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Connection of envelope functions at semiconductor heterointerfaces.
I. Interface matrix calculated in simplest models
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The boundary conditions for the envelope functions at semiconductor heterointerfaces are calcu-
lated. They are obtained in a form of a 2X2 interface matrix, which gives two linear relations
among the envelopes and their derivatives at interfaces. The two models considered are a linear-
chain tight-binding model consisting of a cation s orbital and an anion p orbital and an empirical
pseudopotential model containing a small number of basis plane waves. The results show that the
so-called envelope-function approximation works surprisingly well in various heterostructures, in-

cluding GaAs/Al Ga~ „As, HgTe/CdTe, and GaSb/InAs.

I. INTRODUCTION

The most commonly and widely used method for deter-
mining electronic states in bulk semiconductors is the
effective-mass approximation. In the effective-mass ap-
proximation, the wave function appearing in the
Schrodinger equation is not the total wave function but
its envelope of the Bloch functions varying rapidly within
each unit cell. ' It has now become possible to synthesize
semiconductor heterostructures such as heterojunctions,
quantum wells, and superlattices having a good quality,
owing to development of crystal-growth technologies.
The conventional effective-mass approximation is not
directly applicable to such heterostructures, because the
potential varies strongly within the distance of the lattice
constant in the vicinity of interfaces. Effects of such
heterointerfaces can be incorporated only in the form of
boundary conditions for envelope functions. The purpose
of the present paper is to present such boundary condi-
tions calculated in simple models.

Since the first proposal by Esaki and Tsu, the semi-
conductor heterostructure has caught attention from the
viewpoint of pure physics, materials science, and device
applications. From the point of view of pure physics, the
heterostructure provides various elemental problems in-
cluding band-gap alignment and matching of wave func-
tions at heterointerfaces. In addition, the heterostructure
has also produced a two-dimensional electron system
having a supreme quality, where the famous fractional
quantum Hall effect was observed for the first time. In
device application, the high-electron-mobility transistor,
quantum-well laser, and various resonant tunneling de-
vices are being pursued.

There has been a rapid development in first-principles
calculation of band structure of semiconductors. '

However, its complexity prevents a wide application and
the accuracy is limited to the order of at best 100 meV,
which is still much larger than the accuracy of 1 —10 meV
required for various purposes. In the case of superlat-
tices, various empirical models such as pseudopoten-
tials' and tight-binding models ' ' may also be
used. It is almost impossible, however, to uniquely

choose parameters characterizing the model so as to ex-
actly reproduce corresponding bulk-band structure. Fur-
ther, the results of such direct =band-structure calcula-
tions are not so useful except in discussing optical proper-
ties such as direct absorption and luminescence.

The effective-mass approximation has advantages as
compared to direct tight-binding or empirical pseudopo-
tential calculations even in just determining electronic en-

ergy levels in heterostructures. It can easily be applied to
a self-consistent calculation in the presence of band bend-
ing due to charge redistribution. ' Further, it is ideal
for the study of effects of slowly varying perturbations
such as the electron-hole Coulomb potential in exciton
problems, impurity potentials, electric and magnetic
fields, etc. ' In discussing transport properties such as
galvanomagnetic effects and hot electrons and in per-
forming device simulations, the use of the effective-mass
description is almost imperative.

There have been extensive experimental and theo-
retical investigations on electronic properties of
GaAs/Al Ga& „As heterostructures. In these sys-
tems, the so-called envelope-function approximation
(EFA) has turned out to work surprisingly well in deter-
mining conduction-band energy levels. In the EFA the
envelope itself is continuous across the interfaces but its
derivative is discontinuous in such a way that the Aux

conservation is satisfied. ' This EFA has been extend-
ed to multiband cases. The basic assumption of
deriving the EFA is that band-edge Bloch functions are
identical on both sides of the interface. However, the
band-edge (the conduction-band bottom, for example)
wave functions of various semiconductors are not identi-
cal, although they have the same symmetry. It remains
still unclear, therefore, why the EFA is valid in wide
varieties of heterostructures achieved experimentally so
far.

There have been several important contributions to the
problem of boundary conditions on the envelope func-
tion. Various schemes of characterizing boundary
conditions have been proposed41-43 and there have been
attempts to characterize interfaces with transmission and
reAection coeKcients. ' It has also been pointed out
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that varieties of boundary conditions can exist which can-
not be expressed only by the effective-mass parameters
such as the effective mass and the band gap. However,
most of these works considered only unrealistic one-
dimensional models or are insufficient in full descrip-
tion of boundary conditions (transmission-refiection
coeKcients, for example, depend directly on energy of in-
cident electrons and band offsets and are not suitable in
fully characterizing boundary conditions), and basic
features have not been clarified yet. In the present paper,
we employ two models, which in spite of their simplicity
can reproduce main features of the band structure of III-
V and II-VI compound semiconductors in the vicinity of
the I point, and try to obtain some insight into the ques-
tion of the validity of the EFA. The first model is a
linear-chain tight-binding model consisting of a cation s
orbital, an anion p, and a nearest-neighbor transfer in-
tegral. The second is an empirical pseudopotential model
containing a small number of basis plane waves. Exten-
sion to interesting and important problems directly relat-
ed to mixings between I and X conduction-band minima
in GaAs/Al Ga, As, such as resonant tunneling
through I -X-I valleys, is given in the following paper.

