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Pure spin-glass resistivity maximum at the "freezing" temperature
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%'e have derived the pure spin-glass resistivity devoid of Kondo effect. This exhibits a broad
maximum which signals the onset of the spin-glass state. As the temperature decreases towards the
spin-glass freezing temperature Tf, a gradual increase in the number of "frozen" spins leads to this
maximum. An expression for the ratio T /Tf (where T is the temperature for the experimental
impurity resistivity maximum) has been obtained and the effects of potential scatterings have been
taken into account through resonance phase shifts. Finally, we have tested various predictions of
this theory with classical experimental results.

I. INTRODUCTION

Metallic spin glasses consist of magnetic impurities di-
luted in a noble metal (e.g. , Mn, S=

—,
' in Ag) and show a

peak in ac susceptibility at a temperature Tf. Its resis-
tivity change (relative to the host noble metal) varies
roughly linearly with temperature near Tf and has a
broad maximum at a temperature T much higher than
Tf. At low temperatures the resistivity change varies
proportionally to T ~ (Ref. 2) or proportionally to T .
The maximum is explained in two ways: first, the Kondo
effect is taken for granted, and the maximum is theoreti-
cally linked to an interplay of spin-glass properties and
the Kondo effect; ' second, the Kondo effect is neglected,
and the maximum is explained due to the combined effect
of a modified-phonon contribution (b,p h-— bT) and th—e
Ruderman-Kittel-Kasuya- Yosida (RKKY) spin-fiip
scattering contribution ( b pair ~v = —c /T ). The low-
temperature variation of the resistivity has been linked
theoretically to the temperature variation of the spin-
glass order parameter ' and to elementary excitations in
spin glasses. As in experiments, none of these theories
has revealed any structure signalling the onset of the
spin-glass state at Tf. Since experimental data of the
field-dependent ac susceptibility X(H, T) =go( T)
+a(T)H +b(T)H +. . . do not diverge at Tf, whereas
the coefticients a(T) and b(T), etc., reveal a power-law
divergence evidencing phase transitions, ' it is a theoreti-
cal problem to decode the resistivity data so that it also
marks some kind of change at Tf. We believe that this
problem requires a knowledge of the natures of the spins.
In the low-temperature spin-glass phase, the Kondo effect
is quenched by high internal fields of frozen spins,
whereas a high-temperature lnT term in the observed
resistivity is expected to be reminiscent of the existence of
the Kondo effect. Thus spin-glass alloys contain two
types of spins: effective free spins and frozen spins. The
natures of frozen spins are given by Rivier and Adkins"
(RA) according to which, impurity spins located at ran-
dom, exhibit no long-range magnetic order at any tem-
perature in spite of having its moments frozen in random
orientations at low temperatures. Further RA theory
models this frozen spin system as a supercooled paramag-

2 2g (J,( /&, )'),f'(&) .
18 (2KFa )

(3.1)

net, i.e., the short-range order in the spin-glass phase is
negligible. In a previous paper, ' we have developed a
resistivity theory of spin-glass alloys using a modified
Kondo theory for effective free spins and the RA theory
for frozen spins. Best fittings of the theory with experi-
ments using free parameters have eliminated Kondo
effects and yielded the pure spin-glass resistivity of frozen
spins.

Here we have rederived the spin-diffusion constant A
of RA theory in the quenched random situation, taking
into account the finite mean-free paths (mfp) of conduc-
tion electrons. We have also included the resonance
phase shift due to potential scatterings into the unitarity
limit of RA theory. Using these modifications, we have
obtained a theoretical expression for the pure spin-glass
resistivity due to frozen spins. This pure spin-glass resis-
tivity now marks the position of spin-glass freezing tem-
peratures Tf by a rounded maximum. This maximum
arises due to a progressive freezing of spins as the tem-
perature is lowered and indicates the freezing of nearly
all spins. Finally, an expression for the ratio T /Tf has
been derived and several predictions of the theory have
been tested with experiments.

