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We have calculated the contribution of the second-order vertex-correction diagram to the direct
gap of silicon at the " point and have compared it with the Hartree-Fock contribution. Both con-
tributions have been calculated by using the Monte Carlo method for the involved three- and six-
dimensional integrations. Our results show that the second-order contribution is much smaller than
the first-order Hartree-Fock contribution. Although we have calculated the vertex correction dia-
gram using the bare instead of the screened Coulomb interaction, our results give a first indication
that vertex corrections can indeed be neglected, an assumption which is inherent in the GW approx-
imation to the electron self-energy in a semiconductor.

L. INTRODUCTION

The problem of dealing with many-particle systems is a
longstanding and difficult one. According to quantum
mechanics, a many-particle system is described by the
many-particle Schrodinger equation. Only in the case of
noninteracting particles can this equation be solved be-
cause it can trivially be reduced to many identical one-
particle equations. When dealing with mutually interact-
ing particles it is impossible to solve the Schroédinger
equation, however it is possible to describe the system in
terms of quasiparticles whose behavior is governed by a
one-(quasi)particle equation. In this equation all many-
particle effects are accounted for by an effective one-
particle potential function, the so-called self-energy
operator (A1), which is both nonlocal and energy depen-
dent. Using this one-(quasi)particle equation, the prob-
lem has been shifted from solving the many-particle
Schrodinger equation to the determination of the self-
energy operator. The determination of the exact M is
just as impossible as solving the many-particle
Schrodinger equation and we have to use some approxi-
mation for it. Conceivable approximations for M can be
obtained by using many-particle perturbation theory
which gives a series expansion of in powers of the
two-particle interaction. An example of an approxima-
tion for M which can be obtained in this context is the
Hartree-Fock (HF) approximation which corresponds to
retaining only the two terms that are of first order in the
two-particle interaction.

The approximation for the self-energy operator which
one has to use in order to obtain the correct quasiparticle
energies will generally depend on the specific many-
particle system. The many-particle system we are dealing
with in this paper is the semiconductor silicon, the two-
particle interaction being the Coulomb interaction be-
tween the electrons. As it turns out in band-structure
calculations for semiconductors, the HF approximation
yields band gaps which are a factor of 2 or more larger
than the experimentally observed values,'? whereas re-
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cent calculations indicate that for Si use of the so-called
GW approximation of Hedin® for the self-energy operator
yields correct band structures.* ¢ This GW approxima-
tion consists of the first-order term of a perturbation
series which has been formulated in powers of a screened
interaction W rather than in powers of the bare Coulomb
interaction (Fig. 1). For an extensive review of many-
particle techniques in solid-state physics, see Ref. 7.
Approximating the self-energy operator by GW must,
of course, be justified. Part of this justification can be
based on the successful results of band-structure calcula-
tions in which this approximation is used. However, in
principle one should show that higher-order contribu-
tions in W are unimportant with respect to the first-order
contribution. It is this latter kind of justification to
which we have tried to make a first step by calculating
the first-order HF and second-order vertex-correction di-
agrams and comparing their respective contributions to
the direct gap at the I" point. Because of the complexity

Coulomb interaction v
screened interaction w
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FIG. 1. Summary of the diagrammatic expansion of M in
powers of the screened interaction W. For actual calculations
several approximations have to be made; P must be approximat-
ed giving an approximate W. Using this W, a choice for M has
to be made.
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of the second-order diagrams in W, we have used the bare
Coulomb interaction instead of the screened interaction.
Even then the calculation of especially the second-order
contribution appears to be a sizable task. The result
clearly indicates that this contribution can safely be disre-
garded. As the screened interaction W is less effective
than the bare interaction v, it can be argued that the same
result would have been obtained if we had been able to
perform the calculations with W instead of v. In Ref. 8 a
model screened interaction has been used to obtain an es-
timate for the vertex-correction contribution to the direct
gap. The calculation done in Ref. 8 differs from ours in
that more approximations have been made, but the con-
clusion arrived at is basically the same.

