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The asymptotic critical exponents of a ferromagnetic spherical model on a simple cubic lattice
with Ruderman-Kittel-Kasuya- Yosida interactions are calculated. These interactions are of long

range but oscillating in sign and therefore lead to the same asymptotic critical behavior as the
corresponding nearest-neighbor model.

It is well known that the critical behavior of d-di-
mensional systems with long-range interactions decaying
as 1/r"+ (a &0) may be diff'erent from the one of sys-
tems with nearest-neighbor interactions. For instance,
both the exact calculations within the framework of the
spherical model' and the renormalization-group theory
for the isotropic n-vector model have shown that in three
dimensions the susceptibility exponent y attains its short-
range value for cr&2, its mean-field value of y 1 for
a & —', , and values varying continuously with a for
&0&2.

Experimentally, considerable deviations from the
Heisenberg values towards the mean-6eld values were
found for the ferromagnetic alloys Fe3Pt and FePd3.
For these materials the so-called s dmodel h-as been ap-
plied in which it is assumed that there are fairly well-
de6ned 3d local moments on Fe atoms that couple with
itinerant electrons of Pd or Pt, giving rise to Ruderman-
Kittel-Kasuya-Yosida (RKKY) indirect s-d exchange
couplings which vary in space as

(~ ) slnx x cosx
X4

Here kF denotes the Fermi wave vector and R;J. is the dis-
tance between the moments localized at sites i and j of a
lattice. Because the term dominating the long-range be-
havior decays as I/R;J~, it was suggested that the critical
behavior of the systems will resemble the one of a system
with long-range interactions decaying as 1/r + with

0, which would explain why the exponent values of
Fe3Pt and FePd3 are modified towards the mean-6eld
values.

However, it is also possible to argue that the oscillating
behavior of the RKKY interaction with plus and minus
signs may cause, in effect, a short-range behavior. In the
present paper we therefore consider the ferromagnetic
spherical model with RKKY interactions, which may be
solved exactly in the asymptotic critical regime. It will be
shown that this system exhibits the same asymptotic criti-
cal exponents as the corresponding nearest-neighbor mod-
el. Because of the close similarity of the results for the
1/r"+ model between the calculations for the spherical
model and the isotropic n-vector model, we hope that our
results will also be valid for the more realistic n-vector
model. Our calculations proceed on a line totally equiv-

alent to the one of Joyce' for the spherical model with
I/r~+ interactions. We therefore discuss only the mod-
i6cations due the RKKY interactions and refer to this
classical paper for all details.

The derivations of Joyce which constitute a generaliza-
tion of the nearest-neighbor ferromagnetic spherical mod-
el of Berlin and Kac to further distant interactions are
valid for all types of interaction J;J(R;I), providing that
the lattice sums

with

y(co) - —,
' y(ca -0)D(co), (3)

4kF co 2kF + ta
D(to) 1+ In

4kFto 2 F ca
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The function D(to) indeed decreases monotonically with
increasing co. Furthermore, p(co =0) is positive for small
values of 2kFa. We have shown by numerical calculations
for a system with 100 spins that p(to 0) is positive for
0» 2kFa ~4 and also for other intervals with larger
values of 2kFa. In the limit 2kFa 0 the system certain-
ly exhibits a ferromagnetic ground state, whereas for
larger values more complicated ground states may occur.
For example, our numerical calculations show that for
T 0 K the ferromagnetic state is energetically more
favorable than the antiferromagnetic state for 0» 2kFa
&5 (and for other intervals). Therefore, in the following

we consider only values of 2kFa for which the ground
state is ferromagnetic and for which p(co =0) is positive.

