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The energetics of homogeneous bcc-fcc lattice deformation in iron at 0 K has been investigated
along the tetragonal "Bain" deformation path. The total energy (as a function of volume), the
enthalpy (as a function of pressure), the pressure-volume relations —both for nonmagnetic (NM)
and ferromagnetic (FM) states —were calculated using the linear mu5n-tin-orbital (LMTO)
method. The ground-state magnetic properties (ferromagnetic contributions to the total energy and
magnetic moments) were found by making use of the Stoner theory of itinerant ferromagnetism,
rather than spin-polarized calculations. This circumvents the difficulties of using the traditional
local-spin-density approximation which fails to describe correctly the energetics of iron phases. The
Stoner exchange parameter Iwas calculated from the linear-response theory for each axial ratio c/a
as a function of volume and then adjusted by a constant enhancement factor P, determined by fitting
the equilibrium atomic volume of the FM bcc phase. No other adjustments of any quantities were
performed. The calculations revealed a somewhat unusual behavior of enthalpy along the deforma-
tion path. The enthalpy of the NM phase exhibits a monotonic decrease with c/a, the bcc
modification being unstable with respect to the shear deformation. Moreover, up to a certain c/a
{depending on pressure), the NM bcc phase is also unstable with respect to spontaneous magnetiza-
tion. Ferromagnetism stabilizes the bcc phase. However, the FM fcc phase is unstable with respect
to shear deformation. The enthalphy curve along the deformation path then has a cusp correspond-
ing to a first-order phase transition between FM and NM states accompanied by an appreciable
volume discontinuity. For the FM bcc, the calculated bulk modulus (1.689 mbar) and the magnetic
moment (2.223p&/atom) as well as the fcc-bcc enthalpy difference at zero pressure (6.947 kJ/mol)
are in good agreement with available experimental data. A fcc-bcc lattice-deformation enthalpy
barrier at the equilibrium pressure I'0 = 145 kbar is found to be 12.762 kJ/mol. The NM fcc lattice
loses mechanical stability at a fcc-bcc enthalpy difference of —14.072 kJ/mol. As an aid to the de-
velopment of improved interatomic potentials for iron, plots of FM contributions to the energy
versus Wigner-Seitz radius for different c/a are also presented.

I. INTRODUCTION

The bcc-fcc phase transformation in iron lies at the
core of the unique properties of iron-base materials. This
transformations, being a typical representative of the
family of martensitic transformations (MT's), has been
studied for decades (for references see, e.g., Refs. 1-3).
Unlike most of the polymorphic transform ations in
solids, the MT is a diffusionless process involving a corre-
lated motion of many atoms. One important aspect of
such motion is the energetics of large-strain homogene-
ous lattice deformation. This contributes a local energy
density of importance to interfacial energy and mobility
as well as the energetics of potential nonclassical nu-
cleation mechanisms. ' The homogeneous deformation
describes a continuous crystallographic transition from
initial to final phase. In the case of the bcc-fcc MT a few
homogeneous strain paths have been suggested (see, e.g. ,
Ref. 3). The simplest one, known as the Bain deforma-
tion, consists of a continuous expansion of a bcc lattice
along one of the cubic axes with a contraction along the
two others. When the c/a ratio reaches the value &2,
the body-centered-tetragonal lattice (bct) just becomes fcc

(see Fig. 1). More complex "two-strain" paths are real-
ized in bcc-hcp martensitic transformations. It can also
be true for iron. However, the Bain path is unique in
that it retains the highest crystal symmetry. Pseudopo-
tential calculations for the bcc-fcc lattice deformation in
Na have shown this path to have the lowest energy bar-
rier on the class of orthorombic deformations. From
these considerations, the Bain path is a convenient tool
for investigating the energetics of the transformation. In
the past, it has been used in both phenomenological and
ab initio calculations of the energetics of MT.

Along the deformation path 1 ~cia ~&2, one obvi-
ously expects the total energy (or the enthalpy in the
constant-pressure regime) to undergo a maximum. The
nature of this maximum in the case of iron is not clear a
priori. At low temperatures and moderate positive pres-
sures bcc iron is ferromagnetic (FM), while fcc iron is
paramagnetic. Somewhere along the transformation
path, the ferromagnetism is to disappear. One can expect
that this magnetic transition plays a major role in the en-
ergetics of the martensitic transformation.

