
PHYSICAL REVIEW B VOLUME 40, NUMBER 17 15 DECEMBER 1989-I

Relativistic effects in the electron density of states, specific heat,
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The correction to the electron density of states due to the interaction between electrons and vec-
tor photons in normal metals is investigated. The correction 5v, ~ has a nonanalytic energy depen-
dence near the Fermi surface. For small energy 5v, ~- —c and with increasing energy
5v, ~- —c '. The related tunneling conductivity is also considered. Et is shown that the correc-
tion to the electron specific heat from the electron —vector-photon interaction AC, ~- —TlnT
dominates at low temperatures over the correction from the electron-phonon interaction
6C —pQ

—T 'ln T. Et is also shown that the electron —vector-photon interaction produces resonant
states in the electron spectrum near the Fermi surface.

I. INTRODUCTION

It is well known' that the electron-electron interac-
tion in disordered metal systems results in nontrivial
corrections to the electron density of states, thermo-
dynamic quantities, and kinetic coeIIIicients. Consider for
example the electron density of states which is defined by
the equation

i/2
i i

1/2

e 2 3/28n D
(2)

where D =vF~/3 is the diffusion constant, vz is the Fer-
mi velocity, and ~ is the electron momentum relaxation
time due to elastic scattering on impurities.

The result (2) essentially depends on the interaction
constant A,. For the exchange correction due to the
Coulomb interaction, A, =2 and the density of states has a
square-root cusp near the Fermi surface. In the two-

v(e)= ——f Im[G (p, e)],
(2m. )

where G (p, e) is the retarded electron Green's function
which includes the interaction effects. For noninteract-
ing electrons the density of states is practically energy in-
dependent and given by v =mpF /~, where m is the elec-
tron mass and pz is the Fermi momentum. In an impure
metal v(e) acquires a nonanalytic correction due to the
electron-electron interaction

dimensional case the singularity is logarithmic. Such a
nonanalytic dependence of the density of states originates
from a diffusion singularity in the impurity renormaliza-
tion of scalar vertices of the electron-electron interaction.
The corrections to the electron specific heat in the three-
and two-dimensional cases are 6C, „——T and
5C, ,——T lnT, respectively. '

In this paper we show that similar nonanalytic correc-
tions to the electron density of states and to the specific
heat appear in pure metals due to the interaction of elec-
trons with vector photons (transverse electromagnetic
fields). The paper is organized as follows. In Sec. II we
describe the electron —vector-photon interaction in pure
and impure metals and calculate the correction to the
electron density of states. In Sec. III we consider the
correction to the electron specific heat. 'I'his problem
was investigated earlier in Ref. 5 by a different method
for a pure metal. We consider both pure and impure
metals and also low-dimensional systems. In Sec. IV we
study the relativistic effects on the electron spectrum and
show that they result in appearance of the resonant states
near the Fermi surface. In the last Sec. V we summarize
and discuss the obtained results.

II. ELECTRON DENSITY QF STATES

The interaction between electrons and the electromag-
netic field is described by the Hamiltonian

(3)

where yq Aq are the Fourier components of the scalar and vector potentials, C, is the creation operator for an elec-
tron with momentum p and spin s, and c is the velocity of light. The absolute value of the electronic charge is absorbed
in the definition of the electromagnetic potentials.

%'e use the same notation as in Ref. 6, where the electron energy relaxation time due. to the electron —vector-photon
interaction was considered. The vertices corresponding to the interaction of electrons with vector photons, described
by the Hamiltonian (3), are
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p+, a
mc 2

(4)

The retarded Green's function for the transverse electromagnetic field in the Coulomb gauge (div A=0) and with
screening effects taken into account is

[ Vll(q ~)1;,=- Vll(q ~»;,
2 24~e c

co c—q 4'—e c Pll (q, co)

where e is the electron charge and i,j stand for the Cartesian coordinates x,y, z. If the vector q is directed along the z
axis, T," is given by

qlqj
V V 2

P» is the polarization operator which is shown in Fig. 1, where the electron Green s function in impure metal is

Go (p, E)=(E—
g +i/2r) ', (~=(p —pF)/2m .

