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In this paper we suggest a method that combines the effective-field renormalization group with
the discretized path-integral method to study the critical behavior of the transverse Ising model in a
quantum-spin system. We find the results on a critical transverse field and critical exponent at zero
temperature to be closely comparable to other results. This demonstrates the utility of this method
in studying critical properties of quantum-spin systems.

I. INTRODUCTION

The transverse Ising model (TIM) in a quantum-spin
system can be described by the Hamiltonian

H = —g J; o';oi —0+ cr',
l, J J

where the o. and cr'- are Pauli spin matrices,

l 0 0 1
g Z ~X—

0 —1 ' 1 0

Q is the transverse field, and J; is the exchange interac-
tion between spins in nearest-neighbor sites i' and j.

TIM was originally introduced by de Gennes as a
pseudospin model for hydrogen-bonded ferroelectrics
such as KH2PO4, ' in which the phase transition is as-
sociated to order-disorder phenomena with tunneling
effects. Since then it has been used to study a variety of
other systems, for example, magnetically ordered materi-
als with strong uniaxial anisotropy in a transverse field,
rare-earth compounds with a singlet crystal-field ground
state, and cooperative Jahn-Teller systems like DyVO4. '

Recently TIM has also been used in meson-field theory
and as a prototype system for lattice gauge theories. '

More recently, much interest has been focused on the
quantum-spin system problem, such as in the anisotropic
hierarchical lattice Heisenberg model, ' tunneling-
induced disorder at zero temperature, "and critical be-
havior. ' '' There is, however, a difficulty in investigating
critical features in such quantum systems. We must deal
with the significant technical difficulty of solving a
many-body problem involving noncommuting operators.
In the TIM case, Suzuki'" realized that a little-used rela-
tionship known as the Trotter-product formula' allows
one to dispense with noncommutivity at the price of in-
troducing another coordinate into the problem. By using
the Suzuki-Trotter formula, the partition function of the
quantum system in d dimensions can be rewritten as

the corresponding partition function for a (d+1)-
dimensional classical system (fully commuting). On the
other hand, the discretized Feynman path-integral repre-
sentation of a quantum-mechanical partition function
was, in form, nothing more than a classical con-
figurational integral. ' ' Therefore, by means of the
discretized path-integral representation (DPIR), the
quantum Hamiltonian in TIM can be transformed into a
classical one, and the resulting classical system can be
treated by analytical methods. DPIR showed an easy
way out of the difficulty.

There exist a variety of sophisticated techniques for
studying the critical behavior of TIM in a classical spin
system. ' Recently, the mean-field renormalization-
group (MFRG) method, combining mean-field results for
a small cluster of spins with the renormalization-group
idea, has been proposed to study the critical properties of
the lattice-spin system. ' By using MFRG with a dilut-
ed TIM, quite good results have been obtained using the
simplest choice for the cluster. According to the essen-
tial thoughts of MFRG theory, an effective-field
renormalization-group (EFRG) method has been present-
ed and applied to the Ising model system, with the results
showing further improvement over MFRG.

In this paper, we combine the EFRG with DPIR to
deal with the TIM in quantum-spin systems, and results
on the critical value of the transverse field and critical ex-
ponents are obtained.

II. PATH-INTEGRAL FORMULATION

For the quantum-spin system, the spin at each site is in
a state corresponding to one of the two eigenfunctions of
0

l 0
0 Uj 1 and ( Uj 1

The partition function of the lattice system can be written
as

40 11 264 1989 The American Physical Society



EFFECTIVE-FIELD RENORMALIZATION-GROUP STUDY FOR. . . 11 265

Z=Tre ~ =g &Ule

where for an X-site lattice

(4} with

f3—F=ln Tre ~ and P—F0=In TreH PI10
(12)