So far, no reliable information on the value of the
enthalpy maximum or the enthalpy profile as a whole is
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and magnetic behavior of the crystal lattice along the
Bain-deformation path are discussed. We show that, for
a given pressure, a first-order magnetic phase transition
occurs at a definite c/a ratio, resulting in a cusp on the
enthalpy versus c/a plot, and a volume discontinuity.
We show that the NM bcc and bct phases are (up to a
certain c/a) thermodynamically unstable with respect to
spontaneous magnetization. Moreover, the NM bcc
phase is unstable with respect to shear along the deforma-
tion path. Another unexpected result is that, though ex-
hibiting an interesting metamagnetic behavior, the FM
fcc phase also cannot exist: it is unstable with respect to
the shear deformation.

FIG. 1. The Bain correspondence between bct and fcc crystal
lattices. Solid lines, fcc unit cells; dashed lines, bct cell. Not all
the lattice points of fcc are shown.

available. No first-principles, microscopic calculations of
the total energy (or enthalpy) of iron along the Bain path
has been done thus far. Such calculations are the objec-
tive of the present work.

In recent years iron has been the object of extensive
study by various first-principles methods (for references
and comparison of results for iron obtained by different
methods, see, e.g. , Refs. 9-13). However, the self-
consistent spin-polarized calculations on bcc iron inevit-
ably failed to predict the relative stability of the FM bcc
phase with respect to the nonmagnetic (NM) fcc (see dis-
cussion in Ref. 13). This failure is believed to be mainly
due to the local-spin-density approximation (LSDA) used
in the calculations.

Because of this fundamental difficulty, at the present
time, an entirely ab initio analysis of the structural phase
transformations in iron is not possible. An alternative
approach is to introduce into the theory an adjustable pa-
rameter in order to make calculations more consistent
with experimental observations.

Along this path, we have chosen to calculate the equi-
librium magnetic moments as well as the magnetic contri-
butions to the ground-state energies of iron using the
Stoner model of itinerant ferromagnetisrn, ' rather than
performing spin-polarized calculations. The Stoner ex-
change parameter I can then serve as an adjustable pa-
rameter. Having made only one adjustment, such a pro-
cedure enabled us to perform the complete analysis of the
energetics of the bcc-fcc lattice deformation in iron.

We used the LMTO method' with the so-called
combined-correction term, ' and the Madelung electro-
static correction. ' Scalar-relativistic calculations on uni-
form meshes of 1540 points in the irreducible wedges of
bct Brillouin zones were done, with the exchange-
correlation functional of von Barth and Hedin. ' Also,
the frozen-core approximation was used. '

The plan of this paper is as follows. In Sec. II we dis-
cuss the Stoner model as applied to self-consistent non-
spin-polarized calculations, and briefly outline the pro-
cedure of the calculations. In Sec. III, we discuss the cal-
culations of structural properties of bcc and fcc
modifications of iron. Then, in Sec. IV, the energetics

II. STONKR MODEL
OF ITINERANT FKRROMAGNKTISM

AND PROCEDURE OF CALCULATIONS

The Stoner theory, first suggested in 1939,' has been
successfully used in recent years in estimating both the
equilibrium magnetization and magnetic energy of band
electrons. This was made possible as a result of a
rigorous formulation of the Stoner model as a perturba-
tion approach in terms of microscopic electronic
theory. ' Particularly, the fundamental parameter of
the theory, the Stoner exchange parameter I, was under-
stood in terms of density-functional characteristics. In
iron, the theory explained the metamagnetic behavior of
the fcc phase. ' ' Recently, some more light has been
shed on the metamagnetic behavior of fcc iron. The
Stoner approach in combination with self-consistent
non-spin-polarized calculations enables one to perform
the detailed analysis of FM behavior as well as identify
all the possible magnetic stationary phases, stable, meta-
stable, and even unstable, and find the areas of their ern-
ergence. Such an analysis, using traditional spin-
polarized calculations is at present either too cumber-
some and computationally expensive or even impossi-
ble

The Stoner model in its original formulation postulates
that the change of energy upon forming a FM state with
moment m consists of two parts. The exchange energy
contribution is simply —

—,'Im, where the exchange pa-
rameter I is a constant. The kinetic-energy term is found
by forming two subbands for spin-up and spin-down elec-
trons by fiipping m/2 spin-down electrons from just
below the NM Fermi level into the unoccupied spin-up
states just above the Fermi level. As was shown in Refs.
19—22, this procedure corresponds to the first-order per-
turbation theory in m/n, (n, is the number of valence
electrons per atom). Thus, for a given m, the magnetic
contribution to the total energy is

I

N(m')

where N(m) is the NM density of states averaged be-
tween the Fermi levels of spin-up and spin-down elec-
trons as found from the rigid-subband shift. The pro-
cedure of "constructing" N(m) is described elsewhere
(see, e.g. , Ref. 15).