This paper is organized as follows. In Sec. II the inter-
face matrix TB~ is introduced, which gives boundary
conditions for envelopes, i.e., linear relations among en-
velopes and their derivatives at the interface. Various
properties of the interface matrix are reviewed brieAy. In
Sec. III the interface matrix is calculated within a linear-
chain tight-binding model for various types of connec-
tions of envelopes, i.e., between conduction bands, be-
tween valence bands, and between conduction and
valence bands. Explicit results are obtained for the inter-
face matrix of GaAs/Al Ga, As, HgTe/CdTe, and
GaSb/InAs heterostructures. It is shown that the EFA
works surprisingly well in these systems. In Sec. IV the
interface matrix for the I conduction-band bottom is cal-
culated in an empirical pseudopotential model. The re-
sults depend on the position of the interface or the
matching plane, but deviation from the EFA is not im-
portant, again justifying the use of the EFA. Some of the
results given in Secs. II and III have already been
presented elsewhere, but are included for the sake of
completeness and convenience. A very preliminary ac-
count of the results in Sec. IV has also been given.

II. INTERFACE MATRIX

This does not necessarily mean that associated envelope
functions are continuous across the interface. However,
if the envelope in A is given, that of B is uniquely deter-
rnined. This fact can be described by the following linear
relation between envelopes and their derivatives at z =0:

g~(0) g~(0)

Vgp(0) ~" Vg~ (0) (2.1)

with V =a (8/Bz) and a the lattice constant, where
T~„=(t;~) is a 2X2 matrix which will be called the inter-
face matrix.

All the matrix elements of TB~ are not independent of
each other because the boundary conditions should satis-
fy the conditions for Aux conservation at the interface.
In terms of the envelope function the Aux is written as

j(z)= g*(z) g(z)—fi, 8
2l m Bz

g*(z) g(z)
8
az

(2.2)

with m the effective mass. Therefore, the Aux conserva-
tion condition is written in terms of TBz as

1/m~

0 TBA

0
—1/m ~

B
det TB m,

(2.4)

Instead of Tz „we may define Tz„=( t
~ ) by the rela-

tion

a(0) g„(0)
Vzgz(0) " V~/~(0) (2.5)

where V„=(mo/m„)V and Vz=(mo/mz)V with mo
the free electron mass. The Aux conservation now reads

—+ 0 1 — 0 1
TBA 1 0 TBA= —1 0 or detTBA=1 (2.6)

The elements of TB„and TB~ are related to each other
through

(2.3)

where TB+„ is the Hermitian conjugate of TB~, and mz
and mB are the effective mass of the semiconductor 3
and B, respectively. This relation leads to the conclusion
that t," can be chosen as real except for a common phase
factor and

Let us consider an interface of a semiconductor A oc-
cupying the left (z &0) half-spac- and B occupying the
right (z )0) half-space. We consider the case that both
semiconductor A and B possess a single band maximum
or minimum which lies close in energy, and discuss ener-
gy levels close to the band extrema and corresponding
wave functions. In bulk semiconductors, these states are
described well by the powerful effective-mass approxima-
tion in which the envelope of the Bloch function satisfies
a second-order differential equation. In the presence of
heterointerfaces, the wave functions of 3 and B should
match smoothly with each other at the interface (z =0).

12 t ]2
mp

Alp
21 21

mB

(2.7)

mg
22 22

mB

In order to obtain the interface matrix, we have to per-
forrn interface calculations from first principles or based
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fi + VO5(z) g(z) =Eg(z) .
2m QZ2

(2.8)

It is straightforward to see that the 5-function potential
can be incorporated into the interface matrix TBA given
by

TBA
1 0

2ma Vo/R 1
(2.9)

This shows that the positive t2I roughly corresponds to
the presence of a repulsive 5-function potential and leads
to the reduction of the envelope function at the interface.
The negative tz„on the other hand, corresponds to an at-
tractive 5-function potential and leads to the increase of
the envelope at the interface, often giving rise to a bound
interface state.

On the other hand, t,2 plays a minor role except in the
case that other elements are extremely small or in the
case t, 2 &&1. Suppose that we choose the interface posi-
tion at z =5z with ~5z~ ~a instead of z =0. Then, the
same boundary conditions are expressed by the new inter-
face matrix T~„(5z) as

f21(5z) g„(5z)
%$21(5z) " Vg„(5z)

where

(2.10)

T~„(5z)=
11+t215 t12 t115+t225 t215

22 21~

(2.11)

with 5 =5z/a. This shows that t12 can often be neglected
by changing the effective interface position within the
distance of the order of the lattice constant. That is, tl2
essentially describes a shift of the effective interface posi-
tion.

