treat one-phonon, or two-phonon, processes
the perturbative expansion in Appendix B can be general-
ized to three dimensions, or (2) if the transverse scatter-
ing is confined to small wave-vector changes, the change
in the transverse part of the energy of the tunneling parti-
cle can be neglected, and an exact solution again exists in
the wide-band limit. In this section we will present the
formulas obtained from a perturbative expansion in the
electron-phonon coupling strength and the solution for
the wide-band limit obtained by neglecting changes in
transverse momentum.

In three dimensions, the electronic Hamiltonian for
resonant tunneling is

He —g Ek Ck Ck +g(skL CkLckL +ekRCkRCkR )

+X[VkI. (CkL Ck +Ck CkL )

+ VkR (CkR Ck +Ck CkR )] (53)

2.0—

0
2h~o 0

I

—24QJo 0
eo-(eF/2)

24cdo

which differs from the one-dimensional Hamiltonian only
in the addition of a transverse degree of freedom labeled
by momentum k, . Tunneling is assumed to conserve k,
so that the hopping matrix elements VkL and Vkz con-
nect only states with the same transverse momentum.
The phonon Hamiltonian is unchanged from the one-
dirnensional form,

FIG. 6. Current vs resonant-level energy as in Fig. 5, for a
coupling g =0.5 at four different Fermi energies: (a)
a~=0. 1%coo (b) c,F=0.2Amo, (c) cF=0.5Acoo, and (d) cF=1 OAmo

calculated from Eq. (48). The dashed curves are for no
electron-phonon interaction. The units of current are
2qI L I & c+/A cooI so that the integrals are normalized to 1. In-
creasing the Fermi energy leads to an increase in the real
current, but blurs the separation between phonon replica peaks.

H;„,=+M (a +at )hack+ ck (55)

which allows the tunneling electron to exchange trans-

Hph g flcoqa qa q
q

since the phonons were always taken to be three dimen-
sional. The electron-phonon interaction Hamiltonian is
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verse momentum as well as energy with the phonons, but
explicitly conserves the total transverse momentum of the
system.

In order to describe tunneling through a three-
dimensional structure, the transmission matrix T( e', e )

must be generalized to include the transverse degrees of
freedom. We define a new transmission matrix T(k', k)
to be the probability, per unit final longitudinal momen-
tum kl', that a particle incident with momentum k will be
transmitted with momentum k'. It is convenient to treat
the transverse momenta as discrete quantum numbers
while allowing the longitudinal momenta to form a con-
tinuum; this facilitates comparison with the one-
dimensional case in the limit of a single transverse state.
The total transmission probability for an electron in-
cident with momentum k will therefore be

(0)
kt kt

T S

(2)
kg k)

k)

k) k)
kt+ qt

I
k)

/

k)

G(3)
k k t kt+qt

"t,~ ,"t

T„,(k ) =g f dk,
' T(k', k) . (56)

T(k', k) = I I (k)I ~(k')
dk

)& f f f «ds dt i[(~ E')~+a'i —cs]/m-e
2m'

The S-matrix derivation of the transmission matrix (Ap-
pendix A) is unchanged by the addition of a transverse
degree of freedom', the result is

FICi. 7. Diagrammatic representation of the leading terms in
a perturbative expansion of . the interacting Green function
G,„{~,s, t) for three-dimensional resonant tunneling. The dia-

t

grams differ from those appearing in the one-dimensional prob-
lem (cf. Fig. 9 in Appendix 8) only in the presence of
transverse-momentum labels. As in the one-dimensional case,
the 6rst diagram G„','„consists of an electron Green function

t

and its complex conjugate and is the sole term in the absence of
electron-phonon interaction. The second diagram G'„",„ in-

t t

eludes a phonon line connecting the two electron lines and
represents the emission or absorption of one real phonon. The
last two diagrams 6„",'„and 6'„",„describe the effects of dress-

y t

ing of the electron lines by a virtual phonon.