The stationarity requirement, BE /Bm =0, gives,
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apart from the "trivial" solution, m=0, the criterion of
an emerging FM state:

TABLE I. Dependence of the equilibrium WS radius for the
FM bcc phase on the Stoner-parameter enhancement factor p.

IN(m)=1 . (2) s (a.u. )

(2.661)'
Suppose Eq. (2) has a solution, m. Then, the corre-

sponding FM state is stable (8 E /Bm )0) if

BN(m)/Bm & 0; (3)

otherwise it is unstable (c} E /Bm &0). However, even
if Eqs. (2) and (3) hold, the FM state may not occur if
E )0. In this case the FM state is metastable.

As for the NM state, m =0, it is stable and may coexist
with a FM state (metamagnetic situation), only so far as

1.000
1.025
1.050
1.075
1.090

'Experimental value, Ref. 34.

2.648
2.650
2.654
2.659
2.664

(a'E /am ) &0 (4)

or, equivalently,

IN(E~) & 1, (5)

and

K(r)= —,'[d E„,(r, m)/dm ]

Here E; and 1t,.(r) are, respectively, the eigenvalues and
the wave functions of the NM system; E„,(r, m) is the
exchange-correlation functional.

Until recently, the Stoner parameter I has been be-
lieved to be essentially a constant, independent of both
the volume and the crystal structure of the metal. Our
calculations for both fcc and bcc (Refs. 24 and 30) re-
vealed the monotonic behavior of I as a function of the
Wigner-Seitz (WS) radius, s. The magnetic energy, Eq.
(1), the equilibrium magnetic moment, m [as found from
Eq. (2)], and the equilibrium atomic volume happen to be
rather sensitive to the values of I. The idea of this paper
(as well as Ref. 30) is to adjust the value of I, so that the
equilibrium WS radius, s0, for the FM bcc phase is equal
to the experimental value. In Table I we compare the
calculated sa for I=pID [where I0 is the "ab initio"
value, Eq. (6), and P=1.000, 1.025, 1.050, 1.075, and
1.090]. One can see that for p=1.075 the equilibrium
WS radius, s0=2.659 a.u. , almost matches the experi-
mental value. Therefore, we have chosen p= 1.075 as the
"universal" enhancement factor; all the calculations for
the whole range of c/a values were done with this p. '

No other adjustments of any parameters were performed.
Our calculations were done for 17 c/a values:

0.92&c/a &1.46. For each c/a, self-consistent non-
spin-polarized calculations were performed for nine

where N(Ez) is the NM density of states (DOS) at the
Fermi level [N(Ez) =N(0)].

From the perturbation-theory analysis, ' I can be
found in terms of the NM system. From the linear-
response theory it follows that

I=f d r y (r)~E(r)~, (6)

where

values of the WS radius, s (2.521&s &2.788 a.u.). In
each calculation, after convergence had been achieved,
the Stoner parameters Ic(c /a, s ), Eq. (6), and then
I=1.075I0 were found and the averaged DOS, N(m),
was generated. Then the Stoner equation, Eq. (2), was
solved for the equilibrium magnetic moment, m, and the
magnetic energy E was calculated from Eq. (1). In a
metamagnetic situation, all the stable magnetic solutions
were identified.

In the next step, the total energy (consisting of the non-
magnetic, magnetic, and electrostatic contributions) was
approximated (with rms =0.03 mRy) by the six-term
function

E(c/a, s)=E&+E /f1 +E3/0 +E4/0

+E5/0 +E /0'

The pressure P and the bulk modulus B were then found
by analytic difFerentiation with respect to the atomic
volume Q.

We believe that the proposed procedure of using the
Stoner model may be extremely useful in studies of iron-
based systems. Not only does it allow one to make the
calculations faster and cheaper, it enables one to perform
analysis beyond the ability of traditional spin-polarized
calculations: The phase instabilities we will discuss sub-
sequently simply could not be found by the traditional
approach.