II. MODEL FORMALISM

Several authors' '' have predicted a hole P(H)=0 for
H, & H &H, i—n local-field distributions P (H, T) of spin

glasses whose Hamiltonian is given by'

&= —
—,'g J,,S, .S, ;

l, j
J," is for i' a random-exchange interaction and J;; =0.
Effective free spins lie at the lowest local field H, and
frozen spins have local fields ~H; ~

& ~H, ~. Their concen-
trations are X, =Xexp( —T /T) and X;=Xf,
=X[1—exp( —T /T) j, respectively. Here X is the im-
purity concentrations and T =(gpttH, )/k. '

III. SPIN-DIFFUSION CONSTANT A OF RA
THEORY

We write the diffusion constant A from RA theory" as
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m Sak2 T
18 (2IC~a) b,

(3.2)

Here the impurity concentration X is replaced by
X=—,'((a/R; ) ), in case of fcc host lattice and Jo is the
strength of an infinite-ranged RKKY interaction,

f '(X) =[(A,/a ) —1]/8 in()i, /a )

and ( ), represents configuration averages.
The factor f'(A, ) introduces the efFect of finite mean-

free path (mfp) A, of conduction electrons into the
diffusion constant A and has been found to be in disagree-
ment with experiments. ' So, instead of f'(A, ), we have
taken the A, effect through a damped RKKY interaction
of random sign, '

J(R; )-+Jo(a/R; ) e ij/A, ,

and obtained in the quenched random situation'

near to Ed. Such resonance scattering has the phase
shift"

6„= tan
QO'

a (4.1)

Here, 6 is the width of the split virtual bound states and
o. is the spin state. We have introduced this phase shift
5„ into the temperature-independent part ' of RA theory
by replacing its unitarity limit with p( oo )sin 5„.

V. THE PURE SPIN GLASS RESISTIVITY

We have used here RA theory to describe the resistivi-
ty of frozen spins. BrieAy, this theory assumes the in-
teraction between impurity spins to be RKKY-type and
has shown that the elementary excitations are spin
diffusion modes. Using the multiple scattering approxi-
mation (MSA) for long wavelength excitations, Rivier
and Adkins" have calculated

where

b
J (2l+1)

4E,k

D(oo) 1—PRA P 1+C'DT'"
where

(5.1)

X e yu(1 ex'(i —u ))
u'

1/2

(3.3)

b, = [(2S+1) —1]' /l2, l is the orbital angular momen-
tum, and R,J is the distance between spins (i) and (j).
X'=X/(1 —X) and y =rX. Here r is a damping factor. '

A,DMR is the rnfp of conduction electrons, caused by devi-
ations from Matthiessen's rule (DMR). The factor
f(A.DMa) represents the DMR efFect and f(kDMR) ~1 for
~DMa

IV. EFFECTS OF POTENTIAL SCATTERINGS

The electrostatic potential V arising from the difference
in core charge between the host and the impurity atoms
has been neglected in RA theory. But several authors' '
have reported reasonable values of V and the resistivities
due to impurity potential scatterings have been estimat-
ed' to be 0.26, 1.20, and 2.16 pQ cm for 1.1, 5.0, and 9.0
at.% Mn in Ag. In addition, we have observed' that the
unitarity limit p( oo ) of RA theory disagrees with experi-
rnents. These facts have encouraged us to introduce the
effect of Vinto RA theory. In general, if the host metal is
treated in the nearly-free-electron approximation, the
wave functions outside the region of the impurity poten-
tial are simply phase-shifted outgoing partial waves' as
would be expected on the basis of scattering theory. For
incident conduction electron energies E far from the reso-
nance energies Ed of spin-split virtual bound states, the
phase shifts of all angular momenta l are negligible.
However E near the resonance energies Ed, the particular
phase shift with angular momentum lo of the resonant
virtual bound state will be large. In the case of the
transition-atom impurities lo =2 and due to the spin-orbit
interaction of these impurities, the l =2 component of the
conduction electron's partial waves' angular momenta is
enhanced. This produces the resonance scattering for E

p( oo )=—,'X(m/A'e )l (n/0) (5.2)

C'=(2m. ) '(JS/I ) (mk/2Aa )
/ . (5.3)

For a split virtual bound state of width 6 straddling the
Fermi level EI; =0 at +Ed, D is given by

D =[1+(6/Ed ) ] (5.4)

D is also related to a characteristic temperature T,& given
by12

T,h
= TFexp

ps'= ~
1+CDT3 "f-""

X [1—exp( —T /T)]
where at

T= T/, X, /(1 —X,. ) =X/(1 —X),
A =p(oo )sin 5„

C C.f3/4

(5.6)

1'728 S i/2( J /F )2(+ a )4.5T —3/2b 3/2
99 I'a f s

xf "(~DMR) (5.8)

(5.5)
d

For long spin-Auctuation lifetimes, T,h is the Kondo tern-
perature T~ and otherwise T,„=T, =spin-Auctuation
temperature. T~ is the Fermi temperature, g is the s-d
exchange-enhancement factor, ' and all other symbols
are as defined in RA theory.