XGk, „(r,s, t),
t

(57)

where a=ski and c.'=ckz are measured with respect to
the same zero, the elastic resonance widths are

and its complex conjugate, represented by the first dia-
gram,

~L (&t(k)=2~X~~k'L, (k'~t~ ~k k ~(ek &kl. (kit)
k' t7 t

(58)

Gk, k (r, s, t)=5„,
k Gk (t)[Gk (s)]',

t' f t
(60)

where the noninteracting one-particle Green function is,
defined by

and the interacting Green function is

G„,„(r,s, t) =e(s)e(t)(c„(r—s)c„,(t.)c,(t)c„(0)) .
t t f

k,

(59)

G'„(t)= —(e(t)(0/c„(t)c', (0)/0),

with

(61)

The only changes from the one-dimensional result, Eqs.
(13) and (14), are the additional transverse-momentum la-
bels and the density-of-states factor ~deki(/dk(~ which
appears because T(k', k) gives the transmission probabili-
ty per unit final longitudinal momentum instead of per
unit final energy.

The leading terms in a perturbative expansion of
G,„( , tr) scorrespond to the four diagrams appearing in

Fig. 7, which di6er from their one-dimensional counter-
parts in Fig. 9 (in Appendix 8) only by the inclusion of
transverse-momentum labels. In the absence of electron-
phonon interaction, the two-particle Green function fac-
tors into the product of a one-particle Green function

iH t/A —iH t/A

t t
(62)

where the sum is subject to conservation of transverse
momentum and where S is the Bose-Einstein occupa-CO

tion factor for phonon mode q, the second diagram
represents

The second diagram corresponds to emission or absorp-
tion of a single phonon. Since each phonon line between
times t, and t2 contributes a factor of
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I 1

X iii„e ' ds'[G, (s —s']'[Gz (s')]'e dt' G, (t —t')Gz (t')e
CO

+(1+% )e ' f ds'[G„, (s —s')]'[Gz (s')]'e

X f dt'G'„, (t —t')Gio (t')e
00 t

(63)

as in Eq. (81). Similarly, as in Eq. (82), the effect of renormalization of the electron propagation due to virtual-phonon
processes is represented by the third diagram,

G„",„' (~,s, t)=5„, „[G'„(s)]'+~M,~'f dt,' f dt', G'„(t t, )G„+—, (t, t', )G', (—t', )

I I I

CO CO
(64)

Finally, from the symmetry between the last two terms in
the perturbative expansion one finds

G„',„' (~,s, t)=[G'„,„' (~, t,s)]
t t

(65)

The formulas in Eqs. (60) and (63)—(65) provide a starting
point for the quantitative modeling of one-phonon pro-
cesses in existing three-dimensional resonant-tunneling
structures.

If one is interested in high-order electron-phonon pro-
cesses, the perturbative approach becomes rapidly im-
practical. An alternative scheme is to neglect changes in
the energy of transverse motion caused by scattering,
which is reasonable if the interactions involve only small
momentum transfers —as is the case for polar-optical
phonons which couple most strongly near zone center
(3S). Within this approximation, the transverse momen-
tum factors out of the transmission probability and the
one-dimensional result applies to each transverse channel
independently. The exact solution obtained in the wide-
band limit in one dimension can consequently be em-
ployed to treat multiple-phonon processes in three di-
mensions.

In the wide-band limit, the approximation that changes
in transverse momentum are negligible is equivalent to
replacing all the single-particle Green functions in Eqs.
(60), (63), (64), and (65) by

VII. THE CURRENT IN THREE DIMENSIONS .

In this section, we will calculate the phonon efFects on
the current in a three-dimensional resonant-tunneling
structure. Since the dominant electron-phonon interac-
tion in a polar semiconductor such as GaAs is with the
longitudinal-optical phonons near zone center, we will
use Eq. (67) to estimate the three-dimensional transmis-
sion matrix T(k', k) in terms of the one-dimensional
transmission matrix T(s&s&) , for Einstein phonons, (32).
As in the one-dimensional case, in order to calculate the
current I we assume that the total current at high bias
can be written as a sum over momentum channels in-
cident from the left lead,

J= ~ f dkI fd'k, UifL (si, ) T«, (k),8~'
(6S)

where 3 is the cross-sectional area, U& is the longitudinal
velocity, and the total transmission probability is

T«, (k)=g fdki T(k', k)= f de', T(e&, e&) . (69)
1c,

At low temperature, the integral over transverse momen-
ta gives a factor of 4m.m (eF —

e& )/R . Changing the final
integral over longitudinal momentum to an integral over
energy yields

( —ic& —I /2)t/A

Gii(t) = i e(t)e— (66)
Aqm * 'F

till(~F ~i)T («ii) e~2~'fi'
(70)

where k, is the initial transverse momentum. The prob-
lem is therefore reduced to the one-dimensional case so
exponential resummation of the leading diagrams is exact
(Appendix 8), and one finds

T( k/', kI ) =y T(k', k) = d ck'R
T(sl, ei )

dkI'
(67)

where e& =e fi k, /2m * and e& =s—' —irt k,
' /2m so the

energy associated with transverse motion does not appear
in the transmission matrix.