III. STRUCTURAL PROPERTIES OF bcc
AND fcc PHASES

We first will summarize the results for the bcc and fcc
phases of iron (see also Ref. 30). In Table II we compare
the calculated magnetic moment m(s0 ) and the bulk
modulus B(s0) for the bcc and fcc phases as well as the
bcc-fcc energy difference at absolute zero with the corre-
sponding experimental values. One can see that the sin-

gle adjustment resulted in good matches between calcu-
lated and experimental values for the most important
structural properties. The negative energy difference is
very close to the experimental value. Also, there is excel-
lent agreement for the bulk modulus of FM bcc phase.

From the physical point of view, the enhancement of I
(and thus the enhancement of spin-spin correlation,
known to be underestimated in the LSDA's) simply led to
an expansion of the FM lattice with the corresponding
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TABLE II ~ Comparison of calculated and experimental structural properties of bcc and fcc iron.

Calc.
FM bcc

Expt. Calc.
NM fcc

Expt.
FM fcc'

Calc. Expt.
ENM-fcc EFM-bcc

MRy/atom (kJ/mol)
Calc. Expt.

so (a.u. )

8 (mbar)
m (pz/atom)

2.659
1.689
2.223

2.661
1 67'
2.15'

2.588
3.122

2.62' 2.690
2.317
2.595

2.68"

2.4—2.8d
5.307

(6.947)
4.166g

(5.456)
3.692"

(4.833)

'High spin (HS).
Reference 34.

'Empirical calc. , Ref. 33.
Two-spin model, Ref. 33.

'Reference 35.
Reference 9.
gReference 33.
"Reference 36.

favorable shifts in the magnetic energy and the bulk
modulus.

The adjustment of the exchange interaction, however,
does not eliminate the drawbacks of the LSDA for NM
phases. The equilibrium WS radius for the metastable
NM fcc phase, so=2. 588 a.u. , is shifted too far away
from that of the FM bcc phase (2.661 a.u. ). One can see
from Table II and Fig. 2 that the relative change of equi-
librium volumes is about 9%, while the empirical esti-

mates based on experimental data give only 5%. The
bulk modulus is probably also too high.

Figure 2 shows the plots of the total energies versus s
for the NM and FM phases of both the bcc and fcc iron.
In Ref. 24 the metamagnetic behavior of fcc iron was dis-
cussed in detail. Here we shall focus primarily on the bcc
phase (the fcc curves are virtually the same as in Fig. 5 of
Ref. 24).

As one can see, the FM phase in bcc iron has the
lowest energy. The NM bcc phase was always believed to
be metastable —i.e., having a higher energy, but corre-
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FIG. 2. The total energies of fcc and bcc phases of iron vs
WS radius s. For the FM fcc phase only the energy of the HS
states is shown {see also Fig. 5). The dashed lines correspond to
the states unstable with respect to spontaneous magnetization.
The solid dots here and in other figures show the borders of sta-
bility.

FIG. 3. The parameter IN(EF) as a function of the WS ra-
dius s. A nonmagnetic phase is unstable with respect to spon-
taneous magnetization if IN(EF)) 1. IN{EF)=1 for the fcc
phase corresponds to the point in Fig. 2 ~here the NM fcc
phase becomes unstable (dashed line starts).
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sponding to a local energy minimum. However, the
unexpected significant result is that the NM bcc phase is
unstable with respect to spontaneous magnetization for
all volumes considered.

It follows from Eq. (5) that the NM phase is stable only
so far as IX(EF ) ( 1. However, X(EF ) in bcc iron is too
high for Eq. (5) to hold. Figure 3 shows IX(EF) versus
s. This result demonstrates the importance of distin-
guishing a "paramagnetic" phase from a "nonmagnetic"
one. This has been stressed in the literature (see, e.g.,
Refs. 9 and 38). Our point is that the nonmagnetic phase
in iron is not a good model for the paramagnetic phase:
the former is simply unstable. The Curie temperature
where the ferromagnetism disappears (1043 K in iron)
corresponds to the disappearance of the long-range mag-
netic order, not the spin polarization itself. The latter, in
the Stoner theory which neglects the local magnetic or-
der, disappears in iron only around 4000—6000 K; ' i.e.,
the local magnetic moments persist in bcc iron up to the
melting point.