II. BASIC STARTING POINT

In this section we will describe the computational
scheme within which it is possible to obtain a reasonable
estimate for the importance of the second-order diagram.
The determination of the contribution of a certain dia-
gram to the self-energy operator requires in principle a
self-consistent calculation. This is so because the self-
energy operator, or an approximation for it, is a function-
al of the one-particle Green’s function which in turn de-
pends on the self-energy operator via the one-(quasi)-
particle Schrodinger equation. Thus if we want to com-
pare the importance of, e.g., the second-order diagrams
with respect to the first-order diagrams, we have to per-
form two self-consistent calculations, one in which we ap-
proximate M by the first-order diagrams and one in
which we approximate M by a sum of the first- and
second-order diagrams. Having done these calculations
we can decide about the importance of the second-order
diagrams by comparing the obtained quasiparticle ener-
gies (i.e., band structures). However, performing a com-
pletely self-consistent calculation for the electron self-
energy is difficult, if not unachievable, certainly if we
want to include second-order diagrams. This means that
we have to try to circumvent this self-consistency prob-
lem. Self-consistency would be no problem if we had
disposal of the exact self-consistently determined self-
energy operator which could then be used to calculate the
exact one-particle Green’s function. Using this exact
Green’s function, we would then be able to calculate any
self-energy diagram without having to do a self-consistent
calculation. Though in practice the exact self-energy
operator is an unknown quantity, we can take the point
of view that if we are able to find a Hamiltonian which
yields reasonable band structures and electron densities
we may use this Hamiltonian as if it contains the exact
self-energy operator. Following this line of thought we
have used an empirical pseudopotential (IA/emp) and have
considered it to be the sum of the crystal potential and
the exact self-energy operator. This assumption is ex-
pressed in the following equation for the one-
(quasi)particle Hamiltonian:

A=1+7

emp

=T+0,+(P 0

emp cr)
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FIG. 2. Example of a skeleton (a) and a nonskeleton (b) dia-
gram.

In this equation T is the kinetic energy operator and 0 or
is the crystal potential. Using the one-particle Green’s
function corresponding to this Hamiltonian, we have cal-
culated the relevant first- and second-order diagrams.
Which diagrams we have to calculate in order to be con-
sistent with the assumption that the Hamiltonian of Eq.
(1) yields the exact Green’s function will be discussed in
the next section.

III. DIAGRAMS TO BE CALCULATED

If the diagrammatic expansion of the self-energy opera-
tor is written down using the exact one-(quasi)particle
Green’s function, only the so-called skeleton diagrams
must be included. A skeleton diagram is defined as a dia-
gram without a self-energy correction to any of its inter-
nal propagators. For example, the diagram of Fig. 2(a) is
a skeleton diagram whereas the diagram of Fig. 2(b) is
not because it contains a Hartree self-energy correction
to one of its internal propagators. In accordance with
this and the assumption concerning our use of the empiri-
cal pseudopotential, we have to consider only skeleton di-
agrams if we want to compare the importance of first-
and second-order diagrams. It is to be noted in this con-
nection that a subset of the class of skeleton diagrams
consists of diagrams that contain polarization parts in
their interaction lines (Fig. 3). The only second-order di-
agram of this kind is depicted in Fig. 3(a). If the pertur-
bation expansion for M is formulated in powers of W, di-
agrams with the topology as in Fig. 3 will not be encoun-
tered. Henceforth, we will simply discard the diagram of
Fig. 3(a) and consider only the second-order diagrams
that appear if M is expanded in powers of W, however
with W replaced by the bare Coulomb interaction.

The first- and second-order skeleton diagrams which

N 0
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(a) (b)

FIG. 3. Examples of skeleton diagrams which contain polar-
ization parts in their interaction lines.
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FIG. 4. The first- and second-order contributions to the self-
energy operator which we have calculated.

we have to calculate are shown in Fig. 4. The second-
order diagram has been split into two contributions ac-
cording to the two possible time orderings of its argu-
ments. When written down in the Fourier domain, the
second-order diagram will be frequency (energy) depen-
dent whereas the HF diagrams will be energy indepenent.

