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Spin-density-wave instability in wide parabolic quantum wells
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Calculations of electrons in a remotely doped wide parabolic quantum well, in the presence of a
strong in-plane magnetic field, using a modified Hartree-Pock approximation with a point-contact
exchange interaction, support the idea that a spin-density-wave state may occur in an experimental-

ly accessible range of parameters. Electrical transport in the spin-density-wave state is expected to
be finite at zero temperature, but highly anisotropic, with a low resistivity for currents perpendicu-
lar to the magnetic field.

I. INTRODUCTION

Over the years, it has been proposed that an interact-
ing three-dimensional (3D) electron system in a uniform
positive background, subjected to a large applied magnet-
ic field, must undergo a phase transition at low tempera-
tures to some kind of state with a broken translational
symmetry. ' In the limit of very strong magnetic fields,
the ground state is clearly a Wigner crystal. For inter-
mediate values of the magnetic field, however, other types
of ground state may be possible. One of the most in-
teresting of these is the Celli-Mermin spin-density-wave
(SDW) state, ' which would have very anisotropic trans-
port properties —a vanishing electrical resistance per-
pendicular to the magnetic field 8 and a diverging resis-
tance parallel to B.

Attempts to look for the hypothetical broken symme-
try states in 3D doped semiconductors seem to be thwart-
ed by the strong interaction of the carriers with the neu-
tralizing charged impurities which are inevitably
present.

Recently, however, a man-made structure was suggest-
ed, ' ' in which there exists a thick () 1000 A) and uni-
form layer of high-mobility electrons. The idea is to
grow a compositional wide parabolic quantum well
(WPQW) of Ga, Al As bounded by Ga, Al As. If
6, is the height of the parabolic well, W the width of the
well, and e the dielectric constant which is assumed con-
stant across the well, this potential is similar to the poten-
tial created by a uniform slab of positive charge of densi-
ty no=2eh, /W e ir. Electrons trapped in the well will
screen this fictitious charge density and wiH form a uni-
form layer of three-dimensional density no. (See Fig. 1.)
We define the fractional occupation of the WPQW as
g =n, /no W, where n, is the number of electrons per unit
area. An increase of g, in the range 0&g & 1, will pro-
duce a linear increase of the thickness of the electron lay-
er. Since the donors are removed several hundred
angstroms from the WPQW, the electron-impurity in-
teraction is significantly smaller in these systems than in
the usual doped semiconductors. Such WPQW's were re-
cently grown, ' and magnetotransport experiments on
these systems reveal that they hold a high-mobility, thick
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FIG. 1. Potential and charge density in a 4000-A-wide para-
bolic well in Al Ga& „As for the case of filling factor g=0.8
and an applied magnetic field 8=1 T, parallel to the well.
Curve (a) shows the bare potential V(z) for the well, curve (b)
shows the self-consistent potential in the Hartree approximation
V(z)+ VH(z). The solid curve (c) shows the electron density in
the Hartree approximation, while the dashed curve (d) is the
density obtained with a dimensionless exchange parameter of
A, =0.63. The depth of the bare well is b, , = 150 meV.

slab of electron gas.
The question then arises whether the geometries that

can be achieved in practice are in fact thick enough that
one would expect to see some manifestation of the behav-
ior of the ideal three-dimensional system in a strong rnag-
netic field.

It is relatively clear that in the limit of strong magnetic
fields, the ground state of the WPQW should be some
kind of (disordered) Wigner crystal. Just as for the
infinite 3D case, one can argue that in the limit of B~~
the electron states are easily localized in the direction
perpendicular to 8, and the kinetic energy in the direc-
tion parallel to 8 is sufficiently small that some form of
localization should occur in that direction as well. In a
finite parabolic well, then, without impurities, one would
expect a crystalline ground state in which there are
several layers of electrons in the z direction (perpendicu-
lar to the plane of the well) with a periodic structure in
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the x and y directions. The detailed form of the crystal
~ould depend on the parameters of the well and the
direction of the applied magnetic field. In practice, the
potential of the charged impurities outside the well and
of residual impurities inside the well would no doubt lead
to a destruction of the ideal periodicity in the direction
parallel to the well and would presumably lead to a
smearing of the transition into a Wigner-crystal state;
but, the qualitative properties should not be greatly
afFected.