Introducing the changes described in Secs. III and IV
for the spin-diffusion constant and unitarity limit of this
theory, we have derived [from Eq. (5.1)] the pure spin-
glass resistivity for frozen spins of concentrations
X;=X[1—exp( —T /T)] as
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The expression (5.6) yields a broad maximum at the
spin-glass freezing temperature Tf given by

exp(T /Tf )/(T /Tf )

2 (1 D) —(1 D—)+ 1+C (5.9)

J= —
I Vk;I'/sE, . (5.11)

The covalent-admixture matrix element Vk, I
is related

to level width 5 of split virtual bound states as

2rrno(EF )
(5.12)

Here, no(EF) is the conduction electron density of states
at the Fermi level. Using Eqs. (5.4), (5.10), (5.11), and
(5.12), we have derived the following relation:

d lnI JI d ln(1/D —1)' 2

d lnVO d lnV0 3
(5.13)

For the usual negative values of d lnIJ /d lnVO, we
have two possibilities: (i) d ln(1/D —1)'~ /din Vo is neg-
ative; D decreases with increasing pressures; (ii)
d ln(1/D —1)'~ /d ln Vo is positive and less than —', ; D in-

creases with increasing pressures.
Thus, we have two important predictions. (a) For large

Thus the pure spin-glass resistivity, devoid of the Kon-
do effect due to effective free spins, not only yields a max-
imum which marks the onset of the spin-glass state but
also an important ratio T /Tf. We have detailed below
several predictions of this relation (5.9), which can be
tested experimentally.

(A) Pressure effect It is .well known that a change in
pressure P or volume Vo changes J and the rate of varia-
tion is given by

=d lnIVI„I/d lnVO —d lnEdld lnVo . (5.10)
d lnVO

Here,

values of C„ the ratio T /Tf is insensitive to the varia-
tion in D, and T /Tf will decrease with increasing pres-
sure due to the dominating effect of a over J. (b) For
small values of C„, variation of D is important, and
T /Tf will increase (decrease) in pressure due to the de-
crease (increase) in D.

(B) sects of spin orbi-t interactions T.he s dex-change
J is enhanced by a factor g due to the spin-orbit cou-
pling' of impurities (magnetic or nonmagnetic). Thus,
the addition of impurities with strong spin-orbit coupling
increases T /Tf.

(C) DMR effects. As resistivity due to DMR decreases
[hence f(A,DM~) increases] with increases in X, it is pre-
dicted that C, decreases and hence T /Tf decreases
with increasing impurity atoms.

VI. TESTS OF THE MODEL WITH EXPERIMENTS

Resistivity maxima at T;

In our previous papers' ', we have computer fitted
the following expression to the resistivity data of Ford
and Mydosh:

Ap(T)= A 1— D
1+CDT'"f

X [1—exp( —T /T)]

+[@ —y, ln(T +T )'~ ]exp( —T /T) . (6.1)

We have observed that the resistivity hp is not affected
appreciably if power of the function f; varies from 0 to
—1. So, the parameter values for 3, D, and C obtained
through this best fit can describe the pure spin-glass resis-
tivity defined by Eq. (5.6) and are shown in Table I. Us-
ing these values of 3, D, CD, and T, we have drawn the
pure spin-glass resistivity Apso as shown in Fig. 1. The
presence of maxima at temperatures =Tf confirms the
theoretical prediction.

TABLE I. Best-fit parameters for Eq. (6.1) in the text, calculated values of phase shifts 6„and the theoretical estimates of D(ps)
and p( ~ ). For the evaluation of p( ~ ) and 6„using Eqs. (5.2) and (5.7) in the text, the following parameters have been utilized in the
sequence Ag-Mn, Au-Mn, Cu-Mn: I =8.175, 8.265, 9.693 eV {Ref. 12); (n/V) =5.85 X 10, 5.9X 102, 8.5 X 10 cm '. In the case
of Ed =Ed, 5 =6 =6, and E=E+=0, the theoretical calculations, D(ps) of the parameter D have been performed using Eqs.
{4.1) and (5.4) and values of 5, from this table.