~pm*+I"L, I p

2M r
f dao soJ(so)

f dso J(so)

f deo J(so)

=c~/3,

(71)

(72)

where T«, (e&)=T«, (k) is the total interacting transmis-
sion probability found from Eq. (32).

The sum rules on the total transmission probability in
Eqs. (26), (27), and (31) give rise to sum rules governing
the three-dimensional current J in Eq. (70) as a function
of resonant-level energy. Specifically, at zero tempera-
ture we find,
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FIG. 8. Current vs resonant-level energy for a three-
dimensional resonant-tunneling structure at four different cou-
pling strengths: (a) g =0.1, (b) g=0.2, (c) g=0. 5, and (d)

g =1.0, calculated from Eq. (70). For comparison, the dashed
curves are for no coupling to phonons. In each case, the Fermi
energy is taken to equal the optical-phonon energy cF =-ficoo and
the resonance width is I =0.2Acoo. Because of the sum rules
governing the current given by Eqs. (71) and (72), the integrated
weight under the curves and their average positions (eo) =Ez/3
are independent of the interaction with phonons. The three-
dimensional current is plotted in units of Aqm I I I &cI:/
2m' cooI so that the integrals are normalized to 1.

f d FQ EofJ(Eo) —Jo( Eo) ]
5(e,'& =

f dEo J(so)
(73)

In Fig. 8, we have plotted the current J versus
resonant-level energy for four values of the coupling con-
stant g. The elastic resonance width is taken to be
I =0.2Acoo and the Fermi energy to be cF=Acoo. The
currents are plotted in units of Aqm *I I I ~ EF /2m. h' cool,
giving an overall normalization of 1, and are centered at
(Eo) =eF/3 to illustrate the sum rules. The successive
peaks in the current correspond to the one-phonon, two-
phonon, and three-phonon emission replicas of the main
elastic peak. While the single-phonon peak has been seen
experimentally by several groups, ' to our knowledge
there has as yet been no observation of multiphonon pro-
cesses in resonant tunneling.

VIII. CONCLUSION

In summary, we have applied scattering theory to ob-
tain an expression (13) for the resonant-tunneling
transmission probability T(e, e ) in the presence of inelas-
tic scattering. In the wide-band limit, in which the densi-
ty of states in the leads is constant and the tunneling ma-
trix elements are independent of energy, an exact solution

was obtained for T(e', E) valid for any phonon spectrum,
coupling strength, and temperature (19). Several sum
rules in the wide-band limit were identified from the ex-
act solution; in particular, the energy integral of the total
transmission probability T„„(e)and the first moment of
T„,(s) were found to be independent of the interaction
with phonons. Also found to be independent of the pho-
nons in the wide-band limit was the escape rate of an
electron from the resonant site. Using the results for the
transmission matrix T(E', e) in the presence of an Ein-
stein band of phonons (32), we calculated the resonant-
tunneling current expected for a quasi-one-dimensional
structure including the interaction with polar-optical
phonons. To facilitate the eventual comparison to exper-
iment, we extended the scattering theory for transmission
to three dimensions and again calculated the current in
the presence of polar-optical phonons. At present, in ex-
perimental GaAs/Al Ga, As resonant-tunneling struc-
tures the couplings to phonons is typically weak enough
that the lowest-order perturbative results found in Eqs.
(60) and (63)—(65) are sufficient for purposes of modeling.