Calculating F 11 (q, co), we have

Ti vs UF
Pll(q, co)= —i 2, ql ))1, qvF))co, co&))1

4qc

VUF CO'T
2

8 (q, oo)= i—, , ql «1, cur«l,
c

(8)

(9)

where l = UFr is the electron mean free path. Expressions (8) and (9) correspond to two diff'erent regimes of screening of
electromagnetic fields. The long-wavelength limit ql «1, v~&&1 refers to the normal skin effect and the short-
wavelength limit q/ ))1, co~)) 1 refers to the anomalous skin effect.

The correction to the electron density of states due to the electron —vector-photon interaction is

5v, (E)= ——Im f [Go (p, E)] &, ~(p, E),2 dp
7T 277 3

where the electron self-energy shown in Fig. 1 is

2, ~(p, E) = —f 3 (a,'T;, aj') I Im[GO (p. +q, a+co)] V,", (q, E)tanh[(a+co)/2T]
(2~)'

+Go (p, )eI m[ V„( qco)]c to(her /T2)I .

Let us first consider a clean metal. After performing the p integration we have

5v, ~(c.)= f ™
dco f dq 1m[V,", (q, co)]tanh +

4m c T 2 2 f d~ f dq —Re[V,",(q, co)]tanh
SENT C UF oo 0 q T

f dq q ~ 3' —i p dq m 1 —i3'
+ib b' 3 o q +ib b 3

where

'TT'K COUF
2

b=, , K2=4~ve2, b'/31»1,
4C2

(12)
Assuming the inequalities q/ ))1, qUF ) co to be true for the characteristic values of q and co and using the expressions

we get

1

24/333/2 1/3

4/3 2/3T ~ dx E

/3 tanh x + + tanh x
x 2T 2T

1 K

25/333/2 1/3

' 2/3 r 4/3

f dx x'" tanh x+ ' +tanh x — '
EF 0 2T 2T

—2 (14)
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1
b =—

1 21/331/2 1/3

dx
3' 3'

0 cosh x cosh (x +y)
(20)

1
ax =- ax

a11
We now discuss the validity of inequalities ql »1,

co~&&1, and qUF &&~. For 5V, ~ the characteristic values
ofq and co are

&K C00VF
2

4c

1/3

co,=max(T, ~E() . (21)

We have subtracted a constant in (14) to avoid the diver-
gence of the integral at the upper limit in the same way as
in the Ref. 1. In some limiting cases we have

4/3
5v, y(e) 1 K

31/24 1/3

5v, r(e)
V

1 —21/3

31/22 1/3 ~ IC
r(-)~(-)

T «e «eo (15)
4/3, -

'

T

where

E «T «E, (16)

FIG. 1. P„ is the polarization operator for the transverse
electromagnetic fields and X, .~ is the electron self-energy
describing the electron —vector-photon interaction.

Thus to satisfy the required inequalities we must have

co& «max(T, e) « —IrvF,
c

1
co =—max 1,

c

UF K'T2

'2
(22)

Now consider the long-wavelength limit qI « 1,
cow«1, which is valid for max(~e~, T)&co&. Using ex-
pression (9) we get

6v, 3 5/2 UF

33/221/2 CPlPF

3

col
X f deco'/ [n(co +E) +n(co —E)] . (23)

0

In some limiting cases 6V, is given by
3

5v 2 l /2 UF K3r (er), T «E «co&
v 3 / c mpF

K
EP=E,F mc

ve-y

33/2
2 2'"—1 UF

I ( —,')g( —', )

3
3

K 1
( T )3/2

77lPF

5cr, r(s) Bn(e —eV) 5ve-y(s)
dE

oo BE V

where V is the voltage and n (s) is the Fermi distribution
function. In the low- and high-temperature limits, the
conductivity correction is

I (x) is the gamma function and g(x) is the Riemann zeta
function. Expressions (15) and (16) originate from the
first term in (14). For higher frequencies c.)Eo the second
term in (14) dominates and 5v, r-e / for so & T & E. We
however will not consider such frequencies further.