PJo;'oj'~ —(J/p)U; U) = —(J/p} y U "U'", (6)

and the transverse field term

Jp

PQo*~U a U +c =a g O'"U"+"+cJ J — J J Jt=l

with

(7)

is a direct-product wave function for the whole system.
We will reformulate the quantal TIM Hamiltonian (1)

in a DPIR, "' thereby creating a classical problem out
of the quantum-spin problem. The procedure for accom-
plishing this task has already been described by some au-
thors '" so we will not belabor it here. We only give a
brief interpretation of this idea, which is to convert the
quantal two-state spin on each site into a p-component
vector spin U ( O'", U' ', . . . , U'i') and (eventually) to let
p to infinite. Each component U'" (t = 1,2, . . . ,p) is tak-
en to be a classical two-state variable, i.e., U'"=+1.
With this description and DPIR, the spin-spin interac-
tion becomes an average over spin components

( V)0= Tr( Ve ')/Tr(e ') . (14)

Since Eq. (11) is ordered in powers of the inverse tem-
perature p= 1/k~ T, it would appear that we were devel-

oping a high-temperature series. However, in path-
integral applications, the cumulants themselves depend
on P through the temperature dependence of the refer-
ence system Hamiltonian. In fact, this temperature
dependence turns out to be just what is necessary to allow
well-defined calculations at all temperatures, including
ground state. It would therefore be better to regard Eq.
(11) as an expansion in successively higher orders of fiuc-
tuations.

III. EFFECTIVE-FIKI.D RENORMALIZATION-GROUP
(EFRG) METHOD

and the cumulant

c, (v)=& v&, ,

c,(v) =
& v'&, —

& v)', ,

c, ( v) =( v'), —3( v'), ( v), +2( v),',
where ( . ) denotes an average in the reference system

a =
—,'In[coth(PQ/p)],

c =
—,'in[cosh(PQ/p)sinh(PQ/p)] .

Combining the above considerations, the final form for
the partition function in DPIR is obtained as

Z=g g g exp (PJ/p) g U U
U, U2 Uz

In order to study the critical behavior of the TIM in a
quantum-spin system whose Hamiltonian is expressed by
Eq. (1), we will combine the DPIR with the EFRG
method. According to the EFRG procedure, we take the
simple choice for the clusters, that is, X'= 1 and X =2
spin clusters, respectively, and also restrict the structure
to cubic.

For X'= 1 single spin cluster, the Hamiltonian is writ-
ten as

where

+g U. a UJ+c'
J H~ — g J;J0j~ 0'

i Q o'i'
J

(15)

(a), , =a5, , „(a),=a, and c'=%pc .

The starting point is that the new classical spin Hamil-
tonian can be broken up into a reference part, involving
only the single-site terms

I3H0 =g UJ"a UJ +—c ',
J

and an interaction part

(rr*, &~ = (exp D„XJ»a,* ')I(e)l =e''
J

(16)

where ( . ) indicates the canonical thermal average,
the differential operator D„=B/8 axnd f (x) is defined
by

By use of the exact Callen identity and the di6'erential
operator technique, within the framework of efFective-
field theory with correlation, ' the longitudinal magne-
tization is given by

—pv=(pJ/p) g U;.UJ .
f(x)=, tanh[P(Q' +x )' ] . (17)

The full Hamiltonian H =Ha+ V would be suitable for
perturbation theory. The free energy I' of the full system
can be expressed in terms of the reference system free en-
ergy Fa and the cumulant expansion in the reference sys-
tem

Using the identity

A, O .
e ' =coshAt+0 jsinhk

and

OO ]13F= pF0+ g—
,

( ——p)"c„(V),n!
e "f(x)=f (x+a),

the expectation values (exp(D„+J JJo') ) reduced to
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(exp D„XJrpr )=()i[cosh(J'rD„)
J J

+ err s(nh(Jr D„)]) .