If we know the interface matrix TBA, we can immedi-
ately obtain the interface matrix for the configuration ob-
tained by a mirror reflection at z =0, i.e., TAB. This re-
lation depends on the symmetry of the Bloch wave func-
tion at the band extremurn. For the connection between
the conduction bands with s-like symmetry, we have

on some models which can reasonably reproduce band
structure of corresponding bulk materials. In either case,
it is very hard to reproduce known effective masses exact-
ly. It is more convenient, therefore, to calculate TB„ in-
stead of TB„because the flux conservatio'n condition for
the former matrix does not contain effective masses ex-
plicitly. We can then use known effective masses, band
offsets, and TBA in actual calculations of energy levels
and obtain results satisfying the flux conservation.

The interface matrix can describe various kinds of
boundary conditions. Among various elements t2, is
most important, because it is related to the presence of
interface states. To see this, we consider a uniform sys-
tem in which a 5-function potential is present at z =0 as
has been considered by Zhu and Kroemer, ' i.e.,

1 0 1 0
T—1

0 —1 B" 0 —1
(2.12)

The same holds for the connection between the valence
bands, both of which have the p symmetry. In the case of
the connection between the conduction and valence
bands or between the valence and conduction bands, on
the other hand, we have

TAB

1 0 1 0
T—1

0 —1 BA 0 (2.13)

021

~(+) &B ~(—) & A
B (+) A ( —) (2.14)

with 8'A ' and O'B+' being appropriate matrices. The
quantities g'A ', etc. are coefticients for evanesencent
waves y'A ', etc. which decay exponentially away from

The extra minus sign is due to the change in the sign of
the valence-band Bloch function with p symmetry under
reflection at z =0.

In the present formalism all the effects arising from the
presence of interfaces have been included in the form of
boundary conditions and band offsets. It is based on the
assumption that the length scale for spatial variation of
envelope functions is much larger than that for abrupt
variation of atomic potential and wave functions in the
vicinity of the interface. That is, perturbations due to the
presence of interfaces such as a potential change due to
local charge transfer and mixings of, evanescent waves
should be confined within the range of a few lattice con-
stants. This seems to be valid in typical heterostructures
like GaAs/Al„Ga1 „As (Refs. 10—14) and is expected to
be true in other systems. Note that a similar formalism
can be applied to optical phonons.

For a given energy, there are many solutions of the
Schrodinger equation. Among these solutions, only trav-
eling Bloch functions are allowed in bulk because of
boundary conditions. All other solutions are evanescent
waves whose amplitude decays or increases exponentially
in certain directions. Evanescent waves appear often in
association with extremurn points in the bulk band struc-
ture and their number depends on models of the band
structure. (Consider a pseudopotential model, for ex-
arnple. If we expand the wave function in terms of plane
waves with reciprocal wave vectors parallel to the inter-
face, the resulting Schrodinger equation becomes a set of
coupled second-order differential equations. The number
of independent solutions is, therefore, twice that of these
equations, i.e., that of the basis plane waves. ) In the pres-
ence of interface, the total wave function should be ex-
panded in terms of Bloch functions expressed by envelope
functions in the vicinity of band extrema and evanescent
waves which decay exponentially away from the inter-
face. The interface matrix can then be calculated by

matching them at the interface.
The matching conditions can generally be written in a

form of the system of linear equations:
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the interface in the negative z direction, while g~+', etc.
are those of evanescent waves yz+', etc. which decay ex-
ponentially in the positive z direction. When we consider
another interface which is obtained by a mirror reAection
at z =0, the boundary conditions are still given by equa-
tions having the same form as Eq. (2.14), where W~ ' and
g'z ', etc. are replaced by 8'„'+' and g'~+', etc. and Wz+'
and g~+', etc. are replaced by Wz ' and gz ', etc. Usual-
ly, W'+'s are different from corresponding W' 's.

We ean deduce some general features of the interface
matrix without making explicit calculations. Consider
one-dimensional systems. In one dimension, there are
only two solutions for a given energy and, therefore, no
evanescent waves appear in the above equation. There
are many cases in which W'+'s are the same as corre-
sponding 8' 's, i.e.,

~A

&A 4 tqs ts

2+) == g+2—

W~+ '= W~ '= W and W' '= O'+ '= Wa a a . (2.15)

In this case we have Tzz = Wz Wz and T~~ = W~
—1 —1

i.e., T„&=T~„. The combination of this relation with
Eqs. (2.12) and (2.13) gives the conclusion that the inter-
face matrix is purely diagonal, or t, 2 =t2, =0, in the case
of the connection of band extrema with the same symme-
try, and that it is purely ofF-diagonal, or t» =t22=0, in
the ease of the connection between di6'erent symmetry
bands.

