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We develop a simple theory of conductivity in polycrystalline metals and heavily doped semicon-
ductors. We start with the ordinary Drude theory of conductivity and extend it to include a spatial-
ly dependent scattering frequency. We also explicitly include the local electric fields created by Auc-

tuations in the electron density. The crystal grains are described as low-scattering regions sur-
rounded by thin walls of highly scattering material. This model can be expressed as a linear
Boltzmann equation and can be solved exactly with use of an appropriate orthonormal basis. We
find that the presence of grain boundaries can alter the qualitative behavior of the conductivity.

I. INTRODUCTION

Although many solids are commonly used in polycrys-
talline form, relatively little is known theoretically about
how polycrystallinity affects material properties and
many questions about transport and structure remain to
be explored. In this paper we will focus on transport and
attempt to develop a microscopic theory of the
frequency-dependent conductivity in polycrystalline met-
als and heavily doped semiconductors.

Our interest was originally motivated by the observa-
tion that reAectance spectra from polycrystalline thin
films often deviate significantly from a typical Drude-like
curve. ' Since the reflectance spectrum is a probe of the
frequency-dependent conductivity, it is natural to ask
what effect the grain boundaries have on transport. To
answer this we started with a Boltzmann equation for the
conduction electrons. Although the Boltzmann equation
is essentially a classical approach, quantum-mechanical
properties of the electrons can be incorporated by using
the semiclassical equations of motion for electrons in a
metal or n-type doped semiconductor. These equations
can be used to construct the drift operator describing the
evolution of the one-particle distribution function for
electrons in the absence of collisions.

Electron-electron scattering is relatively unimportant
compared to scattering by lattice defects, impurities, and
phonons in metals and heavily doped semiconductors.
These effects can usually be included in a Boltzmann
equation via a linear collision operator and all the exten-
sive machinery for solving linear equations can be
brought to bear on the problem. Both variational tech-
niques and diagonalization on an appropriate ortho-
normal basis ' have been used to calculate transport
coefficients. In all these calculations it has been assumed
that the sample is statistically isotropic with respect to
translations (nonspherical Fermi surfaces will destroy ro-
tational invariance). This represents an important
simplification since the one-particle distribution function
must therefore be independent of position and the
amount of computation required to compute transport
coefficients is considerably reduced.

For grain-boundary scattering it is no longer clear

whether or not it is possible to ignore the spatial distribu-
tion of scatterers. In this case the grain boundaries
represent highly localized planar regions characterized by
high scattering probabilities surrounding crystal grains
with relatively low scattering probabilities. Previous at-
tempts to model the effect of grain boundaries have in-
volved calculating a scattering operator that has been
averaged over the grain-boundary locations and using
this to compute the conductivity. " ' Considering the
averaged grain-boundary scattering again eliminates the
spatial degrees of freedom but it is difficult to assess how
this affects the final answer. In particular, can a spatially
uniform process be used to approximate inhomogeneous
scattering'7

In systems where the grains are large we expect a negli-
gible contribution to the transport properties. However,
in many cases the grains are small, the surface-to-volume
ratio is large, and the effects due to grain boundaries
must be taken into account. This situation can occur in
the case of heavily doped semiconductors.

Our approach is to consider a fairly simple system in
which we include spatial variation explicitly. We start
with the Drude theory of electrons in a metal or semicon-
ductor and write this in the form of a linear Boltzmann
equation. The grain boundaries are modeled as spatial
nonuniformities in the scattering frequency. The
Boltzmann equation is converted to a matrix integral
equation using standard techniques and inverted. We
find that under certain conditions the inclusion of grain-
boundary scattering can alter the qualitative behavior of
the conductivity.

II. DRUDE MODEL WITH SPATIALLY
INHOMOGENEOUS SCATTERING

A semiclassical theory for the transport of electrons in
a metal with grain boundaries can be written down by al-
lowing the scattering term in the usual Boltzmann equa-
tion to have a spatial dependence. The grain boundaries
can then be depicted as localized regions of high scatter-
ing. Following Ziman, ' we start with the equation
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~fk e+v.V,fk ——E„,VkfkBt

= fd'k'[f (1—fy) —fj,(1 f„—}]6(k,k', r),

e+v.V,fk
—

~
E«~.V~fk

= —1'(r)fg+r«)f LEBt

(2.3)

where fLE is the local-equilibrium distribution function
and y(r) is a spatially dependent scattering frequency.

In our equations we prefer to use electron velocities in-
stead of momenta. This can be done using the semiclassi-
cal equations of motion' '

v(k) =—1 Be(k)
(2.4)

fit = —eE, (2.5)

where s(k) is the energy of an electron in the conduction
band with wave vector k and E is the local electric field.
Assuming that the energy-dispersion relation is approxi-
mately that of a free-electron gas, we can then make the
substitution

1 1—V ~ V
m

and Eq. (2.3) becomes

(2.1)

where the fk are the semiclassical approximations to the
one-particle quantum-mechanical distribution functions
for fermions. The spatial dependence is located in the
scattering amplitudes 6(k, k', r). The factors of (1 fk)—
ensure that the Gnal state for the scattering event is emp-
ty, as required by the Pauli principle. However, because
of microscopic reversibility, 6(k, k', r)=Q(k', k, r) and
the terms quadratic in fk cancel, leaving

~fj, e+v V.fk ——„E«~.V~fkBt

f„fd'k—' 6(k, k', r)+ fd'k' Q(k, k', r)f„. .

