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phase of reAection high-energy electron-diffraction intensity oscillations
during molecular-beam-epitaxy growth of GaAs(100)
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The intensities of several reflection high-energy electron-dift'raction beams have been recorded
simultaneously at varying angles of incidence and crystal substrate azimuth angles during
molecular-beam-epitaxial growth of GaAs(100). Strong oscillations in the intensities of specular
and nonspecular beams with same period but varying phases have been measured. The phase of the
oscillations of the various beams has been found to vary with incident and azimuthal angle. A kine-

matic calculation based upon a simple model for epitaxial growth is presented, and its prediction
concerning phase is compared with the experimental results. The results are also examined with re-

gard to recent studies of the role of Kikuchi processes on the phase of the specular beam.

INTRODUCTION

One of the most notable and widely used aspects of
reflection high-energy electron diffraction (RHEED) dur-
ing molecular-beam-epitaxy (MBE) growth is the
phenomenon of oscillations in the intensity of the specu-
lar beam in the diffraction pattern. It has been well es-
tablished that the period of these oscillations corresponds
exactly to the growth rate of 1 monolayer when epitaxy
proceeds in a layer-by-layer nucleation and growth
mode. ' RHEED oscillations during MBE growth are
thus routinely used for growth-rate determination and for
calibration of the beam cruxes.

Intensity oscillations in nonspecular RHEED beams,
while noted by other investigators, '

. have not been sys-
tematically studied, even though they sometimes have os-
cillations of greater amplitude than the specular beam.
In this study, intensity oscillations in the 00 and 01
beams diffracted from the GaAs(100) surface have been
systematically and simultaneously recorded as a function
of incident angle and crystal azimuth during MBE
growth. Although the oscillations from the various
beams all have the same period, they exhibit a phase rela-
tionship with respect to one another that is very sensitive
to the incident angle 0 of the electron beam and the az-
imuthal angle y of the substrate.

EXPERIMENTAI. PROCEDURE

A video-camera-based intensity monitoring system has
been developed at the University of Houston to simul-
taneously record RHEED intensities from multiple
beams. The monitoring system consists of a personal
computer, a video digitizing board, a video monitor, and
a video camera. To measure intensity oscillations, the
video camera is focused on the RHEED screen of the
MBE chamber, and the image is displayed on the video
monitor. The user can create and manipulate the posi-
tion of any number of "data windows, " rectangular re-
gions on the video monitor, of adjustable dimension. The

intensity of the pixels enclosed by each data window is
digitized by the video digitizing board and then integrat-
ed and stored in files for later analysis by associated
software.

Sampling is done at a rate of 60 times a second for each
window. The data is averaged in nonoverlapping groups
of six points and then smoothed using a 6ve-point rolling
average to reduce noise, the principle source of which is
the camera tube. The integrated intensity of the data
windows, and therefore RHEED oscillations, can be
displayed in real time on the computer monitor. The
principle advantage of this system is its ability to monitor
the intensity of up to ten diffracted beams simultaneous-
ly.

An undoped GaAs(100)10. 5 wafer cleaved into —1-
cm squares was used as substrate material for GaAs
homoepitaxial growth. After degreasing and etching, the
GaAs was indium mounted into a three-inch molybde-
num block. The molybdenum blocks were loaded into a
Riber 32 MBE growth system, degassed, and transferred
to the growth chamber. The oxide was removed by heat-
ing the substrates to 630 C under an arsenic flux with the
substrate continuously rotating. The sample was cooled
to -600'C and a 0.5-pm buffer layer of GaAs was
grown. After growth, a sharp 2X4 RHEED pattern was
observed. To insure the best possible surface for addi-
tional layer growth measurement, the sample was then
annealed in an arsenic flux at 600'C for approximately 1

h.
A11 RHEED data was taken with the electron beam

directed along the GaAs[110] direction with the twofold
reconstruction visible on the RHEED screen. The in-
cident angle was determined by measuring the distance
between the specular beam and the straight-through
beam on the RHEED screen. The incident angle 0 was
varied by moving the substrate in a direction normal to
the surface and simultaneously adjusting the electron
beam to keep it on the crystal surface. This arrangement
to change the incident angle is awkward and, combined
with the fact that the molybdenum holder blocks the
straight-through beam at angles greater than 1.5', is re-
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DISCUSSION

To better understand the oscillation phase results, a ki-
nematic theory, analogous to calculations by Van Hove
et al. , and others, is applied to a simple growth mod-
el. The model incorporates a simple cubic lattice crystal
divided into domains of XXX lattice sites, as shown in
Fig. 4. PXP lattice sites in each domain form an "is-
land" at a higher level than the remaining sites. Cxrowth

occurs by successfully adding atoms to the P XP island,
i.e., letting P approach X. The lattice is defined by
ai, b j,ck, where a, b, c are the lattice constants in the
x,y, z directions. K,L are indices that run from 1 to
K „,and 1 to L,„,respectively, and identify which
domain the lattice site is in. m, n are indices that run
from 1 to X and identify where in the domain the lattice
site is located. I is an index that runs from 0 to infinity
and identifies how many layers down from the surface the
lattice site is located. Attenuation is incorporated using
the column approximation and an attenuation constant
a, ' which is, as before, the ratio of the amplitude of the
( n + 1 ) layer into the surface with the amplitude of the
nth layer (0 & a & 1).

In the description of the electron scattering from the
dominated sample, the usual kinematic sum of ampli-
tudes is performed:
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where S( =1Lf —k, ) is the momentum transfer to the crys-
tal and F(0,E ) is the atomic scattering factor. The ampli-
tude is extended over the three regions in each domain:
(i) all lattice sites in the P XP islands, (ii) all lattice sites
in the rectangular region immediately above (i), and (iii)
all lattice sites in the rectangular region to the right of (i)
and (ii):
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FIG. 3. (a) t3/2/T ratio vs azimuthal angle q for the 00, 01,
and 01 beams. 8=2.1. {b) t3&2/T ratio vs azimuthal angle y
for the 00, 01, and 01 beams. 8=1.9'. Lines were added to aid
the eye only.
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Kikuchi line crossings are noted. Furthermore, these
phase shifts change continuously with azimuth, as shown
in Fig. 3(a).

CONCLUSION

Significant phase differences have been observed be-
tween the RHEED intensity oscillations simultaneously
measured for different diffracted beams. This observation
cannot be explained by simple kinematic theory, which
shows all beams oscillating with identical phase. Fur-
thermore, these phase differences occur throughout in-
cident angle-azimuthal angle parameter space and change
in a continuous manner, regardless of the presence or ab-
sence of Kikuchi line crossings in the beams. It is, there-
fore, doubtful that the phase differences observed be-

tween different diffracted beams are caused by inelastic
processes. Whether an elastic, multiple-scattering,
dynamical approach can explain these phase differences
needs to be determined. It is clear, however, that
diffraction conditions (as opposed to growth conditions)
can drastically affect the RHEED oscillation phase. As a
result, it should be realized that the maximum intensity
of a diffracted beam does not necessarily correspond to a
completed layer during growth.
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