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Activated dynamics in a two-dimensional Ising spin glass: R12Cn& „Co„F4
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The complex ac susceptibility of the two-dimensional Ising spin glass Rb2Cuo 782Coo»8F4 is mea-
sured as a function of the temperature and frequency. The results are first analyzed in terms of the
Cole-Cole formalism. It is found that the median relaxation time ~, diverges towards T, =0 K over
as many as 16 decades according to activated dynamics, i.e., r, ~ exp[(b/T)'+e"]. The distribution
of relaxation times appears to be nearly symmetric in ln~, covering at least 10 decades in width.
These findings are corroborated with analyses based on exponential-logarithmic and stretched-
exponential forms of the time decay of the spin-spin correlation function. The out-of-phase suscep-
tibility is further found to be in conformity with activated dynamic scaling over a wide range of
temperatures and frequencies. For the critical exponents the various methods of analysis yield, on
the average, y=4. 4+0.2, v=2. 420.3, 0= —0.41+0.05, and /=0. 8+0.2.

I. INTRODUCTION

The subject of spin glasses (SG}has challenged both ex-
perimentalists and theoreticians for over 15 years. A pri-
mary and long-standing controversy concerned the very
existence of the SG equilibrium state. The consensus has
now been reached that the lower critical dimensionality
of short-range Ising SG is between two and three, ' i.e., in
the case of dimensionality d =3 an equilibrium ordered
phase is achieved at a finite critical temperature T„
whereas d =2 systems only order at T, =O. With this
central question being settled, the attention has focused
on the intriguing issue of the dynamics. In the critical
dynamics of SG systems, the lattice dimensionality again
plays a crucial role. For d =3, the critical behavior of
the short-range Ising SG is accepted to be of the conven-
tional type. Both numerical simulations of the d =3 +J
Ising model and susceptibility studies of d =3 Ising SG,
notably Feo 5Mno 5Ti03, have shown that above T, the
characteristic relaxation time ~, diverges according to

~rP~(T T, } '—
where z is the dynamic critical exponent and v the ex-
ponent of the correlation length. In the case of systems
with a zero-temperature critical point, however, recent
theoretical arguments " have made one realize that
static fluctuations associated with the randomness prevail
over dynamic thermal fluctuations. Accordingly, the
critical dynamics in a d =2 SG is anticipated to be
governed by thermally activated relaxation over energy
barriers. This study aims at providing a comprehensive
experimental verification of activated dynamics in an ac-
tual d =2 system. ' This is accomplished in
R12Cu, Co F4, a nearly ideal realization of the d =2
Ising SG with random nearest-neighbor bonds, by investi-
gating the frequency dependence of the complex suscepti-
bility.

The fundamental concept of activated dynamics in ran-
dom systems is that the free energy of low-lying excita-
tions of length scale L is given by F-L, with 8&0 for
d =2. As a result, excitations of arbitrary low energy
destroy the SG order at a finite temperature. The low-
temperature divergence of the correlation length,
g~ T ", is determined by v= I/~8~ from the condition
that F is of order T. At shorter length scales, relaxation
over energy barriers of height B-L~, with $~0, con-
trols the fluctuations. For the characteristic relaxation
time ~, this leads to

C
ln

Z- +i+y~ '

with 7 p the microscopic single-spin relaxation time. Ac-
tivated dynamics thus involves a much faster divergence
of r, than according to a conventional power law. Note
that the randomness further induces a distribution of
barrier heights with a typical spread AB of again -L~,
implying an extremely broad distribution of relaxation
times.

