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Phonon modes in corrugated planes
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Under certain reasonable assumptions, the phonon modes due to the small vibrations of the
bond angles associated with the corrugation in the Cu-0 plane of high-T, superconductors are in-
vestigated. Two distinct modes are obtained. While one of them has a linear dispersion relation,
the other has a quadratic one. Both modes may be relevant to a possible enhancement of T,.
Even more relevant, perhaps, is the linear temperature dependence of the heat capacity due to the
quadratic mode at low temperatures. This may provide an alternative explanation of the recent
experimental findings.

One experimentally observed but seldom emphasized
feature of high-T, oxide superconductors, ' 3 such as La-
Sr-Cu-O, Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Tl-Ca-Ba-Cu-O,
etc., is the corrugation in the Cu-0 planes" where the z
coordinates of 0 and Cu are slightly different, the z direc-
tion being perpendicular to the Cu-0 planes. In contrast,
it is intriguing to note that in a parent nonsuperconduct-
ing compound such as La-Cu-O, the Cu-0 planes are flat.
In other words, the onset of superconductivity seems to be
accompanied by the simultaneous appearance of the cor-
rugation. So far, this corrugation has been ignored in the
current theories.

In this paper we propose to study the effect of the new
degrees of freedom associated with the corrugation. In a
flat plane, the implicit assumption is that there is no vibra-
tion mode consisting of particle motion normal to the
plane. In the presence of corrugation, the angular
stiffness pertaining to the deformation of the bond angles
becomes nonzero. This gives rise to new phonon modes in
which the bond angles execute small collective oscillations
while the bond lengths remain practically unchanged. It
is not difBcult to visualize that as long as the bond angles
are not far from 180 the angular stiffness is relatively
small, rendering the change of bond angles much easier
than the change of bond lengths. We may postulate an
angular stiffness k defined by r —kb8 where r is the re-
storing torque when the bond angle is deformed by 88.
There would then be phonon modes associated with these
b8 degrees of freedom. We expect these phonon frequen-
cies to be much lower than the usual phonon frequencies
which involve changes in bond lengths. We also expect
that the electrons would be strongly coupled to one of
these modes since it generally involves distorted charge
con6gurations. Hence it may help to enhance' the
electron-electron attraction and T,. More signi6cantly,
perhaps, it is found that the lower mode has a parabolic
dispersion relation at long wavelengths. In two dimen-
sions, this yields a linear temperature dependence in the
heat capacity which may be relevant to some recent exper-
imental findings. " At least it demonstrates that a linear
T term is not necessarily of electronic origin.

Since the qualitative features of the dispersion relation
of the phonon are only dependent on the types of interac-
tion but not so much on the dimensionality, we consider,
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FIG. 1. The corrugated one-dimensional Cu-0 chain with a
denoting the lattice constant.

for simplicity, a corrugated one-dimensional (1D) Cu-0
chain (Fig. 1). Also, we shall be interested in the collec-
tive motion associated with the b8 degrees of freedom, i.e.,
small vibration of the bond angles, assuming that the bond
lengths I remain unchanged.

Since each a&om in the corrugated Cu-0 chain can
move in a plane and there are two atoms (Cu and 0) and
two bonds in each unit cell, by assuming fixed bond
lengths we are left with two degrees of freedom in each
cell. In view of the restoring torque, it is natural to choose
the two orientational angles ai and pj of the two bonds
Cuj —~-OJ and OJ-Cui (as shown in Fig. 1) as the general-
ized coordinates. Correspondingly, we call the two atoms
CuJ —i and O~ together with their connecting bond the A~
bar for its rigidity and similarly the two atoms O~. and Cu~
together with their connecting bond the BJ bar. The two
bond angles at the vertices O~ and Cuj are then expressed
in terms of aj and pj as

8, J. aj+(tr —pj), 8,,J aj+)+(tr —p)) .