What remains unsolved is the problem of strong cou-
pling to phonons when the electronic Hamiltonian is
more complicated than a single level coupled to two wide
bands. %'e hope that some of the methods we have
developed may prove useful in the study of more realistic
structures than those represented by the single-site mod-
el. For example, it is clear from the derivation in Appen-
dix A that transmission through a series of quantum
wells or through one quantum well with multiple levels
can also be expressed in terms of a two-particle Green
function. Our belief is that an exact formulation of
transmission probabilities in terms of two-particle Green
functions similar to G(r, s, t) is possible for arbitrarily
complicated structures connected to ideal leads.
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APPENDIX A: REDUCING r(~', ~)
TO A GREEN FUNCTION VIA THE SMATRIX

We apply the S-matrix formalism to find a practical ex-
pression (13) for the transmission matrix T(c,', e) intro-
duced in Sec. II. Since the single-site model for resonant
tunneling is already in the form of a scattering
problem —free particles incident on a localized region of
scattering —the 5-matrix " theory can be applied direct-
ly. The result is an exact formula for the transmission
matrix in terms of a Green function of the resonant site.
Existing techniques can then be applied to evaluate the
Green function.

Scattering theory dictates that the Hamiltonian first be
divided into bare and interaction parts, Ho+H, . The
Hamiltonian for resonant tunneling is accordingly divid-
ed into a noninteracting part,
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Ho=sac c+Q sit cil cit
k T(E&,e, )= g l & e~, aI,~ ls ly, ,~„L& l'

+g eiacizciti+g&~qaqaq
k

(A 1)

and an interaction part that contains both the electron-
phonon interaction and the electron tunneling between
the resonant site and the contacts,

H, =c c+Mq(aq+a q)+g V„L(c„tc+c c„L)

+g Vjii(cgtic+c cg„) . (A2)

The noninteracting electron eigenstates are standing
waves confined in either the left or right contact plus a
single localized state, e.g. , an impurity level or the
ground state of a quantum well. For convenience, we will
label the basis states by energy instead of wave vector; in
our notation le, ,a,L (R) & denotes an electron of energy e
in the left (right) contact with the phonon system in state
a. States in di6'erent contacts are orthogonal since they
have no spatial overlap, while states in the same contact,
say the left, are normalized according to

&e', ct', Lle, ct, L &=6, 5(E' —E)

The second step in the application of the S matrix is to
form an initial incoming wave packet from the nonin-
teracting states in the left contact,

t

= fd'fdE '-y
b, E b, e

x&e~, ~,zlsl. ..L& . (A7)

The weighted sum over initial phonon states serves to
average the transmission probability over a thermal dis-
tribution of phonons. The lattice is therefore assumed to
be in equilibrium as the incident electron approaches the
tunneling structure.

One way of writing the S matrix that leads naturally to
a Green-function expression for the transmission matrix
is24

Ho'l /A —iHot l
A —pit l I

OO

dti dt2
l e '' H, G (Rt

—
2 t, )

P(E~, E', E),

where E is the energy of the phonon system in state a;,
Z is the phonon partition function, and

—PE

P(ef E', e) = g —( Ef +f & ISI e', ~;,L
o.&,a,.

lg, , ct, ,L &= f de le, ct;,L &, (A3) —tHot, /a —g(~t, ~+ ~t2I)Xaie '' e ' ', q 0+.
where the wave packet is normalized to represent a single
particle,

f duly(u)l =1 . (A4)

let &=sir;& (A5)

The scattering matrix T(s&, E, ), defined as the probability
per unit final state energy that a particle of energy c; in-
cident from the left contact will be transmitted with ener-
gy c& into the right contact, can therefore be written

The energy width Ac. of the incident wave packet is ini-
tially assumed 6nite to allow the particle to be localized
far from the interaction region. Eventually, the energy
width will be taken to zero, after the final state of the
wave packet has been determined.

The S matrix acts on an initial incoming wave packet
to produce the 6nal outgoing state that will be realized in
the distant future,

(AS)
The one-particle Green-function operator for the resonant
level,

C, (t) = ie(t)e—
includes both tunneling into the contacts and the
electron-phonon interaction. Only the last term in the
S-matrix contributes to the transmission probability be-
cause it takes at least two factors of the interaction Ham-
iltonian Hi to hop the particle from the left contact onto
the resonant site and then into the right contact. Also,
because the only piece of H

&
which acts on an electron in

the contacts is hopping onto the resonant site, the brack-
eting factors of H, in the last term of S must be hops,
erst out of the left contact and finally into the right con-
tact. Therefore, the matrix element in P( e&, e', e ) be-
tween an initial state on the left of energy c and a final
state on the right with energy sf is