This feature that the interface matrix is close to a pure-
ly diagonal or purely ofF'-diagonal matrix is expected to
prevail even in three dimensions as long as contributions
of evanescent waves do not play any critical roles. This
is actually the case in many heterostructures. In
GaAs/Al„Ga, „As heterostructures, for example, the
tight-binding model considered in Sec. III gives a purely
diagonal interface matrix as long as the interface or
matching plane is chosen at the interfacial As atomic
plane. The interface matrix is still nearly diagonal in the
pseudopotential model considered in Sec. IV, in which
evanescent waves are explicitly taken into account.

III. SIMPLEST TIGHT-BINDING MODKI.

One of the simplest models, in which we can calculate
boundary conditions, is a chain of atoms having a single s
orbital. ' Unfortunately, this model is not appropriate
for describing main features of the band structure of III-
V compound semiconductors. We adopt a, linear-chain
model consisting of two kinds of atoms in a unit cell. '

As is shown in Fig. 1, the unit cell with the width a/2
contains an s atomic orbital with energy Eo and a p orbit-
al with EI. In the case of GaAs, for example, Cia corre-
sponds to Eo and As to E]. We assume only the transfer
integral t between nearest-neighbor atoms.

The equation of motion is given by

E,C, (n) —tCO(n)+tCO(n +1)=EC, (n),
(3.1)

ED CO(n + 1)+tC, (n ) tC, (n + 1)=ECD(n + 1) . —

This can readily be solved by setting Co(n)
=Coexp[ik (n ——')a /2] and C& (n) =C&exp[ik (n
—

—,
' )a /2]. When the energy is close to the bottom of the

FIG. 1. The linear chain model consisting of a cation s and
an anion p, atomic orbital. Eo and E& represent the energy of
the s and p, orbital, respectively, and t the transfer integral be-
tween a nearest-neighbor pair. The length of the unit cell is half
of the lattice constant of III-V semiconductors. At the interface
of A and 8, the transfer integral t» and energies of interfacial
atoms, Eo and E&, can be di6'erent from those in bulk. In
case of GaAs/Al Ga& „As heterostructures, the interface posi-
tion zo is chosen at that of the interfacial As atom, and in the
case of HgTe/CdTe the interface is at that of the interfacial Te
atom. In the case of GaSb/InAs heterostructures, on the other
hand, the interface is chosen at the center of the Sb—In bond.

conduction band, Eo, and the top of the valence band,
E„we have E =ED+(A' k /2m) and E =E, —(fi k /
2m), respectively, where m =2k' E /t a with the band
gap E =Eo —E, . The envelope function is related to the
wave function through

Co(1 +1)=g(a/8) =g(0)+ —,'Vg(0),
(3.2)

Ci (I)= Vg( —a /8) = —Vg(0)
2Eg 2Eg

when E =ED, and

Co(l +1)= Vg(a/8) = Vg(0),2E 2E

C, (1)=g( —a/8) =g(0)—,'Vg(0)
(3.3)

when E=E].
At the interface shown in Fig. 1, the equation of

motion is explicitly written as

E," C,"(I) t„CO (I)+t„—~CO (I +1)=EC,"(I),
(3.4)

Eo Co(I+1)+t~~C,"(I) t~C, (1+1—)=ECO(1 +1) .

By subtracting the corresponding equation in bulk from
the above, we get the boundary conditions

t~~CO(1+1)=t~C (10+1)—(Ei" Ei )C,"(I), —
(3.5)

t~ C, ( I ) (E " E)Co ( I +—1 ) = t ~~
—C,"( I),
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where Cp (l+ I) and C& (I) are the extrapolated values

past the interface from left and right, respectively. The
boundary conditions for the envelope, i.e., the interface
matrix TBA, can easily be obtained if we substitute Eqs.
(3.2) or (3.3) into Eq. (3.5) depending on which band ex-
trema are close to each other in energy.

B. Connection between light-hole valence bands

When the top of the valence band of A and B is close
in energy, i.e., E1 =E1,we have E1 =E 1" and

tAB
2 B

t22 = t21 =0,
tABtBE

(3.9)

A. Connection between conduction bands
1 tAB

12 8 B

t2EB

t ABtBEg

2 (EAB EB)

tABtBEgA

When the bottom of the conduction band of the semi-
conductor A is close to that of B, we can safely assume
that Eo =Eo =Eo. The interface matrix becomes

tABtAEg
B

2 A ~ 21
tBE

tAtABEg 4t„(Ei —EP )

t ABEg

11 ~ t22
tAB

tAB

(3.6)

TBA

(m E A/m EB )l/2

(m „E,'/m, E,")'" (3.7)

For small Al contents x, we can usually write
as m (x)=m (1+ax) and Es(x)=E (I+/3 ) xwith
m =0.066mp, EG =1.519 eV, a=0.895, and @=1.333.
Therefore, we have

TBA
0

1 —yx y =(a —P)/2=0. 22 (3.8)

with x =xB—x„,where xA and xB are the Al content of
the left (A) and right (B) material. The interface matrix
(3.7) has already been used for self-consistent calculation
of energy levels and for evaluation of scattering mecha-
nisms at low temperatures in single heterojunctions.