(2.2)

Making a relaxation-time approximation on the scatter-
ing terms then gives the equation

lision, i.e., the probability of an electron having velocity v
after a collision is determined by the local-equilibrium ve-
locity distribution fLE.

(iv) Electrons undergo collisions with a frequency y so
the probability of a collision occurring in a time interval
dt is y dt.

In the traditional Drude model y is constant throughout
the system. The assumptions (i)-(iv) can then be reduced
to a set of simple Grst-order equations that are readily
solved. However, inclusion of the space dependence
corn. plicates the mathematical analysis considerably.

The Fermi temperature is assumed to be suKciently
high that we can choose fLE to have the zero-
temperature form

no
] 2fLE= e(sF+5p —

—,'mv ),
VF

(2.7)

fLE —— e(eF ,'mv )+——5(e~——,'mv )5p(r, t)
F F

"o "o 1e(eF —
—,
' m v )+ 5(uF —u )5p(r, t ) .

VF VF PlUF

(2.8)

We have used some well-known properties of 5 functions
to write the second line. Integrating both sides of Eq.
(2.8} over v gives us our relation between 5p(r, t) and
5n(r, t),

n(r, t)=no+no 5p(r, t),3

DZ UF

which is easily solved for 5p(r, t ),

where e(x) is the Heaviside step function, VF is the
volume of the Fermi sphere in velocity space,
VF =4m. uF /3, uF is the Fermi velocity, and no is the equi-
librium density of electrons. 6p is the local variation in
the chemical potential. In the absence of the external
Geld, 5p=O. The constants out in front of the step func-
tion ensure that f has the normalization

n(r, t)= f d u fLE .

5p is determined by the requirement that fLE in-
tegrates down to the correct density. Expanding fLE to
Grst order in 6p gives

+v V,f E«,(t) V„f=— y(r)f+y(r)fLE . —
Bt m

(2.6)

Pl UF
2

p5(r, t ) = 5n (r, t ) .
no

Equation (2.6) is the Boltzmann equation for a Drude
electron in a system with a spatially dependent scattering
frequency. It has the following simple physical interpre-
tation. "

fLE can now be written as

no no
fLF = e(uF —u)+

2 5(uF —u)5n(r, t) . (2.9)
VF 4mUF

(i) Between collisions electrons act as free particles.
(ii) Collisions are instantaneous. Because of this the lo-

cal density remains unchanged.
(iii) Electrons are completely "thermalized" by a col-

In the absence of any spatial variation in the system
E, , is the applied external field. Translational invariance
guarantees that the density of electrons is uniform and
prevents the creation of local electric fields. If we break
translational symmetry by introducing spatially depen-
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dent scattering, the resulting density Auctuations will
lead to the creation of local fields, which we denote by
E&„. E„,is then of the form

tot Eext+ +loc ~

where E&„is

e 3, r —r'
E&„=——d r' [n(r', t) —no] .

&0 r —I

no is the equilibrium density of electrons and ep is the
static dielectric constant for the atomic cores. Using
these expressions in (2.6) we arrive at the equation

+v V,f— E,„,——f d r' [n(r', t) no—] V„f= —y(r)f+y(r)fLE .
6p r —r' (2.10)

1fo=no 6(uF v)
VF

(2.11)

This can be verified by direct substitution and noting that

Since n(r, t) is proportional to f the local fields add a
quadratic term to the Boltzmann equation. In addition,
fiE is generally a nonlinear functional of the density.
However, we can still linearize this about the external
field to get a linear equation. To do this we begin by not-
ing that the zero-field solution of Eq. (2.10) is

for zero field 5n =0. For simplicity we assume that the
external field is located along the z axis. The full distri-
bution function f can then be expanded as a power series
in E, about the zero-field solution, fo,

f=fo+gE, +O(E, ) . (2.12)

We are only interested in the response of the system to
order E, so we ignore terms of order E, and higher. In-
serting (2.9) and (2.12) into (2.10) and retaining terms to
order E, gives

2 I

E+g '+v V(gE )+ fd r'
3 fd v'g V foE,

Bt Bt cpm 1' I

, af,
+y(r)gE, —y(r) 5(uF —v ) d v' gE, = E, . (2.13)

4&UF Pl BU

Since g represents the linear corrections to f due to the external field we can choose E,(t) to have the form

E,(t)=E,e' '.
Using this in Eq. (2.13) gives the following equation for g:

e ~ 0+itug+v V,g+ f d r' f d v'g V f +y(r)g —y(r) 5(vF —u) f d u'g =
corn /r —r'/3 4~UF~ Pz 0U

(2.14)

Equation (2.14) is an inhomogeneous linear equation. Since the inhomogeneous term is time independent, this suggests
that g is also time independent and we can set the time derivative of g in (2.14) equal to zero to get

e 0itug+v V,g+ f d r' f d u'g V„fo+y(r)g —y(r) 5(uF u) f d v—'g =
eom r —r 4m. vF

(2.15)

This is the equation on which we will base the remainder
of our analysis.

on all three axes with period L. The scattering function
y'(r) can then be expanded as

III. MATRIX METHOD OF SOLUTION

In this section we convert Eq. (2.15) into a matrix in-
tegral equation. We begin by making our system periodic

y(r) =g y(k)e'"' .
k

The wave vectors k are of the form

(3.1)
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2' 2& 2'k= n1, n2, n3
L,

where n1, n2, and n3 are integers. The spatial depen-
dence of g must also be periodic so g can be written as

g =g g(k, v)e'"' .
k

(3.2)