Although there are many interesting questions con-
cerning the onset and properties of a Wigner-crystal
state, in the present paper we concentrate on the more
exotic possibility, the Celli-Mermin SDW state, in situa-
tions where there is a magnetic field of intermediate
strength, in a direction parallel to the plane of the sam-
ple. We recall that in one-dimensional systems, within a
screened Hartree-Fock approximation, for any strength
of the electron-electron repulsion, the formation of a
sufBciently weak SDW costs less in kinetic energy than it
gains in reduced potential energy as was first noted by
Overhauser. In similar way, metals with a nesting Fermi
surface, such as chromium, are unstable against the for-
mation of a SDW. Celli and Mermin' showed that, due
to the one-dimensional character of the 30 electron gas
in the presence of a uniform magnetic field, the ground
state of this system, at sufticiently low temperatures, is
not the uniform state, and they proposed that for inter-
mediate values of 8, not so strong as to completely align
the spins of the electrons, the ground state should have
an SDW with wave vector Q directed along the field. We
shall explore here the question of whether the electron
layer in a WPQW is thick enough so that a similar SDW
instability is expected, and we shall discuss some proper-
ties of the SDW state if it occurs.

sions, V(z) is the bare potential of the WPQW, Vzz(z) is
the Hartree potential arising from the Coulomb potential
of the self-consistent electron density n (z), n (z) is the
density of electrons with an x component of spin o.=+—,',
p& is the Bohr magneton, g* is the eftective Lande factor,
and m is the efFective mass. We take g*=0.4, and a
constant e8'ective mass and dielectric constant,
m*=0.067 and @=12.5, respectively, characteristic of
GaAs. The positively charged donor impurities which
are necessary to maintain charge neutrality (and to
prevent the self-consistent potential from decreasing to-
wards —ae outside the well) are represented in our model
by two uniform positive layers of equal charge density,
200 A thick, located just outside the well on either side.
We have checked that our results for the electron layer
are insensitive to the precise location of the positive
charges, for reasonable choices of the parameters.

The one-dimensional Hamiltonian, Eq. (2), depends on
k„ through the "center" of the orbit ze =1 k, where I
is the magnetic length. If z0 is placed in regions where
the VT(z) is constant, we recover the usual Landau levels,
and the energy is independent of z0, but the energy c„k
increases quadratically with k„when the "guiding
center" z0 approaches the edge of the electron slab. In
the WPQW, for a thin electron slab the magnetic orbits
of the electrons feel both edges of VT(z), and e„„ is near-

y

ly quadratic in k . When the thickness of the electron
slab increases, there appears as a region of almost Aat
dispersion between the zones of edge states. (See Fig. 2.)
The separation between energy bands "centered" in the
middle of the WPQW converges to the Landau-level sep-
aration, when the magnetic field or the thickness of the
electronic sheet increases.

II. DESCRIPTION OF THE MODEL

In a modified Hartree-Fock approximation, using a
Coulomb interaction for the direct term and a contact in-
teraction v (r —r') =I5(r —r') for the exchange term, the
eigenvalues and eigenstates of the WPQW with transla-
tional invariance in the x-y plane, and a magnetic field
parallel to x, have the form

i(k„x+k y)

(r) = ~ N„k (z),

En k k o=kx~2m +n k

(Ia)

(lb)

where we have used the Landau gauge A=(0, —Bz,0),
and @„k (z) and e„k are eigenstates and eigenvalues of

y R 7 y
the one-dimensional Hamiltonian:
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where VT(z) = V(z)+ V~(z) In (z). In these expre—s-