This reduces exactly to that assumed in the EFA when
the transfer integrals, tA, tB, and tAB, are all equal, be-
cause t12 can be eliminated by an appropriate choice of
the interfacial position as has been discussed in the previ-
ous section. Therefore, the validity of the EFA does not
require the equivalence of the Bloch functions at the
conduction-band bottom but that of effective transfer in-
tegrals closely related to momentum matrix elements be-
tween the conduction-band bottom and the valence-band
top. For usual III-V compound semiconductors, the
transfer integrals or the momentum matrix elements are
of the same order of magnitude, and therefore the
boundary conditions are not so much different from those
assumed in the EFA.

One of the typical examples is GaAs/Al Ga, As het-
erostructures. In this system, we have tAB =tB, and also
E," E&" =(Eg" Eg )/—2, by a—ssuming the simple aver-

age E&" =(E&"+E& )/2. Further, it is reasonable to
choose the interface position at the interfacial As atom,
which can easily be achieved by substituting 5z = —a/8
in the formula (2.11). We can express the interface ma-
trix in terms of the band gaps and the effective masses as

Again, in the case of GaAs/AI„Ga& As systems, we
have tAB =tB, Eo =Eo andAB B

1 0
0 mB/m„ 0 1

(3.10)

1 0
T 0 —mB/m„

1 0
TBA =

0 (3.11)

The negative sign in t22 reAects the difference of the
dispersion of the conduction and valence bands.

C. Connection between conduction and valence bands

Since the results are complicated, the expressions only
in the case EoAB=Eo and E1 E1 will be given. For
the connection between the valence band of A and the
conduction band of B, we have

g B A / ABEg + tABEg /32tB

2tABEg «B tABEg i4tB

(3.12)

where the interface is chosen at the position of the inter-
facial As atom. This shows that the EFA is exact for
connection between light-hole valence, bands in
GaAs/Al, Ga, As systems.

The reason that the EFA is exact for connection be-
tween valence bands and not for that between conduction
bands is easily understood. In GaAs/Al„Ga, As sys-
tems, the interfacial As atom is common to both materi-
als and therefore the amplitude of the p symmetry orbital
of As connects continuously across the interface. This
means that the envelope g(z) itself is continuous for con-
nection between the valence bands and that the quantity
tV(!E~ is continuous for connection between the con-
duction bands.

Another example is HgTe/CdTe systems in which
HgTe is known to have a so-called inverted-band struc-
ture. ' In the case of HgTe, Eo of the s-like orbital of
Hg is lower in energy than E, of the p-like orbital of Te.
Therefore, the p-like orbital of Te constitutes the conduc-
tion band and the s-like orbital of Hg the valence band in
contrast to CdTe and usual III-V semiconductors. In this
case, we have to connect envelope functions associated
with the conduction band (p symmetry) of HgTe (A) and
the light-hole valence band (p symmetry) of CdTe (B).
We have tAB=tB and also Eo Eo ~ Choosing the in-

terface position at the interfacial Te atom, we have
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For the connection between the conduction band of A
and the valence band of B, on the other hand, we have

t~Es /4r~~t~ i~tq~/2r~Eg"+r~Es /32r~~r~

2twEg / t~ata t~Eg ~4t~ata

(3.13)

0.033 2. 113
T(In As GaSb) =

0.268 0.033

—0.038 1.8SO
T (In As+ GaSb ) = 0

—
306 —0 038

(3.14)

The two interfaces Ga-As and Sb-In give results different
from each other but the difference is not so appreciable.
Since the diagonal elements of both interface matrices are
small in comparison with off-diagonal elements, the
boundary conditions are such that the amplitude of B is
determined by the derivative of A and the derivative of B
is determined by the amplitude of A.

The envelope-function approximation can also be ex-
tended to GaSb/InAs systems. Bastard has used a k p
Hamiltonian containing terms linear in wave vector
based on an s-like conduction band and three p-like
valence bands and proposed that coefficients (envelopes)
for all these band extrema should be continuous across
the interface. In the present context, this assumption
leads to the following boundary conditions:

TABLE I. Parameters used for the present calculation: a is
the lattice constant, Eg the band gap, m the e6'ective mass, and t
the transfer integral.