Alloys

Ag —3.0 at. % Mn
Ag —5.4 at. % Mn
Ag —5.9 at. % Mn
Ag —9.7 at. %%uoMn
Au —1.5 at. %%uoMn
Au —2.8 at. % Mn
Au —4.6 at. %%uoMn
Au —7.7 at. %%uoMn
Cu —2.7 at. %%uoMn
Cu —4.5 at. % Mn
Cu —6.3 at. % Mn

(pA cm)

4.954+0.003
8.789+0.005
9.591+0.002

15.670+0.007
3.848+0.001
6.670+0.007

11.286+0.001
18.162+0.007
8.299+0.001

12.650+0.005
17.295+0.002

CD
(&

—3/~)

0.600+0.002
0.538+0.013
0.589+0.009
0.496+0.018
3.808+0.394
1.250+0.093
0.819+0.003
0.400+0.001
1.267+0.133
1.000+0.038
0.800+0.004

0.800+0.003
0.813+0.008
0.899+0.005
0.817+0.025
0.870+0.085
0.900+0.005
0.875+0.005
0.870+0.001
0.828+0.023
0.900+0.015
0.900+0.044

D(ps)

0.87
0.88
0.88
0.88
0.77
0.79
0.79
0.79

41.5
41.0
41.0
41.0
57.0
54.0
55.0
54.0
90.0
73.0
70.9

p(~)
(pQ cm)

11.293
20.327
22.210
36.514
5.482

10.233
16.812
28.142

8.299
13.832
19.364
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FIG. 1. The pure spin-glass resistivity is plotted against tem-
perature. The double arrow points to the inner right-hand
scale. Vertical arrows indicate the positions of freezing temper-
atures TI.

In Table II theoretical estimates ( T /T&), h of the ratio
T /Tf shown within brackets ( ) are very close to its cal-
culations using parameters derived from experiments.
We have also listed the experimental values (T /T/), „of
the ratio T /TI in Table II. Notwithstanding the varia-
tions of T /T& with impurity concentrations due to
DMR efFects, our theoretical results (T /TI), h shown
within brackets ( ) agree reasonably well with (T /T&), „.

In a remarkable way, our theoretical estimates
( T /Tf )ih provide an answer to the hitherto unexplained
results of high (T /T&), „ in Au-Mn compared to Au-Cr
with the same impurity concentrations in the same host.
Furthermore, we have measured T = 132 and 178 X for
I'=0.05 and 0.10, respectively, in (Cu, rPdr)Mnc, o.
This is in agreement with the prediction of the e6'ects of
spin-orbit interactions on T /TI, since the spin-orbit
scatterer also increases T&. Details are reserved for fu-
ture work.

TABLE II. Experimental values of TI, T and (T /T&),„and the estimates of (T /T~)th, C„, and
D{th). For the evaluation of C„, using Eq. (5.8) with f{ADMa) =1, the following parameters have been
utilized in the sequence Ag-Mn, Au-Mn, Cu-Mn, and Au-Cr: S= 1.95+0.1 (Ref. 26), 2.25+0. 1 (Ref.
26), 2.05 (Ref. 27), 1.0; J=0.184, 0.157, 0.213, 0.176 eV (Ref. 23); /=1. 43, 1.36, 1.5 (Ref. 12);
no(E+)=0.262, 0.308, 0.294, 0.308 eV ' (Ref. 23); Tz =10 ", 10, 0.012, 0.001 K {Ref. 23);
I =kTxexp[l/no{EF)~J~]=8. 8, 8.3, 8.9, 8.9 eV; KF=1.20, 1.20, 1.36, 1.20 A ', T~=6.36X10,
6.39 X 104, 8.12X 10~, 6.39 X 10 K; a =4.09, 4.08, 3.61, 4.08 A. The theoretical values D(th) of the pa-
rameter D have been calculated from Eqs. (5.4) and (5.5) in the text, using values of T„, Tx, and g cited
above. Finally, best-fit values of C and D from Table I and experimental values of T& from this table
have been utilized to find theoretical estimates (T /T/), „ofthe ratio T /T&, using Eqs. (5.8) and (5.9).
Also, we have calculated ( T /T/), h from Eq. (5.9) in the text and using values of C„and D(th) from this
table. These are listed separately within ( ).

Alloys

Ag-0. 6 at. % Mn
Ag —1.1 at. % Mn
Ag —3.0 at. % Mn
Ag-5.4 at. % Mn
Ag —5.9 at. % Mn
Ag —9.7 at. % Mn
Au —0.5 at. % Mn
Au —1.5 at. %%uoM n
Au-2. 8 at. % Mn
Au —4.6 at. % Mn
Au —7.7 at. %%uoM n
Au-11.8 at. % Mn
Cu —0.7 at. % Mn
Cu-1.6 at. % Mn
Cu-2. 7 at. % Mn
Cu —4.5 at. % Mn
Cu —6.3 at. % Mn
Cu-9.7 at. %%uoMn
Au-0. 9 at. % Cr
Au —1.5 at. % Cr
Au-3. 3 at. % Cr
Au —4.9 at. % Cr
Au-7. 9 at. % Cr
Au —10.6 at. %%uoCr

3.4
5.5

12
19
20.5
30
3.5
7.0

11
16.5
25
34

8
13
18
27
33
44
14
22
35
50
78

100

T (K)