IV. NUMERICAL EVALUATION

As discussed in Sec. II, we use an empirical pseudopo-
tential to calculate the Green’s function which is needed
to calculate the diagrams. The parameters that we have
used in this pseudopotential are given in Table I and have
been taken from Ref. 9.

We have determined the matrix elements of the self-
energy operator in a plane-wave representation:

M(k+K k+K,0)=(k+K,|M(0)k+K,), ()

in which k lies in the first Brillouin zone (1BZ), K, and
K, are reciprocal-lattice vectors, and w is the energy pa-
rameter. In Appendix A we display again the three
relevant diagrams of Fig. 4 and give the corresponding
expressions. The Hartree contribution depends neither
on k nor on w, while the Fock contribution depends on k
but not on w.

The evaluation of Feynman diagrams involves the sum-
mation over intermediate states or, when we are dealing

TABLE 1. Empirical pseudopotential parameters in Ry.
Vemp(K)=cos(K-t)¢(|K|) and t=(a/8)(x+y+2z).
$(V3) $(V'8) (V11)
—0.224 0.055 0.072
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with an infinite system, an integration over intermediate
states. For the two first-order diagrams of Fig. 4 this im-
plies that we have to perform one band summation and
one (crystal) momentum integration over 1BZ. The
second-order diagram of Fig. 4 contains two-
particle—one-hole or one-particle—two-hole intermediate
states implying three band summations and three
momentum integrations. One of the three momentum in-
tegrations can be performed analytically using the 8 func-
tions which express momentum conservation at the in-
teraction vertices. This leaves us with three band sum-
mations and a six-dimensional integral over the direct
product of two 1BZ’s. The momentum integrations have
been performed using a Monte Carlo integration pro-
cedure. The random points which are needed for this in-
tegration procedure have been generated by using the
Halton sequence as described in Ref. 10.

From the expressions in (A4) and (A7) in Appendix A,
we see that both the Fock and the vertex-correction dia-
gram have integrands containing singularities arising
from the Coulomb potential. In the case of the Fock dia-
gram we have one singularity at =0 [see (A4) and con-
sider the Q=0 term]. To make numerical integration
possible we subtract from the integrand a singular func-
tion such that the difference is a regular function which
can easily be integrated numerically. The subtracted
function is chosen in such a way that it can be integrated
analytically over 1BZ (see Appendix B). The terms in the
integrand of the vertex-correction diagram with Q,=K,
or Q;=K, are singular whenever q,=k or q,=k. These
singularities are less severe than the singularity in the
Fock diagram due to the fact that if we take q;=k the
numerator in the singular term in Eq. (A7) also vanishes
because in that case it is proportional to the inner prod-
uct between a valence-band state and a conduction-band
state at the same point in the 1BZ. A similar observation
holds for the case gq,=k. We have treated these singular-
ities by performing a Monte Carlo sampling using points
(q;,9,) which are uniformly distributed in polar coordi-
nates (r;,0,,¢,,7,,6,,¢,); this implies that we have to
multiply the integrand by a Jacobian containing factors
which cancel the Coulomb singularities. In this way
there are effectively no singularities in the integrand.
This method has one drawback caused by the fact that it
is cumbersome to give 1BZ in terms of polar coordinates.
A solution to this problem is to enclose 1BZX1BZ by
the direct product of two spheres and to define a new
function which is equal to the original integrand in the
intersection of the spheres and 1BZ X 1BZ and zero oth-
erwise. The integral of this new function over the direct
product of the two spheres is by definition the same as
the integral we want to calculate. However, our new
function has a discontinuity on the boundary of
1BZ X 1BZ. In principle discontinuities do not present
problems for a Monte Carlo integration, but if we use the
variance of the sampled function values to estimate the
error in our final results part of this error will be due to
this discontinuity. We have estimated the absolute error
in our Monte Carlo integration results by the square root
of the sample variance divided by the square root of the
number of integration points.
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FIG. 5. Monte Carlo estimate for the regularized integral of
the Fock diagram (see Appendix B) as function of the number of
random points. The curves correspond to the eight independent
matrix elements which contribute to the direct gap (see text). In
(@): O=11D,(111); +=(11),01D); A=(111),(011). In (b):
X =(—1—1—1),(100); +=(—1—1-—1),(101); O=(101),
(—10—1); A=(—1—1=1),000—1; O=(—1—1—1),(111).