Material

GaAs
GaSb
InAs
InSb

a (A)

5.653
6.095
6.058
6.479

Z, (eV)

1.52
0.78
0.44
0.27

0.066
0.042
0.024
0.014

t (eV)

3.288
2.759
2.758
2.645

A typical example is GaSb/InAs, where the bottom of
the conduction band of InAs lies below the top of the
valence band of GaSb and the envelopes associated with
the s-like conduction band of InAs and the p-like valence
band of GaSb should be connected at the interface. This
class of materials was first examined theoretically by Sai-
Halasz et aI. ,

' experimentally by Sakaki et al. , ' and
has been extensively studied since. There can exist two
kinds of interfaces, i.e., that consisting of Sb—In bonds
and that of Ga—As bonds. The latter interface matrix,
denoted by T( In As~Ga Sb), can be directly obtained
from Eq. (3.12), while the former, denoted by
T(InAs~GaSb), can be obtained from Eq (3.13) using
the symmetry relation Eq. (2.13).

Explicit results can be obtained if the transfer integrals
t~, t~, and t~~ are estimated by the known effective
masses, band gaps, and lattice constants of bulk InAs,
GaSb, InSb, and GaAs. Using the parameters given in
Table I, we have

g~(0)= „Vg~(0) and ~ Vg~(0)=g~(0) .
2E,' 2E

(3.15)

The interface matrix becomes

0

2E~)t
t„/2Eg"

0
(3.16)

independent of whether the interface consists of Ga-As or
Sb-In atoms. Note that the Aux conservation is satisfied
only when the transfer integrals of A and B are the same,
i.e., t„=t~. Using the parameters given in Table I, we
have

0
BA 0 319

1.769
0 (3.17)

IV. SIMPLEST PSEUDOPOTENTIAL MODEL

As is well known, the pseudopotential of GaAs, for ex-
ample, is written as

V(r)= g (VGcosG. r+iVGsinG r)exp[iG (r+~)],

(4.1)

with G the reciprocal lattice vector and r=(1, 1, 1)(a /8),
where the origin r=0 is chosen at an As atom and 2v is a
vector directing from the As atom to a Ga atom. For
simplicity, we consider only the six parameters V3 V8,

G=(1, 1, 1)(2m/a), Vs = VG with G=(2, 2, 0)(2'/a), etc.
As the plane-wave basis, we similarly confine ourselves to
15 waves satisfying ~G~ (4m. /a. When we consider the
conduction band for k„=k =0 with the 5I symmetry,
we have only eight independent waves
goexp(+4miz/a), g,exp(+2miz/a), gzexp(+2~iz/a), and

g3, where g (x,y) with j=0, . . . , 3, defined by

which are close to Eq; (3.14).
Strictly speaking, these interface matrices are not

directly applicable to the case of nonzero k or k . The
top of the valence band is described by p symmetry orbit-
als and is highly degenerate. ' For k =ky 0 the con-
duction band of InAs couples only with the light-hole
valence band of GaSb with the p, symmetry. For
nonzero k or k it can couple with the heavy-hole
valence bands with p„or p symmetry. Such couplings
with heavy holes are proportional to k a or k a and are
expected to be unimportant as long as k a «1 and
kya « 1.
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go(x, y) = 1,
2&X

g, (x,y) =2cos 2mycos
a

(4.2)
27TX . 2fag

gz(x, y) =2 sin sin
Q a

4' 4~y
$3(x,y) =cos +cos

a a

A(x y zo) =4~(z y zo»

constitute the basis in the xy plane.
As the pseudopotential parameters of GaAs and A1As,

we use those proposed by Baldereschi et al. ' and the ar-
ithmetic average of those of GaAs and A1As for
Al„Ga, „As (virtual crystal approximation), i.e.,

V(A1 Ga, „As)=(1—x) V(GaAs)+x V(A1As) . (4.3)

In this model, the conduction-band minimum is located
at the I point for x (0.31. In the following we confine
ourselves to this range of x. Figure 2 gives the band
structure of bulk GaAs and A1As calculated in the
present model. We immediately notice insufficiency of
the number of basis plane waves. For GaAs, for example,
the band gap is E =1.13 eV instead of known 1.52 eV
and the efFective mass at the I conduction-band
minimum is m =0.060m o instead of known 0.066m o.

The interface matrix T~„ is determined by the con-
tinuity of the wave function and its derivative at the
matching plane z =zo,

elude three evanescent waves with a complex wave vector
~ decaying exponentially away from the matching plane
z =zo in addition to the wave function given by Eq. (4.5)
described in terms of the envelope function g(z). Then,
Eq. (4.4) determines g~ and Vgz as well as amplitudes of
six evanescent waves for a given set of g~ and Vg„.