47
43
64
90
95

130
60
75
85

105
125
150

17
45
70

100
144
190
35
47
85

100
150
185

(T /T~), „
13.8
7.8
5.33
4.74
4.63
4.33

17.0
10.7
7.7
6.36
5.0
44
5.63
3.46
3.89
3.70
4.36
4.38
2.50
2.14
2.40
2.0
1.92
1.80

/Tf )th

(5.75)

4.65
5.30
5.40
6.0

(5.80)
5.80
5.20
5.45
5.35

(6.20)

6.20
6.50
7.20

(2.40)

79.17

77.03

132.14

5.58

D{th)

0.80

0.83

0.90
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Pressure eft'ects on T /Tf

Cu Mn-, Au-Fe. In these two systems ' dTf /dP )0,
whereas dT /dP=O for Cu-Mn and dT /dP &0 for
Au-Fe. Thus, the ratio T /Tf decreases with increasing
pressures in both cases.

Au Mn-, Ag M-n F. or both of these alloys, dTf/dP)0 and also d T /dP )0. We have estimated in
Au —0. 10 at. % Mn, dT /dP=1. 838 mK/kbar, and in
Au —3 at. % Mn dTf /dP =25.5+3.5 mK/kbar. Since
dTf/dP is independent of impurity concentrations ac-
cording to

d(lnTf )IdV0=2d ln~ J~ IdVO+d lnno(E+)IdVO, (6.2)

we have dT /dP (dTf IdP and hence the ratio T /Tf
decreases with increasing pressures. Thus, experimental
results on all these four systems Cu-Mn, Au-Fe, Au-Mn,
and Ag-Mn confirm the prediction ( A) of the expression
(5.9).

A u-Cr system. Since,

d inlJ
(Au —Fe) = (Au —Cr),d in/J/

d lnVo d lnVo

we have (dTf IdP)&„&,——(dTf IdP)&„F, =(15.5
+2.5 ) mK/kbar. Also, we have evaluated, '

dT /dP= —0.51, 0.0, and 1.4 mK/kbar for 0.10, 0.15,
and 0.3 at. % Cr in Au, respectively. This gives
dTm/dP=9. 42X mK/kbar, where X is the concentra-
tion of Cr in at. %. Thus dT /dP (dTf ldP for X ( 1.7
and dT IdP) dTf/dP for X) 1.7. This means that the
predictions (A ) and (B) of the expression (5.9) are
confirmed in the same system Au-Cr with low and high
concentrations, respectively. We suggest pressure experi-
ments in Au-Cr of high-impurity concentrations and also
in Pd-Cr to test prediction (B).

Phase-shift 5, .
In the case of Ag-Mn, Ed = —3. 1 +0.2 eV,

E =2. 1+0.2 eV, 6 =0.7+0. 1 eV, 6 =1.2+0. 1 V.
So Ag-Mn and probably Au-Mn also approach the ideal
case of a split virtual bound state (vbs) of width b, strad-
dling the Fermi level (E~=O) at +Ed, and we have
shown theoretical estimates D (ps) of D for these two sys-
tems in Table I. The values of D(ps) are in fair agreement
with best-fit values of D.

In case of Cu-Mn, the energy Edof minority spin state
is far away from the energy Ed of majority spin state.
Assuming b, =6 =6 and using Eqs. (4.1) and (5.4), we
have calculated the ratio ~Ed /Ed ~

from the best-fit
values of D and 5, listed in Table I. For 2.7, 4.5, and 6.3
at. % Mn in Cu, the estimated values of ~Ed /Ed ~

are
4.13, 4.22, and 3.92. Theoretically reported value of
~Ed /Ed ~

in Cu-Mn (Ref. 32) is 4.375. Thus our results
are in good agreement with the theory.

VII. CONCLUSIONS

We have obtained the pure spin-glass resistivity devoid
of Kondo effect. This exhibits a maximum at the freezing
temperature Tf. The pure spin-glass resistivity obtained
through the best-fit parameters of the theory with experi-
ments yields a maximum at T= Tf in agreement with the
model. Several aspects of an expression of the ratio
T /Tf have been tested successfully with experiments.
The resonance phase shift 6„ introduced into the unitari-
ty limit of RA theory also finds satisfactory agreements
with experiments. The population of frozen spins
X, =X[1—exp( —T /T)] continuously builds up as the
temperature is decreased, and at T= Tf nearly all spins
are frozen. Thus it is a progressive type of freezing rath-
er than a cooperative freezing, while effective free spins
undergo a cooperative freezing at Tf.
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