FIG. 2. Energy levels c,„k as a function of the "center" of
the orbit zo, for the case of 8=1 T and A, =0.63. The solid line
corresponds to g=0.8 and the broken to g=0.1. The energies
are given with respect to the Fermi level. The parameters of the
WPQW are the same as in Fig. l.
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l. (ky, Q„)=Sk + gX (ky', Q„)g(k', ky)l (k', Q„),
k'

(4)

where I is a vertex function and we use the definitions
(f is the Fermi function)

f (o,k, k ) —f ( —o, k —Q„,k )
X (ky, Q„)—= —g

k„

(5a)

Pk (z):@I*, (z)@i, —(z),
y y t

0'

g(k~, k~)—=—f dz @&. (z)@*, (z)
I

(5b)

Xe„, (z)e„.(z) .
y 7 y'

S„—= f dz ek .(z)e„.(z) .

(5c)

(5d)

In order to obtain these equations, we have ignored the
contribution of intermediate electron states which are not
in the lowest-energy band. %'e believe that this is a very
good approximation for the parameters of interest here.

In Fig. 3 we plot, for B=1 T, the response function in
the case of noninteracting electrons, for two values of the
occupation il. When i'd=0. 1, the eigenvalues [Eq. (1b)j
depend nearly quadratically on k and the response func-
tion is that of a 2D system. For thicker slabs (r)=0.8)
there is a large region where the eigenvalues are almost

As is shown in Fig. 1, in the Hartree approximation,
the presence of a magnetic field does not a8'ect the forma-
tion of a thick uniform slab of electronic charge in the
WPQW. The inclusion of the point-contact "exchange
interaction" produces an enlargement of the small oscil-
lations that the charge density has in the Hartree ap-
proach. For larger interaction I, or larger magnetic
fields, the density profile is no longer uniform, and strong
oscillations appear in the z direction. In this limit there
is also an increasing tendency to the formation of
charge-density waves in the x-y plane, which we may in-
terpret as an indication of Wigner crystallization. In the
present paper, however, we are interested in SDW insta-
bilities, and we restrict ourselves to magnetic fields and
"exchange interactions" small enough such that the near-
ly uniform distribution of the charge in the z direction is
stable. (See Fig. 1.)

We now calculate the SDW response function X(z, Q„),
which gives the spin density at z, induced by a fictitious

ig x
infinitesimal field b, e u, . A divergence of this func-
tion for some value of Q„reveals the existence of a SDW
instability with that wave vector. In the local Hartree-
Fock approximation, and in the case when only the
lowest band is occupied, with both spin states present,
the response function X(z, Q~ ) is obtained from

X(z, Q„)= g Pk (z)X (k, Q„)I" (ky, Q„),
(g's a)'
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FIG. 3. Variation of the free-electron susceptibility
X(z =0,Q„) as a function of Q„, for a magnetic field of 1 T. The
solid line corresponds to g=0.8 and the broken to q=0. 1. The
susceptibility is given in units of the Pauli susceptibility y~. The
parameters of the WPQW are the same as in Fig. 1.

independent of k and the susceptibility resembles the
one-dimensional response function. The finite size of the
electron slab produces the result that instead of the
logarithmic singularity in the response function, a finite
maximum occurs at Q„=kF +kz (here
kF =—[2m *(EF—

Ek o)]' ). This maximum still leads

to the result that when the exchange interaction is intro-
duced, the first divergence of the response function
occurs at Q„=kF+k~. In the interacting system, we
define a critical interaction I„which is the minimum
value of I such that the vertex function (4) diverges. In
Fig. 4, we show the variation of the dimensionless critical
interaction A,,=I,no/EF, where E„ is the Fermi energy
of a 3D electron gas of density no=5. 2X 10' cm, as a
function of Q„. The sharp dip that I,, presents at
Q„=kF +kF is an indication of a possible SDW instabili-
ty with this wave vector. For fixed values of B and
Q„=kF +kF the critical interaction strength A,, tends ap-
proximately to a constant when the thickness becomes
large. As seen in Fig. 5, the limit is reached for fractional
occupation g ~ 0.4 for 8=1 T. The saturation of A., with