Considering next the correction 5o to the tunneling
conductivity, we assume as in Ref. 1 that the density of
states in one of the metallic electrodes in the junction is
constant, and in the second electrode it has a correction
5v. Then

e « T « co, . (25)

As for the tunneling conductivity in the long-
wavelength limit, the expression (18) is valid when
T «eV «cui.

Now we make some estimates. In a clean metal with
E.F~-10 we have m, —10 K. The absolute value of the
correction to the density of states for co, & max(

~
E ~, T) in a

typical metal is very small; however, as indicated in (15)
and (16) 5v, grows when the electron density n, is de-
creased. For example, for n, = 10 ' cm and

m(a~ x~, Te)=10 K we have 5v, r/v-10 . The correc-
tion 5v, , has the same value for ezra-10. Note also that
the usual correction to the density of states from the Fer-
mi distribution function is of order [max(~e~, T)/EF]
and is small in comparison with 5V,

Now consider a film with thickness d & q1 ', where

5cr, 5v, (e V) T«eV
0 V

KUF
q, = [rmax((s~, T)]'

3C
(26)

5o., —=b
1

where

2/3
K T eV«T

m C EF
(19)

Such a film may be considered two dimensional. In this
case 5v, r is proportional to max(

~
e ~, T ), but the value of

the correction is small, unlike the correction hv, , from
the Coulomb interaction. Therefore in a dirty and low-
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III. ELECTRON SPECIFIC HEAT

The correction to the thermodynamic potential from
the electron —vector-photon interaction is

AQ,"=f"dqd~
Up

1
coth(co/2T)(2' )

dimensional electron system the Coulomb interaction
correction dominates:

~
b,v, , ~

&&
~
b,v, ~~.

specific heat of the free electron gas.
In the long-wavelength limit the inequality ~y(q, co)~« 1 is valid when

K UFCOV « q « I
3C

(36)

Calculating the correction to the specific heat under con-
dition (36), we find

X Im(lnI 1 —[ V» (q, co)] P» (q, co) I }, bC,
24 mc

T& Ti (37)

[V»(q ~)]'=
(co+i 0) c—q

(27)

(28)

A film with the thickness d such that
d '&IrUF(mr)' /c may be treated as two dimensional,
and hence

2

and Up is the volume of the electron system.
Using the expressions (8) and (9) we have

hC, ln, T& I T„T3I (38)
12 mc pFd T]

Up

AQ, QO

dcoX co dq q arctan y q, co
0 0

(29)

where

1 cT ——
3 dK UF

'2

(39)

where X(co) is the Bose distribution function and

7TK UFCO
2

y( q, cu ) = —, ql ))1, cow )& 1
4q(co —

q c )

K UF677
y(q,co)=, ql &(1, cow((1

3(co —
q c )

(30)

(31)

The main contribution to AQ, originates from the re-
gion where ~y(q, co)~ (&1, and hence for ql )&1 we have
the inequality

77K UF6)
2

l 3« «q
4c

Thus with the logarithmic accuracy we have the fol-
lowing correction to the electron specific heat:

2

Note that in the long-wavelength limit ACey dimin-
ishes with increasing disorder, while the correction from
the Coulomb interaction' is enhanced by disorder.
Therefore, in impure and low-dimensional electron sys-
tems the correction from the Coulomb interaction dom-
inates.

Results qualitatively similar to expression (33) were ob-
tained earlier by a difterent method in Ref. S. The main
difference between our work and Ref. 5 is in considering
an impure metal from the very beginning. This approach
allows us not only to get natural cutoffs of the logarith-
mic terms (in Ref. 5 the logarithmic terms were not cut
off at all), but also to study two different regimes of
screening (normal and anomalous skin effects) and to con-
sider the two-dimensional case.