Accordingly, the restoring torques due to deforrnations of
the two bond angles will have the forms

—kvb8, J
—kv(baj —Bpj ),

—k,b8, ,J. —k, (baq+ )
—bpj ),

where b8, ,~ 8 —8p b8 8 8p baj =aj —ap, and

bpj pj —
pp, with 8p, ap, and pp [ ap ( g )8p] denoting

the equilibrium values of 8, J or 8, J, aj, and PJ, respec-
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tively; k, and k, are the angular stiffnesses of the two bond angles at the vertices 0 and Cu, respectively. As mentioned
above, the bond angular sti6'nesses ko and k, depend on the bond angle Hp and should go to zero for gp &80 . '

We now look at the relative motion between the centers of mass of the BJ—
~ bar and the B~ bar, which can be shown to

be governed, after linearization, by the equation

I, (ii~ —
PJ —

~ coseo)+I, (ii~ —
P~ coseo) k, [(baj~ ~

—bP~+ ~) —2(ha~ —
bPJ ) + (baj —

~
—

bP~ —~)]

+k, [(baj+( —bpj) —2(ha~ —bpj ()+ (baj (
—bpj 2)]—, (3)

where I, m, l, I, rn, I are the rotational inertias. Since the motion is constrained by intermediate bars, the rotation-
al inertia enter. Angle differences such as baj —bPJ be, J and baj+& —BPJ be, J enter because they represent bond
angle deviations that invoke the restoring torque. All generalized forces are now expressed in torques. This is why the
time rate of change of the generalized momenta is expressed in terms of the product of rotational inertia and angular ac-
celerations. For brevity, the detailed derivation of this equation is omitted here.

The other independent linearized equation describing the relative motion of two successive A bars can be similarly ob-
tained as

I~(P —a +~coseo)+I, (P —aj coseo) ko[(bPJ+~ —baj+~) —2(bPJ —baj)+(bPJ —
~
—ha~ —~)]

+k, [(Bpj+ ~
—baj+q) —2(b'pj —baj+) + (b'pj ~

—baj )] .

Assuming baj Ae' J' "', bPJ Se' "J' '; and substituting into (3) and (4) we obtain as usual the determinantal
equation

co L+ro [—4(1 —coska)]M+4(1 —coska) N 0,
where

L (I, +I, )sin zeo+(21 —coska) cos 80,Io+Ic
I.k. +I,k,

M (k +k, ) (1 —coseo) + (1 —coska) I,+I,
k, k,

N 2(1 —coska )
Io+Ic

cosOp,

(6)

The roots m are found to obey the dispersion relations

(co~) 2(1 —coska)[M~ (M —LN)' l/L.

Correspondingly the amplitudes A, S for the two modes are given by

(9)

[M+ (M —LN) ' ](I,e '"'+I, )coseo —L(ko+k, e ' ')
[M ~ (M' —LN) 'i2](I, +I,) —L(k, +k, )

(10)

In the limit of ka«1 we have LN«M ~ [(k,+k, )
&(1 —cos80)] and L~(I,+I,)sin 80, the dispersion re-
lations (9) therefore reduce to

(co+) ~2(1 —coska)2 2M
L

l

while the two corresponding normal modes (10) reduce to

(13)

(14)
2(k, +k, )

(I.+I,)(1+cose,) '

(ro )2~2(1 —coska)
2M

kokc

2(I.+I,)(k.+k, )(1 —cose.)