q shows that the edge states lose their importance in the
response function, as the thickness of the electron slab in-
creases. The value of X, decreases with increasing B,
roughly as A, , =0.5/8 (with B in teslas), due to the 8
dependence of the free susceptibility in this quantum lim-
it. However, as said above, for larger magnetic fields
there is also an increasing tendency to other instabilities,
such as a Wigner crystal, which may preempt the SDW
transition.

In this model, we predict the existence of a SDW with
a wave vector the sum of the Fermi wave vector of spin-
up and spin-down electrons, whenever the value of the
exchange interaction is bigger than a critical value k, . In
order to apply our conclusions to an actual system, we
must compare the values of A,, with some estimated value
of the dimensionless interaction A, =Ino/E~. One possi-
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tential. When a magnetic field is applied to this system,
at zero temperature, the onset of a SDW ground state is
indicated by the logarithmic singularity of the spin-
density response function at the wave vector of the SDW.
When considering the finite-temperature case this singu-
larity is cut oft'by T. In this model, the weak-coupling re-
gime, ' and our quantum limit (only the lowest Landau
level with both spins occupied) the critical temperature
where the SDW instability disappears is
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(6)

where y is Euler's constant. With the parameters of our
WPQW, we found values of T, running between
T, =0.25 K (8= 1 T) and T, =1.8 K (8=2 T). Due to
the exponential dependence of T, on the parameters of
the problem, these numbers are at best an order-of-
magnitude estimate. Nevertheless, these temperatures
are experimentally accessible and they suggest that a
SDW may be observable under suitable conditions in a
WPQW.

FIG. 4. Minimum values of the exchange interaction, A,„for
the onset of an SDW instability at wave vector Q„. A sharp dip
occurs at the sum of the Fermi wave vectors for spin-up and
spin-down electrons. The parameters of the WPQW are the
same as in Fig. 1.

ble choice for A, is the long-wavelength limit of the
Thomas-Fermi (TF) screened Coulomb potential, which
gives A,TF= —,'. Another choice is to use a typical value for
the exchange-correlation potential A,„,=r, /3, where r, is
the Wigner-Seitz radius in units of the efFective Bohr ra-
dius. For the parameters we are using, the tailored densi-
ty corresponds to r, =3.5, so that both A,TF and A,„, are
larger than the critical interaction strength A, This sup-
ports the possible existence of a SDW instability in the
WPQW.

Our calculations have been carried in the T=O limit.
The pertinent question is if the critical temperature T„at
which the SDW instability disappears„' is high enough
that the SDW becomes experimentally observable. In or-
der to have an idea about the value of the critical temper-
ature, we consider the case of a 3D electron gas of density
n 0, where the "exchange interaction" is the long-
wavelength limit of the static screened Thomas-Fermi po-

III. TRANSPORT PROPERTIES

The physical significance of the SDW instability can be
understood by considering the form of the Fermi surface,
for this WPQW, with and without the SDW, which are il-
lustrated in Fig. 6. The Oat portions of the Fermi surface
in Fig. 6(a) are eliminated by the periodic potential of the
SDW and are, therefore, absent in Fig. 6(b). States at the
Fermi surface which remain in Fig. 6(b) are the states
with larger values of k, corresponding to values of zo at
either edge of the electron layer.

The group velocity v of an electron with wave vector
(k„,k ) is given by the gradient of the energy respect to
(k„,k~). It is clear that the states at the Fermi energy
with k )0 in Fig. 6(b), corresponding to edge states with
zo) 0, all have U &0, while the states at the opposite
edge have U (0. The value of U depends on k, and
both signs of U may be found at each edge of the layer.