Because of the large number of summations that has to
be performed to calculate the integrand of Eq. (A7) we
have to restrict ourselves to a small number of bands.
We have done our calculations using a 15-band model so
that the matrix M consists of 225 elements for each k and
 value. Using the symmetry group at the I" point it can
be shown that the number of independent elements is
only 16. The symmetry property of M under interchange
of K, and K, reduces this to 12 elements, one of which
can be shown to be exactly zero. Of the remaining 11 ele-
ments only eight contribute to the direct gap at k=0.

In Figs. 5-7 we present some results concerning the
Monte Carlo integration procedure. In Fig. 5 the Monte
Carlo estimate for the regularized integral, i.e., the in-
tegral of (A4) with (B1) subtracted from its integrand, ap-
pearing in the expression for the Fock diagram has been
plotted as a function of the number of integration points.
The curves correspond to those eight matrix elements
which contribute to the direct gap at k=0. We see that
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FIG. 6. Monte Carlo estimate for the integral appearing in
the expression for the vertex correction diagram [Eqgs. (A6) and
(A7)] as a function of the number of random points. The energy
parameter corresponds to the energy of the highest valence-
band state I'3s. The curves correspond to the eight independent

matrix elements which contribute to the direct gap (see text). In

@: A=(11),011); O=(111)(111); X=(101),(—10—1);
+=(—1—1-1),111); O=(111,011). In (®b): O=(—1
—1—1),(101); +=(—1—1—1),000—1); O=(—1
—1—1),(100).

the convergence of the estimate is good especially for the
large diagonal elements. The estimated errors on the re-
sults which we have obtained using 1000 integration
points vary between 2% and 7%. In Figs. 6 and 7 the re-
sults for the vertex-correction diagram are shown. To es-
timate the integrals we have used 5000 random points
which have been sampled uniformly in polar coordinates.
This yielded results which are accurate enough for our
purpose, which is to give a rough estimate for the ratio of
second-order to first-order expectation values. Figure 7
demonstrates the correctness of our integration pro-
cedure by showing that different sets of random points
converge to the same estimate for the integral. Note that
6000 integration points for a six-dimensional integral is a
rather modest value corresponding to about 4.25 points
per dimension. The evaluation of the necessary matrix
elements of the second-order diagram using 5000 integra-
tion points required 104 h of computation time on an
IBM-RT system.
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FIG. 7. Estimate for the second-order matrix element

(111),(111) as a function of the number of random points for two
different sets of random points. The energy parameter corre-
sponds to the energy of the highest valence-band state I'ys.

V. RESULTS

In order to have some kind of a check on the credibili-
ty of our results, we compare in Table II our HF results
with results obtained by other authors. In order to be
consistent with our assumptions concerning the empirical
pseudopotential,

|4 =Ucr+Mexact=0cr+MHF+ﬁrest ’ 3)

emp

we have to calculate our HF energies by taking the ex-
pectation values of T+ 0cr +Myr in the eigenstates of
T+ ?emp. For U, we have used the ab initio ion poten-
tial of Ref. 11. Note that our HF energies have not been
obtained by a fully self-consistent “HF only” calculation,
but have in our scheme to be interpreted as the HF con-
tribution to the band structure as obtained with the exact
M of which HF is only a part. From Table II we see that
our results are in reasonable agreement with the results of
other calculations and we conclude that our way of work-
ing yields reasonable estimates for at least the first-order
diagrams. Comparing the first and second columns in
Table II we see that (%emp— 0.,) must contain more than
Myg, i.e., the higher-order diagrams contributing to
M, which are denoted as M rest in Eq. (3) cannot all be
small with respect to the first-order HF contribution.