~ (ka)4
2(I, +I,)(k, +k, )(I —cos80)

' (12)

In the long-wavelength limit, we see from (13) that the
co+ mode describes the motion of the A bar relative to the
B bar within the same unit cell. For example, A

—S)0 represents the uniform positive angular defor-
mations at the 0-atom vertices (i.e., be, j baj —bPJ

b8, for every unit cell j) and the similar uniform defor-
mations (be, J baj+~ —b'pj be, ) at the Cu-atom ver-
tices or equivalently, the out-of-phase deformations of
x —8 ~ and 8, ~

—m, which describe the orientations of
the B bars and A bars relative to their neighboring bars,
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respectively. However, the geometric constraints imposed
by the rigid, unbendable bars are such that the 88, must
then be equal to 88, as ka~0. ' This means that al-
though there is strain in the chain, the strain is uniform
throughout the entire endless chain, thereby incurring no
net local restoring torque, thus leading to zero frequency.
This is, in fact, the physical origin of the extra (1 —cos-
ka) factor in (11) and (12). We might call the co~ mode
the optical mode in view of the relative motion of the A
and 8 bars within each and the same unit cell, provided
we keep in mind, in contrast to the usual optical phonon,
the vanishing frequency in the limit ka~ 0. From (14)
we see that the ro- mode describes instead the bodily ro-
tational motion of each unit cell as a whole relative to the
next unit cell or the in-phase deformations of x —8 J and
8, ~

—x, which is analogous to the usual acoustic phonons.
In the limit ka 0, the ratio of the deformation of each
cell given by A —S, to the amplitude A of the angular
deviation of a or % of P is proportional to ka, whereas the
same ratio for the m+ mode is of the order of magnitude
1. This one more power of ka is also present when we
compare the usual acoustic phonons versus the optical
phonons. In addition, the geometric constraints as repre-
sented by the extra (1 —coska) factor mentioned above,
again cause co —to vary as k rather than k.

So far we have dealt exclusively with a one-dimensional
chain (see Fig. 1). Since our real object is the modes of
the corrugated two-dimensional plane, one might question
whether the added dimension or the interchain coupling '

would alter qualitatively the characteristics of the co+
modes. The answer is no, based on the following physical
reasons. We recall first the analogous cases of the phonon
modes of a lattice of atoms with either two different atoms
per unit cell but all connected by the same springs, or two
similar atoms per unit cell connected alternately by two
different kinds of spring. In the former case, there are in-
trinsically two possibilities for the movements of the two
different atoms in the same cell. They either move in
phase (i.e., relative phase angle ( rr/2) or out of phase
(i.e., relative phase angle )x/2). In the latter case, it is
more appropriate to treat each unit cell as containing the
two different springs. Again there are only two possibili-
ties for the deformations (lengthening or shortenings) of
the two springs in each unit cell. They are either in phase
or out of phase. For both cases, the in-phase motion gives
rise to the acoustic mode, the out-of-phase motion to the
optical mode. As usual, the out-of-phase mode entails
larger restoring forces and has, therefore, the higher fre-
quency. Such arguments are essentially independent of
dimensionality. The change from a 1D chain to a 2D
plane merely adds a y degree of freedom to each x degree
of freedom that is present in the original chain. The in-
phase and out-of-phase possibilities associated with each
degree of freedom remain the same.

Our present corrugated system resembles more the case
of two different springs rather than two different atoms in
one unit cell, since the two bars in each unit cell are of the
same moment of inertia but the two angular stiffnesses k,
and k, are different. One thus expects similarly only the
two possibilities, the in phase and out of phase of the two
angular deformations of ~—8, J and 8, J

—rr (rather than

a~ and PJ). Any added dimension would simply add
another angular deformation variable to every previously
existing one. Hence the lower-frequency acoustic mode
and the high-frequency optical mode again emerge. Of
course, for our model of the corrugated system, there is
this geometric constraint imposed by the rigid, unbend-
able bars. Since this constraint is present independently
of dimensionality, the extra (1 —coska) factor in (11)and
(12) should also be independent of dimensionality. We
thus conclude that qualitatively the co+ modes predicted
here should persist in 2D corrugated planes.

It is interesting to compare with magnon. The co-
branch has a (ka) ~ long-wavelength behavior, so does the
dispersion relation of ferromagnetic spin wave (magnon).
However, the latter is due to a quite different sort of in-
teraction. The linearized equations of motion for fer-
romagnetic spin lattice' are

ro
— +' (4JS/A)(1 —coska) .