Figure 4 shows the magnetic moments versus s. Note,
the plot for the bcc phase exhibits a "bump" in the vicini-
ty of so (2.661 a.u. ). This same feature, though much less
pronounced, can also be seen in Fig. 6 of Ref. 27.

The magnetic contributions to the total energies found
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-20-

E

E -30 "

-40-

-0.6
2.685

2.55
I

2.60

I

2.695 2.705
I I

2.65 2.70

s (a.u.}

I

2.75 2.80

3.0

FIG. 5. Magnetic energy E of fcc and bcc phases. Note
that the three ferromagnetic fcc phases have regions of metasta-
bility (E )0). An expanded plot is shown for the two LS
phases.
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2.55
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2.60 2.65
s (a.u. )
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2.70
I

2.75 2.80

1.0-

0.0

FIG. 4. Stationary magnetic moments as a function of the
WS radius. The plot for the bcc phase has a pronounced
"bump" around s =so (shown by an arrow). The dashed parts
on the fcc curve correspond to the magnetic states which are
unstable (8 E /Bm &0). The fcc plot is virtually the same as
Fig. 4 of Ref. 24.

-1.0
2.55 2.60

I I

2.65 2.70

s (a.u.)

I

2.75 2.80

FICi. 6. Bulk moduli vs s. As in the previous figures, the
dashed lines indicate the unstable nonmagnetic states.
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100

80- NM bcc

from Eq. (1) are shown in Fig. 5. The fcc phase is
metamagnetic: In a constant-volume regime there are
three stable ferromagnetic phases: high-spin (HS) and
two low-spin (LS1 and LS2) phases. The LS phases have
high volume and would correspond to very high negative
pressures.

The plots in Fig. 5 look quite smooth, though, in fact,
both the fcc and bcc magnetic energies undergo changes
of their second derivatives with respect to volume. As
one can see from Fig. 6, the bulk modulus of the FM fcc
phase has a maximum at s=2.690 a.u. , followed by a
volumetric instability (8 (0) at s=2.782 a.u. The be-
havior of the FM bcc bulk modulus is also somewhat
unusual. One could have expected a monotonic decrease
of B(s). Instead, the plot demonstrates a Hat minimum.
Of course, at some higher lattice expansion, 8(s) should
eventually reach zero.

Figure 7 shows the enthalpy plots. One can see that
the FM bcc—NM fcc phase transformation occurs at
P=145 kbar. Empirical calculations give 150 kbar for
this point. Experimentally, at 0 K, the FM bcc—NM hcp
phase transition would be observed at approximately the
same pressure.

Figure 8 demonstrates the equations of state for the
bcc and fcc phases. The experimental points ' for the
FM bcc phase closely follow the calculated curve, which
could have been expected due to the excellent agreement
of calculated and experimental bulk moduli (Table II).

1.15

1.10-

o Ref. 39
Ref. 40
Ref. 41

1.05

Q 1.00

0.95

0.90

0..85 I k I I I I I

-1 20 -80 -40 0 40 80 120
P (kbar)

160

FIG. 8. The equations of state for the iron phases. Qo is the
atomic volume of the FM bcc phase at P =0.

The plot for FM fcc of course reflects the peculiarity of
the behavior of the bulk modulus. Unfortunately, as we
pointed out in the Introduction, all the detailed calculat-
ed information on the FM fcc phase is not of much physi-
cal relevance since the latter is unstable with respect to
tetragonal shear deformation. These observations will be
discussed in the next section.

60

40

20

p

~ -20

-40

-60

-80
-1 20 -80 -40 0 40

P (kbar)
80 120 160

FIG. 7. Enthalpies of the bcc and fcc phases vs pressure. At
Po = 145 kbar the FM bcc and NM fcc phases are at equilibrium
(an arrow on the plot).

IV. BEHAVIOR ALONG THE BAIN PATH

From an intuitive point of view one could expect that
upon imposing a uniform deformation, the enthalpy plots
of both NM and FM phases would have double-well
shapes with minima at the bcc and fcc states and an in-
termediate smooth maximum at 1 ~c/a ~v'2. Such a
picture was observed in sodium * and recently in
copper.

Figure 9 shows results of our previous pseudopotential
calculations for the bcc-fcc Bain deformation in Na.
Smooth cur vess were obtained over the range
P= —15.4—200 kbar including the equilibrium pressure
Po =87.6 kbar.