The evanescent waves should be determined in such a
way that the real part of their wave vector should be in-
side of the first Brillouin zone. Actual calculations for
Al Ga& As at the energy of the I conduction-band
minimum give an evanescent wave yo having a wave vec-
tor with a vanishing real part and two waves y+ and y
each of which has a wave vector whose real part is very
close to the position of an additional extremum in the vi-
cinity of an X point. As is clear in Fig. 2, however, the
conduction-band minima in the vicinity of X points are
slightly outside of the first Brillouin zone (about 10% of
the distance between I and X points), partly due to the
insufficiency of the number of basis waves in the present
simplest model. Consequently, the real part of the com-
plex wave vector of y+ and y is slightly larger than
2m/a or smaller than —2m/a. (For GaAs, for example,
we have boa/2m = 1.37i and jr+a/2' =+1.08+0.28i.) It
is expected, however, that the present calculation still
provides characteristic features of the boundary condi-
tions in spite of such slight inadequacies.

In addition to the interface matrix connecting the en-
velopes of both sides, the amplitude of the evanescent
waves are also determined at the same time. Let g-
(j =0, +, —) be the coeScients for the evanescent waves

g . Then we can write

=a~a(x» o)
&

'(i'a(z, y, zo) .
(4.4)

The wave function of each side consists of the Bloch
function associated with the minimum of the conduction
band and evanescent waves decaying exponentially away
from the interface. The procedure is analogous to that
employed by Sham and Nakayama in calculating valley
splittings of Si inversion layers and that used by Marsh
and Inkson in calculating reAection coefficients from
GaAs/Al„Ga, As single interfaces. According to the
k p theory, ' the wave function at k =k„=0 is expressed
by the envelope through

2

CD

1-r
UJ 1

X1.

f(r) =g (r)g(z)+g'(r)Vg(z), (4.5)

where go(r) is the Bloch function of the conduction-band
minimum at the I point and fo(r) is its change to the
lowest order in k, . We have

X5-
-2

X5-

A(jlp, I 0)
go(r)= ia ' g f (r—)

~o /no(FJ. Eo)
(4.6) 0.0 0.5

Nave Vector (2m/a)

1.0 0.0 0.5 1.0
Nave Vector (2x/a)

where g (r) and E are the Bloch function and the energy
at the I point (j =0 being the conduction-band bottom),
and (j~p, ~O) is the matrix element of the momentum in
the z direction.

Since there are four independent basis functions in the
xy plane, the above (4.4) constitutes eight independent
equations. In each side of the interface, we have to in-

FICx. 2. The band structure of GaAs and A1As along the 6
axis [k=(0,0,k, ), 0~k, ~2'/a) calculated in the empirical
pseudopotential model. The energy origin is at the top of the
valence band I ». Because of the insufficiency in the number of
basis plane waves, the band gap of GaAs at the I" point is slight-
ly smaller than the known value, and the extrema in the vicinity
of X points are slightly outside of the first Brillouin zone.
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90
B'9+ p

~A PA

l70
0.03

0.02

GaAs/Al„Ga1 „As Interface

(4.7)

3 2f fg;(x,y, zo )*y (x,y, zo )dx dy = 1 . (4.8)

where P=(P,~) and Q =(q,") are a 3X2 matrix. Clearly,
these matrices depend on the choice of the amplitude of
evanescent waves because they are not normalizable in
bulk. Here, we choose the amplitude in such a way that

0.01

E
UJ

0.00
O
CD
U

C3
I

C)
-0.01

Because of the symmetry we can choose the matrix P
such that

-0.0$

ofc

701 /pl ~ JP02 702~ 5 —1 I +1 ~ and I —2 7 +2

(4.9)

The same holds for the matrix Q.
Examples of calculated diagonal matrix elements of the

interface matrix, t» and t22, are given in Fig. 3 and off'-

diagonal elements, t12 a d t 21 in Fig. 4 for
GaAs/Al Ga1 As as a function of the position zp of the
matching plane. Coefficients for evanescent waves are
given in Fig. 5. The interfacial As plane is at zp:0 and
the adjacent Ga and (Ga, A1) planes are at zo = —a /4 and
zp =a /4, respectively. The resulting matrices are all
periodic in zp with the period a/2. We see immediately
that the o6'-diagonal elements are negligibly small. The
diagonal elements t» and t22 deviate slightly from unity

-0.03 I I I I I I

-0.2 -0.1 0.0 0.1 0.2
Interface Position (aj

FIG. 4. Calculated off-diagonal elements t» and t21 of the in-
terface matrix T» for GaAs/Al, Ga& „As heterostructures as
a function of the interface position zo. The solid lines represent
tz, and the dashed lines 10t».

in proportion to x, but the proportionality coefficient de-
pends on the interface position zp. Therefore, it is impos-
sible to determine TB~ uniquely, although we can safely
conclude that the EFA works surprisingly well for the I
conduction-band minimum of GaAs/Al Gai As het-
erostructures. Mixings of evanescent waves associated
with X conduction-band minima are small but also exhib-
it dependence on zp. Note that the oA'-diagonal elements