We can further expand (3.2) by expressing the angular
part of v in terms of the spherical harmonics Y& (8,$).
In this paper the variables 8 and P will always refer to the

g=yyg, (k, u) Y, (8,y)e'"'. (3.3)

The next step is to substitute these expansions into Eq.
(2.15). However, because the term due to the local fields
is so much more complicated than the rest of the equa-
tion, we temporarily assume that it is zero. We treat it
separately in the next section. Substituting the expan-
sions (3.1) and (3.3) into the remaining terms in (2.15)
gives

angular part of the velocity vector v. Equation (3.2) be-
comes

gicog, (k, v)Yim(8, $)+gik vg im(k, v) Y~i(8, $) +g g y(k —k')g, .m (k', v)YI ~ (8,$)
I, m I, m k' I', m'

e ~ o
, 5(uF —v)y(k —k') f dv'(u')'goo(k', u') Yoo(8, $)=

k UF m Bv,
(3.4)

In arriving at (3.4) we have equated all the coefficients of
exp(ik r). Only the Yoo(8, $) term survives the angular
integration. The second term in (3.4) has not been com-
pletely expanded in the spherical harmonics. The carte-
sian components of the vector v can be expressed as

1/22'Vx= V

m =1
ik v= g v (k, v)Y, (8,$),

2&
v, (k, v ) = iu— (k ik ),—

1/2

where the coefficients v (k, u ) are given by
' 1/2

(3.5)

2&
U =lU

3' 3

1/2

[Y„(8,$)+ Y, , (8,$)],
4n

vo(k, v ) =iu

' 1/2

(3.6)

4m
V =U

3

1/2

Yio(8 4) .

277v, (k, u ) =iu (k, +ik ) .

The term ik.v can then be written as
For mW —1,0, 1 we define the v (k, v) to be identically
zero. Using the expansion (3.5) in (3.4) we obtain

X X r '~5kk 5l! 5mm'g'l m'(k iv ) 'I''m'(8ie)+y y y vm(kiu)5ikgi ~ (k iv) Yi~(8iy) Yi (8iy)
k' l, m I', m' k' I', m' m = —1

+g g y(k —k')g~~ (k', v)YI ~.(8,$)—g g z 5(uF —v)y(k —k')5, .o5
k' I', m' k' I m VF

X f dv' ( v') gi ~,(k', v') YI,~,(8,$)= — 5(uF —u )
m VF V

(3.7)

The Kronecker delta symbols have been used to introduce a few extra summations.
The second term in (3.7) is quadratic in the YI (8,$) s. From the theory of addition of angular momentum we can

decompose the product of spherical harmonics using the formula'

(2l i + 1)(l~+ 1)
Yi (8, (b) Yi (8,b) = Vl)iii) lpliig 4 (2L + 1 )

(i, i,oOll, l,LO)(l, l, m&mqll, lzL, m, +mz) YL + (8,$),

where (lilzmimzllil~L, mi+mz) are Clebsch-Gordan coefficients. Equation (3.7) can then be written as
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g g g iro5kk5II5 gl (k', u)YI (8$)+g g g 3(2/'+ 1)
k' I, m I', m'

(/'100~/'1/0) (I'lm'm ~l'll, m +m')

Xvm(k, u)5kkgl m (k', u) Yl m+m (8,$)+g g y(k —k')gl m. (k', u)YI m (8,$)
k' I', m'

5(vF u )y(k —k')5l'o5m of'dv'(v') gl' (k', u') Yl,
k' I', m' UF

1/2
4~ en 0 1

5(uF —u)5I, 5 OYI (8,$) .
m VF

(3.8)
7

Analytical expressions for the Clebsch-Gordan coefficients appearing in (3.8) have been tabulated. '

To identify the coefficients of the YI (8,$) in (3.8) we make the substitution m'+m ~m' in the first term on the
left-hand side of (3.8) and relabel the sums in the remaining terms as sums over (I, m) instead of (I', m'). Equation (3.8)
becomes

gg g ico5kk5II5 g, (. k', v)Y, (8,$)+gg g 3(21'+ 1)
k' I, m I', m ' k' I, m I ', m

'
(/'100~/'110) (I'lm', m —m'~l'llm )

X vm m (k~v )5kkgl m. (k'~ v) Ylm(8'p)+g g y(k —k')glm(k''u ) YIm(8&p)
k' I, m

5(uF —u)y(k —k')5, O5 of dv'(u') g, (k', u') Yl (8,$)
k ImUF

Equating the coefficients of the Yl (8,$) yields

4~= —X
I, m

1/2
eno

5(vF —v }5»5 pYI (8 P) .
m VF

(3.9)

' 1/2
3(21'+ 1)

I co5kk 5II 5 g.l (k. ', .u ).+
kl I I 4m 2/+1 ( I 100~/'I/0) (/ lm ', m m'~/'I/m )—

Xvm —m'(k~u }5kk'gl'm'(k ~u)+y(k k ) II'5mm'gl'm'(

1
z 5(vF —u)y(k —k')5II5 5lo5 p.f du'(v') gl. (k', u')

UF

1/2
4m en 0 1

5(vF —v)5»5 p .
m VF

(3.10)

We have extended the summation over (I', m') to all terms on the left-hand side of (3.10) by including a few extra
Kronecker delta symbols. Equation (2.15) is now explicitly in the form of a matrix integral equation. We can write it as