7T K

48 mc
T T

ln
EF T2

(33)
IV. ELECTRON SPECTRUM

where

4q 2c
T2

KK UF
(34)

Here we have introduced the photon boundary wave vec-
tor qz to cut off the q integral at the upper limit in (29),
qz-pF. Comparison of the correction b, C, z from (33)
with the correction AC, h from the electron-phonon in-

teraction, ' given by

The spectrum of electron excitations is obtained
from the electron spectral functions A (p, e)= —2Im[G (p, E)], where

[G (p, e)] '=E —
gF

—ReX(E)—i ImX (E) . (40)

To calculate X(e) for T =0, we start from Eq. (11) and in
the short-wavelength limit we get

ReX, ~(E)
2

ACe-ph

T3
ln

EF(PFB )

T
pFu

(35)
1

8& UF
2 f de f dq q Re[ V»(q, co)]

where u is the sound velocity, shows that at low tempera-
tures the correction from the electron —vector-photon in-
teraction dominates. As was mentioned earlier, for
cF~-10 we have T, —10 . Thus for T-1 K we have
ln( T/T2 )-20 and b, C, z

—10 C„where C, is the

ImX, (E)= ——a, E

where

(41)
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1 E,F
(Xi = E)=

24
(43)

The characteristic values of the wave vector qo and fre-
quency coo are the same as in (21), and thus Eqs. (41) and
(42) hold given the validity of (22). Expressions (41) and
(42) result in the following analytical structure of the
spectral function:

A (p, E)=
c.+o. Eln + —aE

il

2 (44)

In particular for g =0 the spectral function has singular-
ities at frequencies,

1
E i 0 E 2 3 +Ei exp —,a, «1

a&
(4&)

] e2
c,„=+cpFexp ——,a= ((1 .e ' 4~c

(46)

In conclusion we show that in spite of the fact that
Re V» (q, to) is negative for small q the relativistic

The first frequency E
&

corresponds to a usual quasiparti-
cle state at the Fermi level. The others correspond to the
resonant electron states near the Fermi level. In some as-
pects these resonances are similar to the Abrikosov-Suhl
resonance in the Kondo problem. ' As in the Kondo
problem a careful treatment of the weak relativistic in-
teraction to higher orders in the perturbation expansion
results in the resonant states near the Fermi surface due
to the singularity in electron screening. The magnitude
of E~2 is very small, E~2-10 K, and the left inequality
in (22) cannot be fulfilled even in very pure metals. In an
impure metal we should include in ImX the contribution
from the electron-impurity scattering which smears the
resonant states near the Fermi surface. For this reason
we do not discuss the structure of the electron density of
states at such low frequencies and the corresponding
correction to the electron specific heat.

It is interesting to consider as an example an electron
system of a neutron star, where electrons may be con-
sidered as relativistic, UF=c. In such a system the reso-
nances in the electron spectrum exist at

electron-electron interaction does not result in supercon-
ducting state in a metal at low temperatures. To prove it
we note that in the Eliashberg equation for the complex
order parameter in the Nambu representation the
Coulomb potential Voo(q) and the phonon Green's func-
tion D(q, to) appears in the combination r3Voo(q)r3 and
r3D(q, co)r3 (see, for example, Ref. 11), where ~; are the
Pauli matrices. On the other hand the vector photon
Green's function appears in the combination
boa [V»(q, to)]ia.'ro due to the symmetry of vertex a'
under the transformation p —+ —p. Consequently both
Voo and V& &

give positive contributions in the kernel of
the integral equation for the order parameter and thus
the electron-vector photon interaction does not support
superconductivity.

V. SUMMARY

We have shown that the relativistic electron-electron
interaction leads to a nonanalytic behavior of the electron
density of states near the Fermi surface, the logarithmic
temperature dependence of the electron specific heat, and
the appearance of resonance states near the Fermi sur-
face. The effects are small but as for the density of states
and the specific heat, they are in principle measurable.
Nevertheless the obtained results are important for
several reasons. First, they show that even in a such
harmless system as the electron gas without a periodical
potential there are some deviations from the traditional
Fermi liquid theory. It is also worth mentioning that, as
was recently shown by Lee, ' some strongly correlated
electron systems may be described by means of the in-
teraction between electrons and some gauge fields. Thus
the electron —vector-photon interaction may be con-
sidered as a simplest model for such interactions, and in
such electron systems the efFects discussed above may not
be small.
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