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Spin-wave velocity and susceptibility for the two-dimensional Heisenberg antiferromagnet
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The two physical parameters needed to specify the long-wavelength properties of a spin-&
quantum antiferromagnet are determined numerically. The fluctuation-induced renormalization
of the stiffness constant differs by 40% from the expansion results of Oguchi, necessitating a cor-
responding adjustment in the value of the exchange deduced from the measured correlation
length.

It has been established numerically' and by other
means that the two-dimensional spin- —,

' Heisenberg anti-
ferromagnet on a square lattice has a conventionally or-
dered ground state. The staggered magnetization 0 is in
fact 60% of its classical value. ' The long-range order,
together with the probable absence of any topological
term, makes the nonlinear cr model (NLo) a highly plau-
sible representation of the antiferromagnet. There are
then two nontrivial parameters to be determined which
completely 6x the long-wavelength properties of the model
and allow comparison with experiment, namely the uni-
form field susceptibility g and the stiffness constant p.
Their bare values enter the NLo model as
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for the smaller scales but serves to smoothly cut off the
large wave numbers in the sum over the Brillouin zone
which do not contribute to the leading L dependence any-
way.

Our data, determined by the von Neumann-Ulam
method of Ref. 2, are given in Table I and plotted in Figs.
1 and 2. Our units are defined by
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where the sum runs over all nearest-neighbors pairs of
sites (ij ) and the S; are Pauli matrices. For the quantum
numbers S in (2) we use physical units, i.e., S can assume
any integer value ~ L /2. To present our results in a con-
vention free manner, we divide out the spin-wave values of

where Q is normalized to Q 1 and m is the magnetiza-
tion density.

We noted in a previous publication that knowledge of
the Heisenberg ground-state energy as a function of lat-
tice size (L by L sites, L even) and the total spin S suffices
to determine g and p by the following asymptotic formula
for the energy per site:
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where the spin-wave velocity c, p/g. To make the
various terms plausible, we note that S should appear as
S($+1) on quantum mechanical grounds and the factors
of L in the last term give the proper limit for L large, S/L
small but nonzero. The dominant finite-size effects in-
volve the renormalized spin-wave velocity since it is only
the long-wavelength modes that sense the presence of
boundaries. The numerical coefficient, 1.437, is universal
and was found by linearizing the Heisenberg Hamiltonian
and computing the spin-wave energy exactly on a series of
L XL lattices. The linearization is not quantitatively valid
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FIG. 1. Ground-state energy, S 0, per site vs (10/L) in
units of J. The solid line has a slope of —8.85x10 and an in-
tercept of —2.669~0.0011 (statistical error only). To assess
systematic errors we show a fit (dashed hne) omitting the 4&4
point which gave an intercept of —2.665 ~ 0.002 and a slope of—1.03 x ].0
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TABLE I. Ground-state energies for the Hamiltonian (3) in

units of J as a function of total spin S on L xL square lattices.
The error bars represent sampling errors only. The energies
given to 10 places were determined by direct iteration of the
Hamiltonian and are exact.

0
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8

Energy

4x4
—2.807 120802
—2.662471 218 1
—2.379421 9959
—1.959 134393 3
—1.404 319875 8
—0.716549 565 6
0.088 562 172233
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—2.7120~ 0.0013
—2.6839 ~ 0.0005
—2.6202 ~ 0.0002
—2.4026 +' 0.0010
—2.0685 ~ 0.0006

8x8
—2.6860 ~0.0015
—2.6590+' 0.0006
—2.5905 ~ 0.0030
—2.4719 +' 0.0020
—1.9032 ~ 0.0007
+ 1.503 595 830 8

FIG. 2. A plot of the scaled energy difference, L4[E(S,
L) E(O,L)]/S—(S+I)= 2 g,s', vs S(S+1)/L for the data in

Table I. The ordinate is scaled as suggested by Eq. (2). The
abscissa is essentially the squared magnetization density, and

the four tabulated values of L are represented by distinct sym-

bols. The statistical error bars are large for small S since nearly

equal energies are being subtracted, but are negligible for
abscissa ~0.01. Since the 6x6 and 8x8 points for abscissa
&0.01 are possibly systematically low because of incomplete re-

laxation and the data for given L is otherwise independent of
abscissa; we have done the extrapolation to infinite L using just
the points between 0.01 and 0.02. The dashed line represents
this value which also appears in Eq. (4).

0

8
16
24

12x 12

—2.6680 ~ 0.0026
—2.648 08 +' 0.0030

—2.591 +' 0.006
—2.391 ~ 0.004
—2.052 ~ 0.003

difference of S 0 and 30 (two spins reversed from fully
polarized) for the 8x8 lattice, an effective Z» 0.867
~ 0.001. This all accords well with a simple classical cal-
culation at zero temperature which predicts that the ener-

gy is quadratic in the magnetization until it saturates.

c, andy:

cJ(4J2J) Z, 1.18+'0.10,

32Jg Zz 0.71 ~ 0.04
(4)

The error bars represent sampling errors plus our estima-
tion of the systematic errors. The latter are particularly
large for c, since we took the average of the slopes in Fig.
1.s For g, we took the data for g,g' in Fig. 2 and plotted it
separately against both 1/L and 1/L . The points did not
display a clear preference for either power law, so we
quote the average of the two with a standard deviation
equal to their difference. To obtain a g smaller than we
quote would require extrapolating with a power of 1/L less
than one, which is precluded since (2) is analytic in I/L.

It is interesting to note that the S dependence in (2)
works remarkably well for all spins. There is no notice-
able slope in Fig. 2, and Fig. 3 plots the 4&4 data out to
the maximum spin possible. In addition we 6nd, from the
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FIG. 3. Energy per site as a function of S for the 4x4 lattice.
The solid curve is c S(S+1) with c fit to the first two points.
Note that S 8 represents a fully ferromagnetically polarized
system.
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Oguchis has computed the O(l/S) corrections to spin-
wave theory and finds for S

Z, 1.158,

Z~ 0.449.
(5)

The velocity factor agrees well, but the susceptibility
does not. The nature of the deviation suggests that the
S ' series for g has important oscillations, which is not
too surprising since S —,

' is hardly small. Our result is
closer to spin-wave theory and confirms the tendency not-
ed in Ref. 10 for the one-hole energies also, that the semi-
classical limit works remarkably well for S

At present, there is a reasonably well-known value of p
from the correlation length in La2Cu04 which yields J
after correction by the factor Z, Z» 1.0+ 0.20 from (4)
rather than 0.602 from (5). (A value of Z, Z» greater
than one is curious but not excluded by any rigorous argu-
ment we are aware of. Using just the solid line in Fig. 1

would imply Z, Z» 0.84.) We 6nd from Ref. 11,J-750
K. Another determination of J from light scattering re-
quires very different corrections and gave a somewhat
larger J. ' It does not appear excluded that direct mea-
surements of c, and g will someday be available and per-
mit a more accurate comparison with the Heisenberg
model.

Note added in Proof. Since this paper was submitted,
two more accurate Green's function-Monte Carlo studies
became available which gave slightly better energies but a
comparable value of Z, . ' There is significant disagree-
ment with the series estimate of Z~=0.52 ~0.03 in Ref.
14 and also with Ref. 15.
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