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Variational ground state of the model of a iwo-state system coupled with phonons
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The ground state of the model of a two-state system coupled with phonons is studied by a vari-
ational method. Two trial states, the displaced state, and the displaced-squeezed state, for the
phonon subsystem are compared, and their dependence on tunneling parameter 6, phonon fre-
quency rv, and coupling strength g is analyzed. We 6nd that for 6/rv«1 the displaced state is
more stable for g/cv & 1, while the displaced-squeezed state is preferable for g/ro ) l.

Recently, great interest has been raised in the dissipa-
tive effect of a bath on a quantum tunneling problem or on
a two-state system, ' e.g., dissipative macroscopic tunnel-
ing phenomena and atomic tunneling states in solids.
Using a renormalization-group procedure, Chakravarty
and Bray and Moore have shown that, for the Ohmic dis-
sipation and at zero temperature, there exists a sharp
localization-delocalization transition. It is believed that
such a transition is the result of infrared divergence in-
duced by the low-frequency phonons of the bath and that
it depends strongly on the phonon behavior, especially the
low-frequency phonons of the coupling system. Unfor-
tunately, we know little about the ground states of pho-
nons under coupling with a two-state system. Only a dis-
placed state has been proposed ' as the variational
ground state, and it gave precisely the same conditions
for the localization-delocalization transition as that of the
renormalization-group procedure. Such a method was
also extended to a system of dissipative quantum tunnel-
ing diffusion. 'o It is understood physically that the cou-
pling with a two-state system has two different influences
on the wave function of phonons: displacement and defor-
mation. The displaced state only considers the former and
omits the latter. For high-frequency modes and weak
coupling, the displaced-state approximation may be good,
while for low-frequency modes and strong coupling, such
an approximation is not sufficient, and one must take ac-
count of the effect of the deformation. Recently, we have
proposed" a displaced-squeezed state as the variational
ground state of phonons coupled with a two-state system.
This new state includes both displacement and deforma-
tion effects. The main purpose of this Brief Report is to
compare these two variational ground states, the displaced
state, and the displaced-squeezed state, and to show which

where 6 is the bare tunneling parameter, cr's the Pauli
matrices, bt and b the phonon operators, and g the cou-
pling coefficient. Applying, as usual, the unitary transfor-
mation

S -exp[cr, (g/to) (b t —b)] (2)

to (I), and then for the two-state system in its ground
state (rr„ I), we have an effective Hamiltonian for pho-
non subsystem"

Hg tab tb Acosh[(2g—/ro)(bt —b)] —g2/to. (3)

Because of the nonlinear interaction in Hvf, it is difficult
to Gnd an exact solution, and one must look for approxi-
mations. To zero order in g, the ground state of Hvf is a
vacuum state, or a displaced state in its original base. Up
to g, the ground state is a squeezed state, or displaced-
squeezed state in its original base. In the following, we
will use both the displaced state and the displaced-
squeezed state as variational ground states to calculate the
ground-state energy of the Hamiltonian (1).

The variational displaced state has the form

(4)

where ts„, denotes both the vacuum state for phonons and
the symmetric state for the two-state system (cr„p„„

is more stable.
For simplicity, we only consider the model of a two-

state system coupled with one phonon mode. It is not
difficult to extend the method to a many-mode problem.
The Hamiltonian is'

H —Acr„+ rob tb+g (b t+b) rr, ,
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p„„).The energy of pi is

E] &p~ ( H ) P~) Lkx]+mA, 2',
with

xl exp(-21. ') .

(5)

(6)

j. +4am'~
E~ —m ax~+P (1+2ax|) ' (8)

x) -exp[ —2P/(1+2ax)) '],
with a-a/m, P-(g/m)'.

The variational displaced-squeezed state is"

(9)

exp[ —a, (g/m)(b t —b)]exp[ —y(b b+—2)]y„„.

(10)

Using the properties of the unitary transformation
R exp[y(b2 —6+2)], we can calculate the energy of P2'.

E2 &y2 l H I y» -—m(«2+p —»nh'2y),

with

exp( —2Pe '") . (12)

Minimizing E2 leads to the equation for variational pa-
rameter y

y s ln(1+8aPx2), (13)

The condition 8E~/aA, 0 determines the variational pa-
rameter A. as

X -g/(m+2ax)) .

Then (5) and (6) become

and then

E2 —m[ax2+p+ 2

——,
' (1+8aPx2)' ' ——,

' (1+8aPx2) ' '] (14)

exp[ —2P/(1+8aPx2) ' ] . (l5)
Now we want to compare E~ with E2 in the limit

a d,/m«1, where the usual adiabatic approximation
works. ' It can be proved Pa.; & 1/2e (i 1,2) for a«1.
Then (8) and (14) can be approximated as

E)- m(—ax)+P)+O(a'), (16)

E2~ —m(ax2+P)+O(a ) . (17)
Based on (9) and (15)-(17), we have a characteristic
value P, satis1ied for xl & x2 and E~ &E2 for P&P, ;
x~ & x2 and E~ &E2 for P &P,. P, is determined by
xl x2 (orE~ E2), then combining (9) and (15) gives

(1+2ax~ ) (1+8aP, x~ ) '

Taking into consideration a« 1 and x~ &1, we have
P, (g/m) 1+O(a ). Namely, the displaced state (4)
is more stable for (g/m) & 1 and the displaced-squeezed
state (10) is more stable for (g/m) & 1.

In conclusion, our study shows that the interaction with
a two-state system has two different effects on phonon
states: the displacement and the deformation. For high-
frequency phonons and weak coupling, the displacement is
dominant and the displaced state is more stable. While
for low-frequency phonons and strong coupling, one must
take account of both effects and the displaced-squeezed
state is preferable.
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