A(u ).g(v)+ B„(u).f du'(u')' g(u') =h(u), (3.1 1)

where the matrix elements of A(u) and B„(u) are

[klm~k'I'm'}( ) I+5kk'5ll'5mm'

1/2
3(21'+ 1)

4n (2/+ 1 )
(/'100~/'1/0)(/'lm', m —m'~1'llm )v .(k, u)5kk +y(k —k')5II, 5 (3.12)

1
Br(klm~k'I'm'}(V} 2

5( F )y k )5II'5mm'5IO5mp &

UF

and the vector h(u) is
1/2

(3.13)

~
I klm I

4m

3

eno
5(uF —u )5IO5 p .

m VF
(3.14}

The three components of k label components of g(v) as
well as the indices I and m. Equation (3.10) can be invert-
ed using the matrix analogues of standard techniques for
solving integral equations with a separable kernel. Define

the vector N as

N= f dv'(u') g(u') .

Using (3.15) in (3.11) we can easily solve for g( v),

(3.15)
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g(v)=A '(u) h(u) —A '(u). B,(u) N . (3.16)

Multiplying (3.16) by u and integrating over u we get the
closed equation

center of grain-boundary faces. However, this is not a
serious drawback since we expect that the same is true in
real systems. The Fourier components of y(r) are

vp~ko+ Y (~ @k o~k 0

N= fdu v' A '(u). h(v) —fdv u'A '(u). B„(u) N +)"(I,»a o&I, o+)"(&.@i, o4 o . (3.20)

which can be solved for N to get

N= 1+f du v A '(u) B,(u) f du u A '(v) h(u) .

(3.17)

Equations (3.16) and (3.17) constitute a complete solution
to Eq. (3.1 1).

A problem arises with (3.17). If we try to solve the or-
dinary Drude model with this formalism we find that the
matrix

The only nonzero components of y(k) are along the k-
space axes, which has some interesting consequences.
From the explicit expressions for A(u) and B„(u) given by
(3.12) and (3.13), we see that there are no matrix elements
that couple a component of g(u) that is on the k-space
axes with an off-axes component. Thus, if y(k) is of the
form (3.20), then the only nonzero components of g(u)
are also on the k-space axes. The volume of k space that
we have to deal with is then efFectively one dimensional.
This is a considerable reduction in the basis set. The fact
that the g& (k, u) vanish if k does not lie on the k-space
axes implies that in coordinate space g is of the form

1+ dUUA 'U B, U (3.18) g=gp(v)+g (x,v)+g (y, v)+g, (z, v) . (3.21)

is not invertible on the one-dimensional subspace spanned
by the vector gi —p —p(k=0, u) at zero frequency. Al-
though we have not been able to show this analytically,
numerical results indicate that this continues to be true in
the case of inhomogeneous scattering. However, the
one-particle distribution function must satisfy the nor-
malization condition

n, =f, fd'uy.

From (2.11) and (2.12) we see that the full normalization
is carried by fo. Therefore, the I =0, m =0, k=O com-
ponent of the vector N must vanish and we can drop this
term from Eq. (3.17). The matrix (3.18) appears to be in-
vertible on the remaining vector space at all frequencies.
The vector N is constructed by using (3.17) on the sub-
space orthogonal to gpo(0, u) and setting the component
labeled by I =0, I =0, k=0 equal to zero.

The formalism we have developed so far is completely
general but it is not practical for an arbitrary choice of
y(r). If we have to consider all the k's within even a
small sphere in k space (assuming that we truncate our
expansion by requiring k &k „ for some appropriate
value of k,„)we quickly end up with an enormous num-
ber of basis vectors. To avoid this problem, we consider
y(r) of the form

This form simplifies the inclusion of the local-field term
in the next section.

IV. INCLUSION OF THE LOCAL FIELDS

e
~LF

6'pm

e
6'pal

I

f d'r' ' ', fd'u'g V„I,r —r'

I

3
6 U g~ X,V

+ fd'r' ' ' fd'u'g (y', v')

I

+ f d r', f d u'g, (z', v') V„fp .
r —r' '

To derive the matrix elements for the local-field term
we assume that (3.21) continues to hold true when the
local-field terms are added back in. After we complete
the calculation we can verify this assumption a posteriori.
gp(v) in (3.21) can be fixed by requiring that g (x, v),
g (y, v), and g, (z, v) vanish when averaged over all space.
The spatially varying part of g is then completely isolated
in the g, (x, v), etc. Substituting (3.21) into the local-field
term in (2.15) gives

y(r) =vp+ y'(x) +y'(y)+ y'(z) . (3.19)
(4.1)

For the cubic systems considered in this paper, the form
(3.19) implies that the scattering is higher at the edges
and corners of intersecting grain boundaries than at the

The charge Auctuations appearing in each of the integrals
in (4.1) are one dimensional. We can do the remaining
two spatial integrations analytically to get



FREQUENCY-DEPENDENT CONDUCTIVITY IN POLYCRYSTALLINE. . . 11 5S5

2

xf dx'[26(x —x') —1]f d u'g„(x', v')+y f dy'[26(y —y') —1]f d v'g~(y', v')
rom OO

+zf dz'[26(z —z') —1]fd u'g, (z', v') V„fo . (4.2)

x, y, and z are unit vectors pointing along the coordinate axes. Equation (4.2) follows immediately from the fact that
the electric field propagator for a sheet of charge located at x' and parallel to the (y, z) plane is