In Table III the expectation values of the vertex-
correction diagram in the lowest conduction-band state
in I (I';5) and in the highest valence-band state (I'}5) are
compared with those of the HF diagrams in the same

TABLE II. Hartree-Fock energies (eV) compared with values
obtained by other authors.

T+ Vemp T+ U, +Myr @) (b)
Tys— s 3.47 9.18 8.0 9.4
Is—T 12.97 17.3 18.3 19.8

2Reference 1.
YR. Dovesi, M. Causa, and G. Angonoa, Phys. Rev. B 24, 4177
(1981).
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TABLE III. Expectation values of the first- and second-order
diagrams and contributions to the direct gap at I'. Energies are
in eV and numbers in parentheses are estimated relative errors.

MHarlree MFock MHF MVC
s 0.041(14) —5.35(2.7) —5.31(2.8) 0.284(10)
I')s 2.67(1.1) —11.6(1.2) —8.93(1.7) 0.237(10)
s—TI5  —2.63(1.3) 6.25(4.6) 3.62(8.3) 0.047(100)

states. We see that the second-order expectation values
are, respectively, factors of 18 and 37 smaller than the
first-order expectation values in the I';s and the I')s
states. Although the second-order contribution to the
direct gap at the I' point is in fact undetermined due to
the large cancellation that occurs when we calculate the
difference of the expectation values in the I';5 and in the
I')s states, we conclude that the HF contribution to the
direct gap at the I" point is at least a factor of 36 larger
than the contribution of the vertex-correction diagram.
From Table II and use of (3) we learn that the contribu-
tion of M, to the direct gap is —S5.71 eV
(Mo = (P4 P ) —(T+ My + 0,)].  As we have
shown in Table III the second-order vertex correction
does not yield this large contribution and therefore other
higher-order diagrams in M, must give this contribu-
tion to the direct gap and these must be the diagrams
which are taken into account in the GW approximation.
Because of the fact that in the GW approximation the
Hartree term is not modified and the fact that this ap-
proximation gives correct band structures, we conclude
that the GW diagram of Fig. 1(c) contributes about

rest + Mg, =0.54 eV to the direct gap which is a factor
of 11 smaller than the Gv (Fock) contribution. This fac-
tor of 11 should be compared with the dielectric constant
€, of Si which is 12.

VI. CONCLUSIONS

As mentioned in the Introduction a large step towards
the justification of the GW approximation would be an
explicit demonstration of the smallness of the vertex-
correction diagram of Fig. 1(c) with respect to the GW di-
agram of Fig. 1(c). We have argued in the Introduction
that if this can be shown for diagrams with the bare
Coulomb interaction v this will very likely be true for dia-
grams containing screened interactions W as well.

Our calculations show that contribution to the direct
gap of the second-order self-energy diagram of Fig. 4(c) is
indeed much smaller than the first-order HF contribu-
tion. Furthermore, if we assume that the correct energy
gap is indeed produced with the GW approximation, we
conclude that the ratio of the Gv (Fock) to the GW con-
tribution to the energy gap is about 11, which is fully in
accordance with the idea of a sizable effective screening
contained in the function W.

Strictly speaking, the relative smallness of the screened
vertex-correction diagram has still to be demonstrated,
though the relative “weakness’ of W with respect to v
strongly suggests this to be the case. Unfortunately, one



11 664

o4
=<t

—— = AP = - —

(a) (b)

FIG. 8. Symbols used in Feynman diagrams of Appendix A.

of the consequences of the dynamic character of W is
that the vertex-correction diagram of Fig. 1(c) gives rise
to 24 different diagrams corresponding to the 4! different
time orderings in which the vertices of the screened in-
teraction can be arranged. Each of these diagrams will be
much more difficult to evaluate than the diagrams that
we have calculated thus far, even if we use a simple
plasmon pole approximation for the screened interac-
tion.!? In conclusion, we believe that the accurate evalu-
ation of the ratio of the unscreened Fock and vertex-
correction diagrams makes it very likely that higher-
order vertex-correction diagrams in the screened interac-
tion can indeed be neglected in the evaluation of an ener-
gy gap in semiconductors such as Si.