Unexpectedly, for iron, the calculated picture is quite
different. Figure 10 shows our results for three pressures:
140, 0, and —120 kbar. At 140 kbar the FM bcc and
NM fcc phases are almost at equilibrium (the exact equi-
librium takes place at PO=145 kbar, as one can see in
Fig. 7). Though we already know that the NM bcc phase
is unstable with respect to spontaneous magnetization, we
still could expect that, disregarding the magnetic instabil-
ity, it should correspond to a local enthalpy minimum
along the c/a path. Instead, at all pressures, the NM bcc
enthalpies have a maximum: e.g., the NM bcc phase is
also unstable with respect to tetragonal (shear) deforma-
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70

40

~30

2Q

lp

p

-10-

point (and the cusp) shifts to the fcc direction, allowing
the FM phase to have a wider range of stability. At pres-
sures lower than about —110 kbar, the NM fcc is no
longer stable. At the fcc point one can see that with the
pressure decreasing the enthalpy of the FM state goes
down, becoming lower than that of the NM state, which
looks like a NM-FM phase transition (Figs. 3 and 7).
However, as discussed above, the FM fcc phase is unsta-
ble with respect to the tetragonal deformation. As a re-
sult, with such lattice expansion, the fcc phases (both FM
and NM) cease to exist, though we do not know how an
AFM phase would behave at such a negative pressure.
Our calculations suggest that the fcc-phase mechanical
instability (corresponding to vanishing of a shear
modulus) occurs at a fcc-bcc enthalpy difference of
11.067 mRy (14.487 kJ/mol).

The FM phases have larger volumes compared to their

~4Q I I I I I I I I I I I I I I I I I I

1.0
bcc fcc

FIG. 9. Enthalpy plots along the Bain-deformation path for
Na calculated using the pseudopotential method (Ref. 7).

90

25-
NM

20-
15-

i i

140 kbar

tion. The FM contribution stabilizes the bct phases near
the bcc one with an enthalpy minimum at c/a = 1. How-
ever, at high pressures, approaching the fcc region, fer-
rornagnetism disappears and the FM solution does not
correspond to an extremum (either a minimum or a max-
imum) of energy (or enthalpy). At lower pressures, how-
ever, where the FM solution does exist, the FM fcc phase
corresponds to an enthalpy maximum. This simply
means that the FM fcc phase is unstable with respect to
tetragonal deformation, and therefore cannot exist.

This is an important new result. In the past, in order
to explain the thermodynamics of fcc iron, a two-spin
model was postulated. ' It was proposed that a mix-
ture of two magnetic states —high-spin FM and low-spin
antiferromagnetic (AFM) states —could exist in fcc iron.
We have found, however, that a homogeneous FM state
in fcc iron is unstable. An AFM state can exist and has
been observed experimentally at low temperatures. " As
for the FM fcc phase, .it has been observed as precipitates
in Cu-Au alloys, and thin fcc films grown epitaxially on
Cu surfaces were reported to be FM. In both cases
finite-size efFects could be responsible for the relative sta-
bility of the FM fcc phase.

Thus, going along the Bain path from bcc to fcc, first
the FM bcc phase is stable, but near c/a =1.2, a first-
order phase transition occurs, and at higher e/a the NM
face-centered-tetragonal (fct) phase is stable. As a result,
the enthalpy plot is not a smooth double-well curve, but
has a cusp.

The plots shown for the three pressures have common
features. The FM and NM curves are almost identical in
shape for the three pressures, but shifted with respect to
each other. Upon lowering the pressure, the intersection

5

-10-
-15

30
1.0 1.1 1.2 1.3 1.4 1.5

25-
NIN20-~

15-
10-

0 kbar

-10-

30

1.0 1.1

I I

1 .2 1.3 1.4

-120 kbar

1.5

(c)
0

a

-&o -~
-15

1.0
I I

1.1 1.2
c/a

1.3 1.4
fcc

1.5

FIG. 10. The enthalpy plots along the Bain path for iron at
three pressures.
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72.0- -40-
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I
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I
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I
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fcc

1.5 -50
2.50 2.55

I
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l
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FIG. 11. Atomic volume vs c/a for P =0 kbar. The arrow
shows the volume discontinuity at the enthalpy cusp point.
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NM counterparts. Therefore, the first-order phase transi-
tions along the Bain path are accompanied by a consider-
able volume discontinuity at the cusp points. Figure 11
shows the plots of atomic volume versus c/a for I'=0
kbar. The arrow indicates the discontinuity in volume at
the cusp point, which is quite large —almost 10%. Be-
cause of the volume discontinuity, the apparent cusp
points from the curve intersections in Fig. 10 do not
properly represent the enthalpy barrier for homogeneous
lattice deformation. This can instead be determined from
the saddle point of dilatation-shear energy surface. In
Fig. 12 the contour plot for this surface is shown for the
bcc-fcc equilibrium pressure PO=145 kbar. The energy