(Recall that the electric field due to a uniform sheet of charge is constant on either side of the sheet. )

The g;(x;, v ), where i =x,y, z, have the expansions

g, (x, ,v) =g g(1 —5„O)g,.(k, , v)e ' ' YI~(8,$) .
k,. 1,m

We can leave out the k,.=0 term since the k; =0 dependence has been absorbed in go(v). Using (4.3) in (4.2) gives

2 T

2~e ~o 1 Vx Ik x'
V4n. 5(uF —u } g (1—

51, u) f dx'[26(x —x') —1]fd u'g„oo(k„, v')e
6'Ot7l F x

(4.3)

+g(? —
51, 0) f dy'[26(y —y'}—I]f d u'gazoo(k, u')e

k
3' v —oo

+g(1 —5„O) f dz'[26(z —z') —1]f d u'g, ou(k„u')e
k

(4.4)

The problem of evaluating the spatial integrals in (4.4) is
greatly complicated by the long-range nature of the
Coulomb potential. It can be seen by inspection that the
integrals

f dx'[26(x —x') —1]e (4.5)

are not well defined since the integrands do not vanish as
~x~ ~~. To make the integrals convergent, we introduce
a screened form of the propagator and then take the limit
that the screening goes to zero. We replace the step-
function propagator in (4.4) by

[26(x —x') —1]e

where g is an arbitrarily small positive constant. The in-
tegrals we must now evaluate are

f dx'[26(x —x') —1]e

I + 1

ik +g ik —g

ik x
e (4.6)

We can safely let q~0 since the two 5 functions that are
produced cancel. There is no problem with small k since
we never have to consider k„=0 in Eq. (4.4). Using Eq.
(4.6) in (4.4) we can write

~LF

2

4m 5(vF —u) g g (1—5& 0)5& &, fdv'(v') g„oo(k„',u')e
e011l I F lk„ x x x V

+g g (1—5„0)5„„, fdu'(u') g (oo'k, )ve

y k

Vz+g g . (1—51, 0)5„„, fdu'(u') g,oo(k,', u')e
k I l z v

k

(4.7)

The only remaining step is to replace the u; /u in (4.7) by their spherical harmonics expansions. SLF becomes
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~LF
277e n 0 1

2

&4m 5(u —v )pE'0Pl

Xg g gg (1 5k o)5k
2

l m I', I' k k' x

2'
3

' 1/2

( 5I—i5 i+5Ii5, i) —5io5 of du'(u')'g. I (k.' v')e "

'
I+g g . (1—5„)5„„,

l
y

1/2

(5»5mi+5»5m, i) —5IO5m of du'(u')'gyi ~ (ky', v')e "

+&& 2
z k k

z z

4m

3

' 1/2

5(,5,5, ,5 .,f dv' (u')'g„, ,(k,', u')e'"" . ri (8,y) . (4.8)

From (4.8) it is clear that the local fields contribute a term

B,(u).f du'(v') g(v')

to.the left-hand side of (3.11). The matrix elements of B,(u) are

B,lk I.lk I. )(u)
2~e no 1 2

&4m 5(uF —v ) . (1—5k p)5„k,
60Pl

2'
3

' 1/2

( 5Ii5—i+5Ii5, i)5IO-5 o

27re n p 2'
4ir 5(uF v ) . (1 5k p)5k

Epm 'VF Iky y y y

' 1/2

(5Ii5 i+5Ii5, i)5IO5-o (4.9)

s(k, lm ~k'I'I')
27re n p

4ir 5(uF —v) (1—5k o)5k k,
cpm VF

4m

3

' 1/2

5I I 5m 05 I '05 m '0

Since none of the matrix elements of B,(u) connect a
component of g(v) that is on the k-space axes with an
ofF'-axis component, the assumption that g remains in the
form (3.21) when the local fields are included is verified.

V. CUBIC CRYSTALLITKS

So far we have not specified the form of y'(x) appear-
ing in (3.19). For the calculations in this paper we choose

higher scattering at the corners and edges of crystallites
compared to the center of a crystallite face.

In addition to the choice (3.19) for the y(r), we can use
the cubic symmetry of the system to reduce the basis set
even further. Although the electric field destroys the
symmetry in the z direction, the system remains invariant
under ~/2 rotations and inversions in the (x,y) plane.
The spherical harmonics transform as follows under in-
versions with respect to x and y:

y'(x) = g v' —4(x —nL) /m2 2—e
VT

(5.1)
I'I (8, n. Ity)= I"I (8,—$) (x~ —x ),
&I (8, —P)=( —1) &I (8,P) (y —y) .

This is a Gaussian-shaped grain boundary with full width
Iv and height 2v'/&vr. The Fourier coefficients are also
Gaussians,

/16y'(k )=v' —eX (5.2)

If we set the intragrain scattering frequency equal to vo
then the k=0 component of y(k) is

If we rotate the system by m /2 in the (x,y) plane, then the
spherical harmonics transform as

(8, P+~/2)=(i) &I (8,$) .