1 2 q( jtl )+ lt2 I iHot2 —'Ho
l /A

( Ef cxf R isle cx' L & i f f e (ef cxf y Jt le HOT(tp t'j )Hie le cx' L

= —Va(e„)VL(e)f f e ' ' e ~ ' ' B(t2 t, )(O, a&lc(t2)c (t, )lO, a;—&, (A10)
f22

where
l Vt ~z~(s)l =gk l Vkt ~k„~l 5(e—

ekL ~kz~) properly includes the density of states in the contacts in the hopping
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matrix elements. The expectation value (O, af ~c(t2)c (ti)~O, a;) is taken between states of phonon occupation a,. and
Af with no electron present. In general, the expectation value will be nonzero because the time evolution of the elec-
tron operators,

c ( t )
—e iHt /Rc ( 0 )e

—iHt /R

includes the emission and absorption of phonons through the electron-phonon interaction in H.
Substituting the matrix elements of the S matrix back into P(cf, c', c), one finds

(A 1 1)

P(cf c' c)= VL(c)Vt (c')~ Vi((cf)~ f f f f ~
-e ' ' ' ' e ' ' ' ' B(t2 t —)

XB($2 si)(c(si)c ( $2) c(t p) c(ti)) (A12)

where the angular brackets indicate a state with no elec-
tron present and a thermal ensemble of the phonons. The
expectation value apparently depends on four times, but
must be unchanged by an overall time translation since
the Hamiltonian is time independent. To remove the ex-
tra time dependence, make the change of variables,

to=t„ t =t2 —t&, ~=s2 —t&, s =s2 —
s& . (A13)

The integration over to now yields a 5 function of ener-
gies as q —+0

P(cf, c', c)= V, (c)Vg(c')
I V& (cf ) I'2ir5(c' —c)

X
i[(c'—c )~+@ t —c's]f f

f3

One obtains a reilection matrix R(cf, c;) defined in
analogy to the transmission matrix, by taking the projec-
tion of the final state ~q(f ) onto the left contact in Eq.
(A6) instead of onto the right. The analysis is identical to
the case of transmission with the one additional compli-
cation that the first term of the S matrix cannot be
neglected for the case of elastic backscattering. The re-
sult is

I L(cf)T(cf,c;)
R(cf, c;)=

I( cf

+5(c;—cf ) I 1+2I t (c;)Im[Gi((c, }]},
(A19)

where
X G(r, ts),

where the expectation value of electron operators has
been identified as the Green function,

Gii(c)= f—'e-""}.—iB(t)(c(t)c (0))] . (A20)

G(r, s, t ) =6(s)6(t}(c(r s)c (r)—c(t)c (0) ) . (A15)

yields

T(cf,c;)=I t (c, )I ii(cf)

X dr ds dt i ( (.
—Ea )r+c t —s. .s}/i)f f

2m63

XG(~,s, t), (A17)

I'I (ii)(c ) = 2'
~ VL (i()( c ) ~

Substituting P ( cf, c', c ) into expression (A6) for the
transmission matrix T(cf, c; ), and letting the energy
width of the incident wave packet go to zero,

2
1 ~5(c—c; ),

APPENDIX 8: SOLUTION OF G(~, s, t )
BY EXPONENTIAL RKSUMMATION

One method of solving the transmission Green func-
tion G(r, s, t) in Eq. (14) is to resum the results of a low-
order perturbative expansion in the electron-phonon cou-
pling. %bile it is only in the wide-band limit that resum-
mation provides an exact solution, the leading terms in a
perturbative expansion are valid for any bandwidth in the
1eads or hopping matrix elements V&L and V&&, provided
the coupling to phonons is weak. We begin this Appen-
dix by expanding G(r, s, t ) perturbatively to lowest order
in the electron-phonon coupling, and then carry out the
procedure of exponential resummation in the wide-band
limit.