APPENDIX A

In this Appendix we give the expressions correspond-
ing to the three self-energy diagrams which we have cal-
culated. We use the following conventions.

() Momenta are measured in units of 27/a in which a
is the silicon lattice constant, a=5.43 A.

(ii) Energies are measured in units of E, =27*#%#%/ma?,
E,=0.375 Ry.

(iii) In Feynman diagrams the following symbols are
used: in Fig. 8(a), the Coulomb interaction e*/¢;|ql?; in
Fig. 8(b), the one electron propagator in which the
change of the electron momentum by a reciprocal-lattice
vector K is explicitly depicted.

(iv) d,, (K) is a plane-wave coefficient; because we have
chosen the origin in a bond center these coefficients are
real.

(v) VB is for valence bands and CB is for conduction
bands.

The Hartree diagram in Fig. 9(a) is
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FIG. 9. The diagrams which we have calculated in momen-

tum representation. The corresponding expressions are given in
Sec. (A1)-(A7).

E e?
MHartree(Kl’K2):‘ ﬁv m IHartree(KI’KZ) .
(A1)
Tyarree (K1, K5) is a dimensionless integral given by
IHartree(Kl’K2)
d;(Q+K,)d,;,(Q+K,)
=[ dq 3 3 ’ 1"? 2 (A2)
IBZ " ,&vBQ IK,—K,|

and e?/4m€qaE, =0.1653 is a dimensionless constant.
The Fock diagram in Fig. 9(b) is

2
MoK+ K k+Kp)= =5 |- g (kK k+Ko) (A3)
#i | 4nteqaE,
dIk— —R(K1~Q+R)dlk—- —R(KZ_Q+R)
Ipou(k+K k+Ky)= [ d? 4 4 : A4
Fock 1 2 leZ q 13’13% [q+Ql2 ( )
R is a reciprocal-lattice vector such that k —q—R € 1BZ.
The vertex-correction diagram in Fig. 9(c) is
e? g
Myc(k+K k+Kyw)=——" | —5—— | Iyc(k+K ,k+Kyw), (A5)
# | 47’eqaE,
Ive(k+K k+K,,0)=IYc (k+K,k+K,,0)+I13:(k+K ,k+K,,0), (A6)
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1

1,ECB1,EVB ISGECB o—¢€ (q)+e (q+q—k—R)—¢ (q)+in
d 4, (Q))

X 2
Q, |k—CI1_Q1+K2| Q,
dlsqz(Q3)

2d’sqz(Qz)dlquJrqz~k—R(Q1“"Qz—Kfl-R)

>

2Zdllql(Q4)dlqu+q2—k—R(Q4+Q3—K1+R) . (A7)

Q, |k_Q2_Q2+K1| Q,

The expression for I% is the same as for I}, however, with the summation over the valence bands replaced by a sum-
mation over the conduction bands and vice versa. Besides, in has to be replaced by —i.

APPENDIX B

The singularity in the integrand of the Fock diagram can be handled by subtracting the following function from the

integrand in Eq. (A4):

S(K,Kykiq)= 3 PE % 1+cos

IEVB

mlql
b

b —Ilql) . (B1)

The parameter b should be chosen such that the whole sphere with radius b is contained within the 1BZ.
The difference of the integrand in Eq. (A4) and S(K,K,,k;q) is a continuous function without singularities and can
easily be integrated numerically. Because of the ® function the integral of the singular function S over the 1BZ can

easily be determined analytically and is given by

[ d%qS(K,KykiQ)=2mb 3 dp(Kdp(K,) .
1BZ IEVB

(B2)
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