The rest of the calculation is exactly in line with the
procedure of Joyce. ' The critical exponents a, p, and 7 of
the specific heat at T & T„ the spontaneous magnetiza-

+ oo +oo
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are all positive with p(co) & p(co -0) (see also Ref. 9). In
Eq. (2) the quantity Jt, t, is obtained from J;I by taking
the ith spin as an origin for the coordinates l (l~a,
..., lda) of the jth spin (a is the lattice spacing). In Joyce's
paper this restriction is fulfilled by considering positive J;~
monotonically decreasing with R;J. However, this restric-
tion is also fulfilled for the oscillating RKKY interaction
on a simple cubic lattice, for which the lattice sum is given
by
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tion, and the zero-Geld susceptibility for T & T„are cal-
culated from Eqs. (4.2), (4.9), and (4.12) of Ref. 1. The
saddle point z, entering these equations is calculated from
the saddle-point equation (2.9) and is for T= T, and
small magnetic Geld 0 determined by the lowest-order
term in co of the expansion for the function p(ro). Because
this term is proportional to m both for the RKKY in-
teractions and for the nearest-neighbor interactions, we
yield the exponents of the short-range spherical model,
i.e., a —1, P —,', and y 2.

The question arises whether the asymptotic short-range
behavior may be really observed in an experiment or
whether there are "residual" long-range features of the
system resulting in an apparent mean-field-like behavior
of the observed eA'ective exponents. One way to check this
would be to calculate analytically within the present mod-
el the correction to scaling terms up to a certain order in
the %'egner series. ' However, what the experimentalist
then needs to know is the temperature range where such a
truncated series is valid, which requires full control of the
convergence behavior of the series. Instead, we therefore
have calculated numerically without any approximation
the quantity"
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FIG. 1. Temperature dependence of y(T) for various values
of 2kFa.

using Eq. (4.12) of Ref. 1 with the saddle point z, deter-
mined from Eq. (2.9), inserting our Eqs. (3) and (4), and
performing the integration numerically. The exponent
y(T) is constructed in such a way that it approaches the
asymptotic critical value for T~ T, and the mean-field
value of y 1 for very high T. Figure 1 represents y(T)
for various values of 2kFa. For 2kFa 0 the quantity
y(T) decreases very rapidly from y 2 to y 1, so that
the experimentalist will not be able to observe the asymp-
totic short-range behavior. This is easy to understand be-
cause for 2kFa~ 0 the exchange interaction J~(R;J) ac-
cording to Eq. (1) changes sign for the first time at a large
value of R;J, say R;~(, and the system therefore exhibits a
residual long-range behavior as soon as the correlation
length g(T) is smaller than R;Jl. In contrast, for reason-

able values of 2k+a as in Fig. 1 the quantity y(T) de-
creases very gradually with increasing T, and experiments
like those of Refs. 3 and 4 should easily be able to resolve
the asymptotic short-range behavior.

To conclude, we have shown that the simple cubic fer-
romagnetic spherical model with RKKY interactions,
which are of long range but oscillating in sign, exhibits the
same asymptotic critical exponents as the corresponding
short-range model.

The authors are indebted to Dr. W. Lay and Dr. L.
Schimmele as well as P. Hahner and W. Tittes for helpful
drscussrons.

'G. S. Joyce, Phys. Rev. 146, 349 (1966).
M. E. Fisher, S.-K. Ma, and B. G. Nickel, Phys. Rev. Lett. 29,

917 (1972).
J. S. Kouvel and J. B. Comly, in Critical Phenomena in Alloys,

Magnets and Superconductors, edited by R. E. Mills, E.
Ascher, and R. I. Jaifee (McGraw-Hill, New York, 1971),p.
437.

4M. Seeger and H. Kronmuller, J. Magn. Magn. Mater. 78, 393
(1989).

5M. Fahnle, P. Braun, R. Reisser, M. Seeger, and H.
Kronmiiller, J. Phys. (Paris) Colloq. 49, C8-1201 (1988).

sM. Shimizu, Rep. Prog. Phys. 44, 329 (1981).
7T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
sT. H. Berlin and M. Kac, Phys. Rev. $6, 821 (1952).
9W. K. Theumann, J. Chem. Phys. 51, 3484 (1969).
'oF. J. Wegner, Phys. Rev. B 5, 4529 (1972).
"J.S. Kouvel and M. E. Fisher, Phys. Rev. 136, A1626 (1964).