This leads to the following relations between the
g, (k, v):

g, (k„,k, k„u)=g, ( —k„,k, k„u)
yp=y(k=O)

, l8—v +3v0 I (5.3)

=( —1) gI (k, —k, k„v)
=(i) g, (k, k„,k„u) . —(5.4)

Equation (5.2) is especially convenient for calculations
since it has a rapid falloff for large ~k~. As we mentioned
earlier, the choice (5.1) for y'(x) leads to grains with

Because of these relations we only need to calculate the
gI (k, u) for k's on the positive k„axis as well as the k,
axis. We can further show from Eqs. (5.4) that the
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Once g is known, the frequency-dependent conductivi-
ty can be evaluated by finding the portion of the electric
current that is linear in the external field. This is just

d Tj,= —efd Uf- "vgE,„, .
L 3

The conductivity is a tensor quantity, but for a system
with cubic symmetry it is proportional to the unit tensor
and we can define the scalar conductivity as being equal
to the zz component. The scalar conductivity is then

I"
~(w)= e f—d'U f, U, g

1/2
4m= —e UdU
3 g,o(k=O, U) . (5.5)

In order to distinguish easily Drude-like behavior from
non-Drude behavior, it is convenient to rewrite the con-
ductivity in terms of a frequency-dependent scattering
rate. For constant y the Drude conductivity is

n0e 2

o D(co) =
m y+i~

However, any conductivity can be written as

n0e 2

o(co)=
m y(co)+ice

Solving for y(co) we have

nOe 1
2

y(~)= le
m o.(co)

(5.6)

The advantage of writing the conductivity in this form is
that we can immediately spot non-Drude behavior.
Drude-like behavior leads to a real y(r&) with no frequen-
cy dependence, while a complex, frequency-dependent
y(co) points to a non-Drude system.

Since the frequency-dependent conductivity is not, in
general, directly accessible from experiment we also cal-
culate the reAectance spectra. We briefly sketch the rela-
tionship between conductivity and reflectance. The
frequency-dependent dielectric function can be calculated
from the conductivity via

e( CO ) 60+ 47Tl
.o(co)

g& (k, U ) must vanish if m is odd.
Although the derivations have been performed for a

three-dimensional system, it is straightforward to adapt
the calculations to a system in which the only spatial in-
homogeneities are along the z axis. (To avoid confusion
later on, we would like to make it clear that by one di-
mension we mean a layered system that is only nonuni-
form in one direction. We are not referring to a wire. ) If
we use (5.1) to model the spatial dependence of the
scattering, then the only other modification we need to
make is in the k=O component of the scattering frequen-
cy,

, N
yo= &0+

If we define E'& and e2 as the real and imaginary parts of
e(co), respectively, then the extinction coe%cient a and
the refractive index q are

CX2—
—e, +(e +e )'

2

+(e2+e2)1/22-
From these the reAectance R is

n max

gave very good results. Similarly, we truncated the
spherical harmonics by requiring that l « I,„. We used
the value l » =1 in our calculations. We checked these
truncations by independently doubling n „from 10 to
20 and increasing I „from 1 to 2 for the results shown
in Figs. 1 and 2. The maximum change in the
frequency-dependent scattering, y(co), was less than 3%
and the change in the reAectance spectrum was undetect-
able.

For the calculations in this paper we use parameters
appropriate to heavily doped tin oxide. " We chose
n0 =4.2 X 10 ' e/cm, @0=4.0, m =0.281m„and
v0=2. 0X 10' s '. The parameters describing the grain
boundaries themselves are more problematical. We set

0
the crystallite size to L = 1000 A and investigated a num-
ber of di8'erent widths and heights. We tried grain-
boundary widths of 50 and 100 A. These values may ap-
pear to be too broad, but there are a number of reasons
for using wide grain boundaries, beside the obvious one
that the calculations are easier to do when I. /w is small.
One is that the grain boundaries may be physically wide.
In pure systems the grain boundary probably extends
over a couple of atomic spacings, but in heavily doped
systems it is possible that the dopant segregates preferen-
tially in the grain boundaries, resulting in an anomalously
high concentration of impurity in the intergrain region.
These impurities could then back di6'use into the crystal
grains slightly so that the region of higher scattering ex-
tends beyond the actual grain boundary.

A second reason involves the distribution of sizes in ac-
tual polycrystalline samples. Most samples do not consist
of a regular array of crystallites; instead there is a distri-
bution of sizes and shapes. In come cases, the variation is
large enough so that the sample can be considered to be
composed of large crystallies with smaller crystallites
filling in the interstitial regions. These smaller crystal-
lites can be thought of as an efFective grain boundary

(2) —1) +a
(ri+ I) +a

To actually do calculations we had to choose trunca-
tion criteria for both the k's and the spherical harmonics.
The only values of k that we have to consider are along
the axes and these are a unit vector multiplied by
+2~n /L for some integer n. Truncating the k's is
equivalent to picking a value of nm» such that n ~ nm».
We found that using
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FIG. 1. The real and imaginary parts of y(A, ) for a one-
dimensional layered system. The grain-boundary scattering am-

plitude is v'/vo=5. 0 and the grain-boundary width is m =100
0
A. The open circles (o ) are Re[y(A. )/yo] and the open trian-
gles i6) are lm[y(A, )/yo].

FIG. 3. The refiectance spectrum for a one-dimensional lay-
ered system. The grain-boundary scattering amplitude is

0
v'/vo=5. 0 and the grain-boundary width is m =50 A. The dot-
ted curve is an ordinary Drude spectrum calculated for a value
of y=2. 55X10' s

with a broad width. Even in fairly uniform samples the
fIuctuations in crystallite sizes should lead to an erat'ective

width that is larger than the physical width of a single
grain boundary.