I.et us now consider the electrical-transport properties
of the system in the presence of a SDW. We assume that
the spin-density-wave structure is pinned by impurities,
which couple to a charge-density wave induced at the
first harmonic of the SDW by the intrinsic nonlinearity of
the system. The random impurity potential will presum-
ably lead to some distortion of the SDW, but let us as-
sume, for the moment, there there are no dislocations in
the SDW structure. The impurity potential will scatter
electrons at the Fermi energy, on either side of the well,
from one value of k to another. If the electron layer is
thick compared to the magnetic length, however, there is
very little overlap between the states from opposite sides
of the layer, so that the impurities should produce very
little scattering between these two sets of states. Since
the states at a given edge carry a current of a definite sign
in the y direction, they cannot be localized in that direc-
tion, and this probably implies that they must be extend-
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FICi. 5. Variation of the critical interaction, A,„for the onset
of a SDW instability at wave vector Q„=k)+kFt, as a function
of the fractional occupation g. The parameters of the WPQW
are the same as in Fig. 1.
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ed also in the x direction.
In order for a current to be carried by the sample in

the y direction, one must establish a difference in the elec-
trochemical potential between the two sides of the elec-
tron layer (essentia11y a Hall voltage). The electrical
current is then carried by a combination of two effects:
an excess in charge carriers at the edge corresponding to
a positive group velocity and a contribution from the
EX8 drift of electrons in the center of the layer, arising
from the induced electrostatic field' E . In order for the
current to relax, it is necessary for electrons near the Fer-
mi energy to be scattered from one side of the electron
layer to the other, and thus restore the equilibrium popu-
lation. Since there is little overlap between the two sets
of states, this scattering rate should be relatively small,
and the resistivity pyy for currents in the y direction, at

FIG. 6. {a) Schematic of Fermi surface in the absence of a
SDW, for filling factor g=0.8 and B=1 T. (b) Schematic of
Fermi surface in the presence of a SDW. Dark and light shad-
ing indicate regions where respectively one or both spin states
are occupied. Dashed lines are the boundaries of the first Bril-
louin zone in the presence of the SDW. The overall shape of the
Fermi surface in (a) and the Aatness of the sides are obtained
from our calculations, but the spin splitting has been greatly ex-
aggerated for clarity.

low temperatures in the SDW state, should be reduced
considerably below the value in the absence of the mag-
netic field B, and it should similarly be smaller than the
values at temperatures above the SDW transition.

By contrast, current in the x direction is carried equal-
ly by extended states at both sides of the electron layer; it
is not necessary to scatter electrons across the layer to re-
store equilibrium in this case. We expect that the resis-
tivity p„„ for currents in the x direction should be higher
in the SDW state than in zero magnetic field, or than the
resistivity at temperatures above the SDW transition, be-
cause electrons near the center of the parabolic well can-
not carry a current in the x direction in the SDW state,
and the remaining states which contribute to the current
are located near the edges where scattering due to the im-
purities in presumably the strongest.

If dislocations are present in the SDW structure, there
will necessarily be states at the Fermi energy in the vicin-
ity of the dislocation which connect the two sides of the
electron layer. Such states will clearly increase the re-
laxation of a current in the y direction, and increase the
value of p . If the distance between dislocations be-
comes comparable to the period of the SDW, the value of
pyy wi 11 presumab 1y become simi 1ar to p

We note that for a layer of finite thickness, even in the
absence of dislocations the values of both p and p
should be finite at T=O. For thick wells the sheet resis-
tance should essentially be independent of thickness, for
currents in the x direction, since the surface conduction
may be supposed to be independent of the layer thick-
ness. On the other hand, the values of p should de-
crease rapidly with the thickness of the electron layer, for
a SDW with no dislocations. In particular, if one consid-
er a hypothetical situation of a parabolic potential of
fixed curvature (i.e., fixed no) and unlimited width, then
the value of p~ might be expected to decrease exponen-
tially with the thickness of the electron layer.
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