2

z.=n z'"
j=1

(19) where

(27)

As discussed in previous works, ' we use the decou-
pling approximation and take each boundary spin (cr')
Axed to b . We are interested in studying the critical be-
havior of the system, expanding the right-hand side of
Eq. (16) with respect to (o'), and retaining only terms
linear in (o'). We find

PZ(j) — y g . . . y exp o y U(g)U(&+])
J J

U(1) +1 U(2) pl U(P)
J J

P
+ '

y. U,'"+c

(o', ) .=G, (a', ]r')b',

G](a', X')=2d cosh " '(J'D„)sinh(J'D )f(x)~

(20)

(21)

(28)

This equation is nothing more than the partition function
of a one-dimensional Ising model in a field with periodic
boundary conditions and may be evaluated exactly

with u' =—Q'/J', I("=p'J', p'=I/k&T', and d is the di-
mension of the system with cubic structure.

Similarly, the Hamiltonian for the two-spin cluster is
given by

z.")=[a,+ v+[a,-v,
Q, =cosh(PA, , /p)cosh(PQ/p)

+[cosh (Pi, /p)cosh (PQ/p) —1]'~

(29)

(30)

H~= Jo'—, o2 Q(—o]+oz) g—Jjo'o]
JW2

Taking the limit that P —h (x), an exact quantum-
mechanical result is obtained

Hz = —Jcr]o 2
—Q(o]+cr2) —

A, ]o']—A2o 2, (23)

(22)
j&l

It is convenient to add a generating magnetic 6eld 8 at
each site along the z direction. " Equation (22) then be-
comes

Zo'=2cosh[P(A, +Q )' ]

The next step is to calculate the first cumulant

a lnZ&" O lnZ,'"
& V&,= —(JIP')

1 2

where we have taken

PV= —(J/p)U] U2= —(J/p) g U']" U2" .

(31)

(32)

(33)

B+g J]jo'j
JW2

A2= B+g J2jo j
j&1

(24)
Accordingly, the final free energy expression through
n = 1 in Eq. (11) is

PI'= g inI2cosh—[P(A, . +Q )' ]I
As discussed in the above section, the Hamiltonian (23)
can be rewritten in l3PIR,

2 tanh[P(~,'+Q')'"]
2 2 ]ry2 j(Aj+Q )

(34)

pH~ (pJ/p}il] ll2+ g (Uj '0 uj +hj'llj+pc )
j=l

(25)
The average magnetization ( cr;+ o z }can be obtained by

where

hj =(PAj/P )(1,1, . . . , 1) . (26) (c 1 2) c(rrgg ) (35)

The partition function of the reference system corre-
sponding to Hamiltonian Eq. (25} is reduced to a product
of the single-site partition function

Similarly, introducing the differential operators
D„=8/Bx and D~ =8/By, and using BAj/M =1
(j= 1,2), then the above equation becomes

(rrr+rrs)rr (exp 'D„X err +Dr X rrr )(J(x y)+g(x y)]( —r —p
j%2 j+1

(36)

where the f (x,jr) and g (x,p) are defined by
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tanh[K(a +x )'/ tanh[K(a +y )'/ ] tanh[K(a +y )'/ ] 2 K sech [K(a +y )'/ ] 2
(~2+x2)1/2 (&2+y2)1/2(~2+y2)3/2 2+ 2

(37)

g (x,y) = tanh[K(a +y )' ] tanh[K(a +x )'/ ] tanh[K(a +x )' ] 2 K sech [K(a +x )' ]y 1+ X + X(~2+y 2)1/2 (~2+x 2)1/2 (~2+x2)3/2 2+ 2

Let the boundary spin ( o ~. ) =b and, in the vicinity of the critical point, let us take only the linear term of ( o. . ), then

(38)

where a —=0/J, K =PJ, and

G2(a, K)= (cosh " '(D, )cosh (D )sinh(D )+cosh '(D )cosh (D„)sinh(D, )]
(2d —1)

X[f(x,y)+g(x, y)]~„ (39)

Combining Eq. (21) with Eq. (39) with a rescaling as-
sumption, the fixed-point equation is obtained

G1(a,K, ) =G2(a, K, ) (40)

a=a, E
a

where l is the rescaling factor and the derivative is taken
at the fixed point of the particular set considered. We
have known that MFRG gives poor estimates of the criti-
cal exponent. This can be traced to an unsatisfactory
definition of the length scaling factor l = (N/N')' ",
where d is the dimensionality, and N and N' are the num-
ber of spins in two clusters. A new definition that im-
proves the estimates for the critical exponent has been
proposed, wherein the length of the cluster is measured in
terms of the number of interactions, including interac-
tions with the surrounding mean field. ' ' Here we also
use the new definition to calculate the critical exponent
y for TIM. In Tables I, II, and III, results for a„ I,
and y are given and compared to predictions from other
techniques.