We begin by co][isidering a system that is nonuniform
only along the z axis. The grain boundaries are planes at
distances I. apart and parallel to the z=0 plane. The
grain-boundary width is set at m =100 A and we choose
the amplitude of scattering in the grain boundary so that
v /vo =5.0. In Fig. 1 we plot the real and imaginary
parts of y(A, ) as a function of the wavelength of light. It
is immediately evident that y(A) exhibits non-Drude be-
havior. Not only is y(A, ) complex but there is a compli-
cated dependence of y(A. ) on wavelength. At short wave-
length (high frequency) the real part of y(A, )/yo goes to 1

and the imaginary part vanishes. At high frequency, the
electrons do not have much time to move in the external
field before they are forced to change direction. They os-
cillate in tight orbits that only sample the local environ-
ment. The conductivity is then the average of the con-
ductivities over all the local environments and can be
written as

noe dz 1
2

o'(co) =-
L. f z +/co

no
2

noe

go+
This can also be verified analytically by observing that
the matrix A(U) is diagonal and proportional to co at high
frequencies. As the frequency drops the trajectories
spread out, the electrons sample several difFerent environ-
ments, and y(A, ) deviates from yo. There appears to be
some kind of resonance in y(A, ) in the neighborhood of
the plasma wavelength at A,~~=1.72 pm. (The plasma
wavelength can be calculated from the plasma frequency,
which is given by 0 ~=4mnoe /rom. ) At long wave-
lengths, the real part of the scattering rate goes all the
way back up to the value yo while the imaginary part has
a negative tail that is decaying to zero.

In Fig. 2 we plot the corresponding reflectance spec-
trum, along with a Drude curve whose scattering fre-

1.0 1.0

0.8
O

06

0.4
lX

0.8
D

0 6

0 4
OJ

0.0
0.0 2.0 4.0 6.0 8.0

wavelength (pm)
10.0

0.0
0.0 2.0 4,0 6.0 8.0

wavelength (p,m)

10.0

FIG. 2. The reAectance spectrum for a one-dimensional lay-
ered system. The grain-boundary scattering amplitude is

0
v'/v0=5. 0 and the grain-boundary width is m=100 A. The
dotted curve is an ordinary Drude spectrum calculated for a
value of y=3.05X10' s

FIG. 4. The reflectance spectrum for a one-dimensional lay-
ered system. The grain-boundary scattering amplitude is

0
v'/vo=2. 0 and the grain-boundary width is m=100 A. The
dotted curve is an ordinary Drude spectrum calculated for a
value of y =2.45 X 10' s
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FIG. 5. The real and imaginary parts of y(A. ) for a three-
dimensional cubic system. The grain-boundary scattering am-
plitude is v'/vo=5. 0 and the grain-boundary width is m=100
0
A. The open circles i o ) are Re[y(A, )/yo] and the open trian-
gles ( 6 ) are Em[ y( A, ) /yo].

quency has been adjusted so that it matches the grain-
boundary curve at X=10pm. The Drude curve actually
undercuts the grain-boundary curve in the vicinity of the
shoulder at 2 pm. This is the opposite of most deviations
that are seen experimentally.

To investigate the effect of grain-boundary width on
the results we reduced w to w =50 A. The qualitative be-
havior of y(A, ) is approximately the same as that shown
in Fig. 1. The reflectance spectrum is shown in Fig. 3.
For these parameters the grain-boundary curve and the
low-frequency Drude fit are very close, although the
Drude curve still undercuts the grain-boundary curve
near 2 pm.

To complete our investigation of one-dimensional lay-
ered systems, we try lowering v'/vo to v'/vo=2. 0 and use

0
a grain-boundary width of w=100 A. The reflectance
spectrum is plotted in Fig. 4. In this case it is almost in-
distinguishable from a Drude curve. These results sug-
gest that the scattering amplitude in the grain boundary
is slightly more important than the width in producing
non-Drude behavior in the reAectance spectrum.

In three dimensions the behavior of y(A, ) changes qual-

itatively. In Fig. 5 we plot y(A, ) for a grain-boundary
width of w = 100 A and a scattering amplitude of
v'/vo=5. 0. At long wavelengths, the real part of y(k)
drops to a value that is noticeably lower than the average
value yo. In one-dimensional layered systems, the real
part of y(A, ) returned to yc at long wavelengths. If we ig-
nore the local fields, the one-dimensional system can be
considered as a set of resistors in series. The scattering
frequencies for each resistor, which are proportional to
the resistances, can all be added together and the average
resistance is then given by yo. This accounts for the re-
turn of Re[y(A, )] to yo at long wavelengths in one dimen-
sion. In three dimensions, this picture breaks down since
there should be less current How in the grain boundaries
parallel to the external field than in the intragrain region
and this results in the lower scattering at large A, . There
is still a tail in Im[y(A, )] at long wavelengths but this is
now positive instead of negative.

The corresponding reflectance spectrum is plotted in
Fig. 6. This is almost indistinguishable from a Drude
spectrum, although the grain-boundary curve does slight-
ly undercut the low-frequency Drude fit near 2 pm. This
is often seen experimentally, although the deviations
from a Drude curve are often larger. ' Interestingly, if
we decrease the scattering amplitude to v'/v&=2. 0 the
deviations from the long-wavelength Drude-fit increase,
as can be seen in Fig. 7.