1.02 l
I

I
I

l
I

I

GaAs(At„Ga1 „As Interface
0.15

GaAs/Al„Ga1 „As Interface

CO

E
LLI

U

o 100—I
U

C3

0.99—

M

C:
O~ 010—

OC

O
V)

U
9c

6)
O
g) 0.05—
C
Cf

LU

GaAs—-- Al„Ga1 „As

/
/ l

/
/

/

-0.2 -0.1 0.0 0.1 0.2
Interface Position (aj

FIG. 3. Calculated diagonal elements t» and t» of the inter-
face matrix T» for GaAs/Al Ga& As heterostructures as a
function of the interface position zo. The origin zo=0 is at the
interfacial As atomic plane. The solid and dashed lines
represent t» and t2~, respectively. The position of a Ga atomic
plane is at zo = —a /4 and that of an (Al, Ga) plane at zo =a/4.

0.00
-0.1 0.0 0.1

Interface Position [aj
0.2

FIG. 5. Calculated mixings of evanescent waves associated
with X point minima. The solid and dashed lines represent the
coefficients ~p+, ~

and ~q+, ~, respectively, for the amplitude of
the envelope g(zo).
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t, z and t2, (and mixings of evanescent waves also) be-
come small when the matching plane is at the interfacial
As atomic plane, i.e., at z0=0. This is in accord with the
symmetry argument given in the last paragraphs of Sec.
II.

The calculated r2, ~
is at most 0.03 even for x =0.3,

which means ~t2, ~
(0.002 because t2, =(m~/mo)t2, .

Therefore, the dependence of t» and t22 on the interface
position zo is not affected by the choice of the interface
position in the sense expressed by Eq. (2.11). Instead it
originates from the present assumption that the potential
changes abruptly from that of GaAs to that of
AI„Ga& „As at z =zo as clearly shown in Eq. (4.4). This
unphysical discontinuity of the potential certainly de-
pends strongly on zo. In actual interfaces the potential
changes from that of GaAs to Al Ga& „As smoothly
within the distance of the order of the lattice constant.
Effects of such smooth changes in the potential cannot be
described by the solutions in bulk alone. We have to in-
troduce two matching planes on both sides sufficiently
away from the interface, where the potential is almost ex-
actly equal to that in bulk, and then solve the
Schrodinger equation explicitly between the two match-
ing planes.

The dependence on the position of the matching plane
makes it difficult to give definite conclusions on devia-
tions from the EFA. It can nevertheless be seen that t»
depends on the interface position only weakly and de-
creases with increasing x. This deviation from the EFA
is in the opposite direction from that obtained in the
linear-chain tight-binding model considered in the previ-
ous section [see Eq. (3.8)]. The situation does not change
even if a more elaborate tight-binding model is used,
which will be discussed in more detail in the following
paper. This shows that reliable and very elaborate calcu-
lations are required in discussing possible deviations of
boundary conditions from the EFA.

The calculated interface matrix violates the Aux con-
servation condition det Tz ~

= 1, because the product
t» t22 can be smaller and larger than unity (t,2tz, is negli-

gible). This is presumably due to the violation of the
periodicity in the reciprocal space inherent to the pseudo-
potential model containing finite numbers of basis plane
waves. That is, the truncation of the number of basis
plane waves gives rise to the presence of traveling wave
solutions with large wave vectors (~k, ))2~/a), and
some part of the incident Aux is likely to be carried away

by such unphysical traveling waves at the interface. The
actual amount of the violation is very small and unimpor-
tant.

V. SUMMARY AND CONCLUSION

We have studied the boundary conditions for envelope
functions appearing in the effective-mass approximation
at heterointerfaces. The boundary conditions have been
expressed by the 2X2 interface matrix Tz~ which gives
linear relations among envelopes and their first deriva-
tives at the interface. We have used two simple models,
the linear-chain tight-binding model, which can describe
essential features of the conduction and light-hole valence
bands in the vicinity of the I point, and an empirical
pseudopotential model.

In the former model, we have calculated the interface
matrix for all types of connections. It has turned out that
the calculated boundary conditions are very similar to
those assumed in the envelope-function approximation
(EFA) in all the cases considered. Especially in calculat-
ing energy levels, deviations from the EFA are negligible
in comparison with more important effects such as uncer-
tainty in band offset or barrier height and nonparabolici-
ty.

In the latter pseudopotential model, the interface ma-
trix for the connection of I -valley conduction-band en-
velope functions of GaAs and Al Ga& As has been cal-
culated. It has been shown that deviation from the EFA,
although very small, depends on the position of the
matching plane or the interface. Within such uncertainty
of calculations, the results again justify the validity of the
EFA.

In the following paper, the interface-matrix formalism
is extended so as to explicitly treat problems arising from
mixings of I - and X-valley minima in GaAs/
Al„Ga, As heterostructures.
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