The perturbative expansion of the interacting Green
function is a standard application of many-body pertur-
bation theory,

=2~+
I VyL (ki()l 5(c cpL (pg)) ~

G(r, s, t ) =6(s)6(t) (c(r—s ) U (r, r s)—
Xc (r)c(t)U(t, O}c t(0)), (81)

Equation (A17) is a formally exact expression for the
transmission matrix, including electron-phonon interac-
tion, in terms of a two-particle Green function of the res-
onant site. The familiar tools of Green-function analysis
can now be employed to carry out the evaluation of
T(cf, c, }.

iHO t /A —iHO i /R
(B2)

and U(t, to) is the time-evolution operator,

where the c's and c 's are operators in the interaction
picture,
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t
U(t, t, )= g T i—f dt'P, „,(t')

m=0 0
(83)

In the Hermitian adjoint of the time-evolution operator
U ( t, t0 ), the time-ordering operator T becomes an anti
time-ordering operator T

U (t, t, )= g T ' i f dt'B, „,(t')
m=0 0

(84)
Gs

The bare Hamiltonian Ho includes the tunneling matrix
elements, so 8;„, contains only the electron-phonon in-
teraction on the resonant site,

H;„,(t) =c (t)c(t)g M [a (t)+8 (t)],
q

where

dq(t) =aqe ' and a (t) =a e (86)

The interaction Hamiltonian 8;„,is zero when there is no
electron on the resonant site, so there is no time-
evolution operator between c (r) and c(t) in the expecta-
tion value in Eq. (81).

Each term in the perturbation expansion of G(r, s, t ) in
powers of H;„, can be represented by a diagram, as indi-
cated in Fig. 9, where each solid line corresponds to an
electron Green function and each vertex corresponds to
one appearance of the electron-phonon interaction 0;„,.
A phonon line connecting two vertices at t, and tz there-
fore contributes a factor

/~M ~'[N e'"'" "'+(1+N )e
'"'" "'],

CO CO

q

where X is the Bose-Einstein occupation factor for

phonon mode q. The leading term, with no phonons
present, is the Green function in the absence of electron-

FIG. 9. Diagrammatic representation of the leading terms in
a perturbative expansion of the interacting Green function
G(~, s, t }. The first diagram Go('T s t)—the sole diagram in the
absence of electron-phonon interaction —consists of two uncou-
pled single-particle G reen functions. The second diagram
G&(w, s, t}, which has a single phonon line linking the two elec-
tronic Green functions, represents the emission or absorption of
one real phonon. The last two diagrams G2{~,s, t) and G3(~,s, t)
describe the propagation of an electron dressed by a virtual pho-
non.

phonon interaction,

Go(r, s, t )=6~ (t)[Gtt (s)]' . (87)

There are three separate terms which involve the
electron-phonon interaction at second order; there are no
first-order terms because in Eq. (81) all phonon emissions
must be balanced by phonon absorptions. The Arst in-
teracting term represents the emission or absorption of
one real phonon,

G, (~,s, t)=Q~Mq~ N e ' f ds'[Gz(s —s')]*[6+( )s]' e q f dt'Gz(t t')G„(t')e-
q

+(1+N„)e ' f ds'[Gz(s —s')]*[Gz(s')]'e q f dt'G~(t —t')Gz(t')e

The second and third terms, which are obviously related, represent the change in the propagation of the electron due to
the presence of a virtual phonon. The second term is given by

I I I I

G, ( , rt)s=[G ( ~)o]*sQ~M ~'f dt,' f dt', G~o(t t', ) G(ItO2 t—', )Gto(t', )[N e ' ' ' +(1+N )e ' ' ' ],
q

(89)

and the third term is the complex conjugate of the second
with the last two times interchanged,

G3(r, s, t)=[G~(r, t, )s] (810)

For a weak electron-phonon coupling, the sum of the
four terms represented by the diagrams in Fig. 9, will be a

good approximation to the fuH interacting Green func-
tion G(r, s, t) For a strong . electron-phonon coupling,
one can extend the results of low-order perturbation
theory by a technique called, alternatively, exponential
resummation, or the cumulant expansion, or the linked-
cluster expansion 'Instead, of a. pproximating G(~, s, t)
by the 6rst few terms obtained from the expansion of the
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evolution operators, one reinterprets these terms as the
beginning of the expanded form of an exponential series
for G(r, s, t). Schematically, if a Careen function Go(t)
has an ordinary perturbation series in powers of an in-
teraction g,

will be rapidly convergent if the important high-order di-
agrams are well approximated by products of low-order
diagrams. "' In our ease, exponential resummation of the
perturbative results yields