FIG. 13. Ferromagnetic contributions E vs s for different
c/a. Solid dots indicate the points where FM phases cease to
exist (do not correspond to either a minimum or a maximum of
energy).

barrier for this case is found to be 9.750 mRy (12.762
kJ/mol).

As was mentioned above, the Stoner approach has the
advantage of calculating the NM and FM contributions
separately, thus defining the magnetic contribution to the
deformation resistance. As an aid to the development of
improved interatomic potentials for Fe, Fig. 13 plots the
FM contributions to energies versus s for different c/a.
This then can be added to the nonmagnetic part modeled
by simple interatomic potential functions (i.e., within the
embedded-atom method).

From a plot of energy versus e/a at constant volume,
the elastic constants of the bcc and fcc lattices can be es-
timated. Along the Bain-deformation path the modulus
responsible for lattice stability is c'=

—,'(c» —c,z). For
FM bcc at P =0, the calculated c'=0.849 mbar is twice
the experimental value, 0.475 mbar. We attribute this
discrepancy to the atomic-sphere approximation (ASA); '

more reliable values of elastic constants would be calcu-
lated if corrections for nonsphericity of the electron
charge density are taken into account.
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I
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V. CONCLUSIONS

FIG. 12. Enthalpy contour plot in the dilatation-shear plane
for Po=145 kbar. The energy values are in mRy. Asterisk
shows saddle-point deformation barrier (9.750 mRy). The coor-
dinates are g=(c/a —1)/(&2 —1); 8=(A —Ao)/Qo, Ao is the
atomic volume of the FM bcc phase.

Using the Stoner model with the adjusted exchange pa-
rameter, we have calculated the structural properties of
bcc and fcc iron and, for the first time, the energetics of
the intermediate states along the Bain-deformation path.
Unexpected and somewhat unusual features of the ener-
getics were discovered. It was found that the NM bcc
phase cannot exist due to magnetic and shear instabili-
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ties. Another important result is that the FM fcc phase is
also unstable with respect to tetragonal deformation.

Despite some of the quantitative uncertainties remain-
ing, these calculations clearly revealed a di6'erent class of
lattice-deformation energetics compared to the simple
metals previously investigated. A significant feature of
the smooth curves computed for Na as depicted in Fig. 9
is that second-order elastic constants (elastic shear modu-
li) of a metastable lattice soften smoothly as the condition
for lattice instability is approached. This is reflected in
the reduced curvature around the local enthalpy minima
of Fig. 9. In contrast, for Fe, the relative displacement of
two enthalpy surfaces (NM and FM) of nearly constant
shape defining the cusps in Fig. 10 show no such "precur-
sor" lattice softening as the condition is approached for
the abrupt loss of mechanical stability of the fcc lattice.
This accounts for the relative absence of lattice-instability
precursor phenomena in Fe-based alloys compared to
simple alloys. Further, the lattice-deformation enthalpy
barrier at Po is found to be 2 orders of magnitude higher
for Fe than for Na. This contributes to a substantially
higher interfacial energy which in turn increases the criti-
cal "driving force" (bcc-fcc energy difference) for nu-
cleation. This applies to both "classical" nucleation in-
volving nuclei with the fully developed product phase
structure and "nonclassical" nucleation involving nuclei
of intermediate structure. ' The latter type of nu-
cleation is predicted to occur if transformation proceeds
under conditions sufficiently close to lattice instability of
the parent phase. The fcc-bcc martensitic transformation
in Fe-based alloys typically nucleates at a fcc-bcc free-
energy difference of —1.3 to —1.7 kJ/mol. ' Based on

the calculations presented here, this amounts to only
10% of the critical energy difference for fcc lattice insta-
bility, as discussed in more detail elsewhere. ' Nonclassi-
cal nucleation is highly unlikely under these conditions.

We hope that the suggested approach will pave the
way for further detailed studies of the behavior of iron
and iran-based systems, including the structure and prop-
erties of martensitic interfaces.
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