To summarize, in one dimension the deviations from a
Drude curve are the opposite of those seen experimental-
ly, while in three dimensions the deviations are the same.
However, the deviations shown in Figs. 6 and 7 represent
a maximum and we have been unable to find experimen-
tally plausible parameters that increase the deviation.
Nevertheless, actual polycrystalline samples often differ
from a Drude curve by substantially larger amounts.
One possible source of these larger differences is the dis-
order that exists in real polycrystalline samples. Unfor-
tunately, numerical limitations have prevented us from
exploring this idea fully, but we have some preliminary
results in one dimension that indicate that variations in
the crystallite sizes can further influence the conductivi-
ty.
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FIG. 6. The reAectance spectrum for a three-dimensional cu-
bic system. The grain-boundary scattering amplitude is

0
v'/vo=5. 0 and the grain-boundary width is m=100 A. The
dotted curve is an ordinary Drude spectrum calculated for a
value of @=3.75X10' s

FIG. 7. The reflectance spectrum for a three-dimensional cu-
bic system. The grain-boundary scattering amplitude is

0v'/vo=2. 0 and the grain-boundary width is w=100 A. The
dotted curve is an ordinary Drude spectrum calculated for a
value of y =2.85 X 10' s
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FIG. 8. The real and imaginary parts of y(A, ) for a layered
system with three crystallite sizes. The total size of the unit cell
is 3000 A and the grain boundaries are located at 0, 800, and

0
2000 A. The grain-boundary scattering amplitude is v'/v0=5. 0
and the grain-boundary width is w =100 A. The open circles
(0) are Re[y(A, )/yo] and the open triangles (6) are
Im[y(A. ) /yo].

FIG. 9. The reAectance spectrum for a layered system with
three crystallite sizes. The total size of the unit cell is 3000 A
and the grain boundaries are located at 0, 800, and 2000 A. The
grain-boundary scattering amplitude is v'/vo =5.0 and the

0
grain-boundary width is w =100 A. The dotted curve is an or-
dinary Drude spectrum calculated for a value of y =2.65 X 10'

—1s

Instead of a simply periodic one-dimensional system
composed of a single 1000-A crystallite we increase the
unit cell size to 3000 A and locate grain boundaries at 0,
800, and 2000 A. The average size of the crystallites is
still 1000 A, but there is some variation about the mean.
We again set w =100 A and use a scattering amplitude of
v'/vo=5. 0. In Fig. 8 we plot y(A, ) as a function of A, .
This should be compared to Fig. 1. The two most
significant changes are that Re[y(A, )] is still below yo at
10 pm, while in Fig. 1 it has risen to yo by about 4 pm.
Furthermore, the tail at long wavelengths in Im[y(A, )] is
much smaller than in Fig. 1 and has even changed sign.
There are clearly interference effects between the different
size crystallites that act to decrease the low-frequency
scattering. The reflectance spectrum is shown in Fig. 9
and should be compared to the spectrum shown in Fig. 2.
The grain-boundary spectrum now undercuts the Drude

curve near the shoulder at 2 pm, whereas in Fig. 1 it
overshot the Drude curve in this region. Clearly, disor-
der can further alter the results although at present we
cannot say by how much.

ACKNOWLEDGMENTS

We are indebted to Dr. Jim Proscia for many useful
discussions and to Professor David Vanderbilt for sug-
gesting the use of a screened propagator and Professor
Bert Halperin for suggesting the local-equilibrium form
of the collision operator. We thank the National Science
Foundation, the Solar Energy Research Institute (Gold-
en, CO) and the Harvard University Materials Research
Laboratory for financial support, and the John von Neu-
mann Computer Center, Consortium for Scientific Com-
puting (Princeton, N.J.), for a grant of computer time.

Von R. Groth, E. Kauer, and P. C. V. D. Linden, Z. Natur-
forsch. 179, 789 (1962).

J. C. C. Fan and F. J. Bachner, J. Electrochem. Soc. 122, 1719
(1975).

F. Simonis, M. van der Leij, and C. J. Hoogendorn, Sol. Energy
Mater. 1, 221 (1979).

4J. Proscia, Ph. D. thesis, Harvard University, 1988.
5E. H. Sondheimer, Proc. R. Soc. London 203, 75 {1950).
F. Garcia Moliner and S. Simons, Proc. Cambridge Philos.

Soc. 53, 848 (1957).
7D. V. Gitsu, I. M. Golban, and V. G. Kantser, Phys. Status

Solidi B 112, 473 (1982).
P. B.Allen, Phys. Rev. B 13, 1416 (1976).
P. B.Allen, Phys. Rev. B 17, 3725 (1978).
F. J. Pinski, Phys. Rev. B 21, 4380 (1980).
A. F. Mayadas, M. Shatzkes, and J. F. Janak, Appl. Phys.

Lett. 14, 345 (1969).
A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).
R. A. Brown, J. Phys. F 7, 311 (1978).

' C. R. Tellier, Thin Solid Films 51, 311 (1978).
~5C. R. Tellier, A. J. Tosser, and L. Hafid, J. Mater. Sci. 15,

2875 (1980).
' J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cam-

bridge University Press, Cambridge, 1972).
N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Saunders College, Philadelphia, 1976).

isE. Merzbacher, Quantum Mechanics, 2nd ed. (Wiley and Sons,
New York, 1951).
E. U. Condon and Cx. H. Shortley, The Theory ofAtomic Spec
tra (Cambridge University Press, Cambridge, 1951).
J. R. Dixon, in Optical Properties of Solids, edited by S. Nudel-
man and S. S. Mitra (Plenum, New York, 1969).