We observe that the (1 —coska) factor appearing here in
ro —is the same as the extra (1 —coska) factor in (co)
of (9). The right side of Eq. (15) is analogous to those of
Eqs. (3) and (4). The physical origin of this (1 —coska)
factor comes from the nature of the interaction potential
in the form of a scalar product of consecutive vectors. In
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F16. 2. A plot of m~/coo vs ka. Here we take Ii/Io 4 and
kJko 1; 80 175 in (a), 80 135' in (b). Notice the
difference in the vertical scale.

SJ ~ (2JS/A)(2' ——SJ——i
—Spir ),

where SJ— SJ ~ iSJ. The wave solutions SJ—
co~e' J "' lead to



PHONON MODES IN CORRUGATED PLANES 11413

o 2
I, cos (80/2)

The factor cos (8o/2) is put in to eliminate the 8o depen-
dence of k, . ' Here we have adopted I,/I, 4, k, /k, 1,
but 8o 175' for Fig. 2(a) and 8o 135' for Fig. 2(b).
The linear k and the quadratic k dependences for small k
of m+ and m —are demonstratably clear. We see that as
8o increases from 135 to 175' but with I,/I and k, /k,
kept fixed, the co —curves change very little while the m+
curves develop a higher and higher hump.

As we saw from Figs. 2(a) and 2(b), the ro curves lie
considerably below the co+ curves, and varies as k for a
considerable range of k. We may, therefore, calculate the
contribution to the low-temperature heat capacity by us-
ing the mode m Dk alone. In a two-dimensional
plane, it contributes a linear T term to the heat capacity

the magnon case, these vectors are just the spins at neigh-
boring lattice sites; in the corrugated-chain case, the vec-
tors are l, ~ and l„,~, i.e., the directed AJ and BJ- rigid
bars constrained to be joined together at the 0 and Cu
vertices. On the other hand, while the left sides of Eqs.
(3) and (4) are the usual second time derivatives of the
angles of orientation of the A and B bars yielding a factor
to, the left side of (15) is only a first time derivative of
the spins yielding a factor m because it represents the time
rate of change of the angular momentum or of the spin it-
self. Thus this (1 —coska) factor yields directly to-k in
the magnon case whereas it constitutes the previously
mentioned extra factor in Eqs. (11) and (12) [or Eq. (9)]
that gives rise to to+ —k and ro —k, respectively.

The co~ dispersion relations as computed according to
Eq. (9) are shown in Figs. 2(a) and 2(b) in which the nor-
malized frequencies to+ /too are plotted against ka, where

per unit area

c ~—kg
x 2 T
6 AD

(17)

Before experimental confirmation of this to mode it is
difficult to estimate the coefficient D which involves the
angular stiffnesses k, and k, . Experimentally, it has been
found that there exists a linear term in T in the specific
heat for various high- T, superconductors " with the
coefficient y of order of magnitude ranging from 10 3 to
10 J/K mol. When the doping is not sufficient for the
onset of superconduction, the linear term is found to be
absent. If corrugation indeed appears together with the
superconduction, it is tempting to ascribe the linear T in
the specific heat to our unusual phonon mode. If this is
the case, the coefficient D should be of order of magnitude
about 10 to 10 m sec ', and the angular stiff'nesses

k, and k, should be of order of magnitude about 10 eV or
higher.

In conclusion, the unusual phonon modes we have found
here are based on the relative angular motions between
neighboring bonds in the corrugated structure, where the
bonds are assumed rigid. We saw that it was the special
constraints imposed by the assumed rigid, unbendable A
and 8 bonds that gives rise to the extra factor (1 —coska)
which, in turn, leads to the extra k dependences compared
to the usual phonon modes. These unusual modes, aside
from their possible relevance to the observed linear heat
capacity and enhanced T„are interesting in their own
rights. Experimental detection may be challenging and
rewarding.
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