We can find from Table III that the critical exponent

TABLE I. Critical transverse field n, for TIM.

where K, is the critical coupling. The critical value of
the transverse field at which T, goes to zero can be ob-
tained by letting K,~ m in Eq. (40), meanwhile, the criti-
cal exponent y can also be estimated from the recursion
relation

value has been improved by means of the new definition
of the length scaling factor. The reasons for taking the
new definition are clear: Since the cluster considered is
surrounded by an effective field, it stimulates a larger
cluster than that defined by the old scaling definition. On
the other hand, the new definition for anisotropic scaling
is consistent with the standard procedure used in finite-
size scaling. Actually, as some authors have shown
the new definition of the length scaling preserves the con-
vexity of the free energy. This means that heat capacity,
susceptibility, etc., will be positive. By use of other
choices for the scaling factor, there is no guarantee that
the free energy will be convex. Therefore, we can under-
stand that the new rescaling factor including the anisot-
ropy could give a good critical exponent y for TIM.

IV. DISCUSSION AND CONCLUSION

In this paper, we have used the EFRCx to study the
critical behavior of TIM in a quantum-spin system with
DPIR in which the Hamiltonian in the quantum system
is transformed into the classical Hamiltonian, thereby
creating a classical spin problem from quantum problem.
Our results compare well with other approximation
methods.

TIM in a quantum-spin system proved di%cult to use
in solving a many-body problem involving noncommut-
ing operators. With the EFRG perturbation expansion
for the Hamiltonian of a two-spin cluster, the direct diag-
onalization cannot be carried out. However, EFRG leads
to considerable improvement over other frequently used
real-space renormalization-group and MFRG methods
without involving much more computational work. It is

Lattice

z
MFRG (Ref. 23)
EFA (Ref. 31.)
Kirkwood (Ref. 11)
Present work
MFA
SE (Series expansion)

Square

4
3.334
2.752
3.225
2.988
4
3.04

Simple
cubic

6
5.348
4.704
5.291
4.946
6
5.08

Lattice

z
Old
New

TABLE II. Rescaling factor l.

Square

(2) '

3( 2 )1/2
13

Simple
cubic

6
(2)'"
3( 3 )1/2

22
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Lattice

TABLE III. Critical exponent y for TIM.

Square
Simple
cubic

Z
MFRG (Ref. 23)
Present work (old)
Present work (new)
SE (series expansion)

0.700
0.810
1.726
1.587

6
0.707
0.762
1.719
1.724

possible to obtain good results that combine the EFRG
with DPIR. The discretized path integral, which is used
here, is used to transform the quantal spin into a classical
spin with "internal structure" (see Fqs. (5) and (6)]. In
the transverse field case, we take advantage of the idea
that internal structure can be thought of as a p-
dimensional vector, that is, to convert the quantal two-
state "spin" on each lattice site into a p-component vec-
tor U=( O'", O' ', . . . , U'~') and eventually to let p go to
infinity. Each component, U'" is taken to be a classical
two-state variable ( U"'=+1); so the resulting partition

function can be treated with the cumulant-expansion
method, and the corresponding partition function of
reference system is nothing more than the partition func-
tion of a one-dimensional Ising model in a field.

The purpose of this paper is to demonstrate the utility
of the new approximation method in dealing with the
critical properties of quantum-spin systems. We propose
that a significant and quantitative improvement results
from going to the next order in Eq. (11)on the addition of
the first fluctuation correction, the n =2 term. We be-
lieve that this method can be extended to other more
complicated quantum systems such as the Heisenberg
model, the S =1 Ising model, and alloy and surface prob-
lems with transverse field.
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