G(r, s, t) =G()+G, +G~+6~
(811)

(Gl + G2+ G3 )/GO= Goe (813)
then there may exist another expansion In the wide-band limit, where the noninter acting

Green function is an exponential,
G(t)=Go(t)exp g g'Wi(t)

1=i
(812)

0 . (
—i so I /—2)i/R

(814)

which converges much more rapidly than the original
series. Once the F(t)'s are known it is straightforward to
calculate the W(t)'s by matching the expansions order by
order. The exponential form of the perturbation series

I

the higher-order diagrams are given exactly by products
of the three interacting diagrams in Fig. 9, so that the ex-
ponential resummation in Eq. (813) is exact. In the
wide-band limit, we find

and

G((r, s, t)=GO(r, s, t)g [ —X e q (1—e q )(1—e ) —(I+X )e (1—e )(1—e )],
COq q q

q

2

G2(r, s, t) =-Go(r, s, t) itA, —g [i)i' (1 —e )+(1+% )(1—e
CO q

q

(815)

(816)

where A, =gq (M /A'co ). Recalling that G3(r, s, t)
=[G2(r, t, s)]", we substitute the above expressions into
Eq. (813) and obtain the solution for G(r, s, t) given in
Eq. (19).

APPENDIX C: TRANSMISSION MATRIX T(c', c)
FOR EINSTEIN PHONONS AT T =0 K

G(r, s, t) =Gi((t)[Gi((s)]*e"

with

(C3)

an exact solution for the interacting Green function
G(r, s, t ) [see Eq. (19)]. For the Einstein band at zero lat-
tice temperature, we find

XG(r, s, t), (Cl)

where

G(r, s, t)=e(s)e(t)(c(r —s)c (r)c(t)c (0)) . (C2)

In the wide-band limit, in which the couplings to the con-
tacts I L and I z are independent of energy, there exists

For the special case of an Einstein band of phonons
with energy A'coo, we derive a simple expression for the
transmission matrix T(e, e) in the wide-band limit.
From Sec. II, Eq. (13), the interacting transmission ma-
trix is given by

T( i
) I ( )I ( i)f f f r s i[(c—c')~+a't —ss]/A'

2~%

where Gz(t) is the noninteracting Green function of the
resonant site,

() . ( —i co I"/2) t /R—

The electron-phonon interaction appears in Eq. (C3) via
the coupling constant g, which depends on the electron-
phonon matrix elements M according to

g =+~M /))lcoo~

q

The expression for T(e', e) obtained by combining Eqs.
(Cl) and (C3) above can be simplified considerably. To
begin, separate the integrals so that the ~ integration can
be performed first,

T(e', e)=I LI ze sf exp[[i(eo —e —A) —I /2]s/|)t+ge

X F(s, t) exp[[ i(eo —e —i—()—I /2]t/A+ge ' —i(e —e')t/A'],
0

(C5)
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where T(e', e)=I L I „e
ei(c c—)r'lh

27jfl

Xexp[ —ge ' (1—e ' )(1—e )] . where

X Q 5(e —e' —mfiroo)~D (e)~
0 m! (C8)

(C6)

Expanding the second exponential in F(s, t) and integrat-
ing over ~ yields

m

F(s, t)= g, e™~of[(1—e ')(1—e ')]
0 m!

D (e)= f (1—e ')
0 I

X exp I [—i(so —e —
A, ) —I /2]t /fi

+ge

The relations

(C9)

X5(e—E' —miriroo) . (C7) (1 —e (C10)

After interchanging the sum on m with the two remain-
ing integrals, the factor of exp(imcoot) in F(s, t) cancels
the factor of exp[ —i(e —E')t/i(i] in Eq. (C5), leaving the
integrals as complex conjugates. The transmission ma-
trix can therefore by compactly rewritten as

and

(Cl 1)
—t coot g —IIcoot

oo

exp(ge ' )= g —e
I=a ~'

permit the integral for D (e) to be turned into a sum,

m p?z ~ gr 1D (E) ig=(1—)J
[&—(Eo—

A, )
—(j + l)ficoo]+i I /2

This is the expression that appears in Sec. II, Eq. (32).

(C12)
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