Below, the complex susceptibility of Rb2Cu& Co F4
is analyzed in several ways. First, we extract characteris-
tic relaxation times to be identified with the time ~, in
Eq. (1). These analyses are based on the Cole-Cole
description (Sec. III A) and, alternatively, on the time de-
cay of the dynamic correlation function (Sec. III B). Ir-
respective of the particular analysis, however, evidence
for activated dynamics is found from a fast divergence of
~, towards T, =0 extending over a great many decades in
time. The divergence appears to be in excellent accord
with Eq. (1) with, on the average, /v=1. 9+0.3. Further,
an extremely broad distribution of the relaxation times,
with b,B/B of order unity, is established (Sec. IIIC).
Another independent analysis of the data relies on dy-
namic scaling of the out-of-phase susceptibility, an ap-
proach not requiring specific assumptions to be made
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about the distribution of relaxation times. Dynamic scal-
ing appears feasible over a wide range of temperatures
and frequencies (Sec. IV), and is shown to yield essential-
ly the same result for Pv (/v=2. 2+0.3). Moreover, dy-
namic scaling provides the critical exponent y, which, in
turn, allows estimates for v, 8, and P.

II. EXPERIMENTAL RESULTS

Rb2Cu, Co F~ is a random mixture of the archetypal
square-lattice antiferromagnet Rb2CoF4 (S,s =

—,',
Tz = 103.0 K), having the layered K2NiF4 structure, and
the isostructural ferromagnet Rb2CuFz (S=

—,', T, =6.05
K). The mixed system exhibits SG behavior for
0. 18 &x &0.40." The competition between strongly
Ising-type ferromagnetic and antiferromagnetic nearest-
neighbor interactions make Rb2Cu, Co F4 closely
resemble the short-range Ising Edwards-Anderson model
for d =2. The present single crystal has x =0.218, and
is part of the same Czochralski-grown single crystal of
which the static nonlinear susceptibility has been studied
previously.

The dift'erential-susceptibility data were collected at a
set of discrete temperatures and frequencies ranging from
03 Hz to 50 kHz by use of conventional mutual-
inductance methods. The in-phase and out-of-phase
parts were recorded simultaneously with phase-sensitive
detection techniques. The susceptibility was checked to
be linear at the driving-field amplitudes used, which were
typically 1 G. The measured susceptibility X =X' —iX"
was converted to the intrinsic susceptibility y=y' —iy"
by correcting for demagnetization, i.e., g ' =X
—4mN, ' or

Q. 4

Q

I I I I I I

Rb2~0.782CO», 8F

0.5
~ 1.0
a5 0

24
120' 566

o 2.7
15
50

Hz
Hz
Hz
Hz
Hz
Hz

kHz
kHz
kHz

I I I I I I

2 5 4 5 6 7 8
Temperature (K)

X' 4nN(X' +—X".
)x'=

(1—4mNX') + (4mNX" )
(2a)

0. 1—

XI I

~l I

(1 4rrNX') +(4—mNX")
(2b)

with N the relevant demagnetization factor of the rough-
ly ellipsoidal sample. The sample was oriented such that
the c (Ising) axis was along the driving field. No external
dc fields were applied. The temperature ~as servostabi-
lized to within a few mK, and measured with two cali-
brated carbon-glass resistors.

The in-phase and out-of-phase susceptibilities X'(co, T)
and X"(co, T) are, for a selection of frequencies, presented
versus the temperature in Fig. 1. At first glance, g'
resembles the results typical for a d =3 SG, in line with
what recently has been argued. A clear maximum at a
frequency-dependent temperature Tf is observed, which
is indicative of freezing into a nonequilibrium state.
There are, however, a number of important distinctions
from the short-range d =3 Ising case: (i) the apparent
freezing at Tf =3.4 K occurs much below the tempera-
ture associated with the typical spread in exchange ener-
gies, viz. , bJ=35 K; ' (ii) the maximum of X'(co, T) at Tf
is very strongly dependent on the frequency, varying in
height by a factor of approximately 3 in our frequency
range; (iii) the susceptibility deviates from being iso-
thermal already at temperatures as high as 2Tf, (iv)
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FIG. 1. (a} In-phase linear susceptibility g'(co, T) for
Rb2Cup 782Cop 2]8F4 vs the temperature. Data were taken at fre-
quencies co/2~ ranging from 0.3 Hz to 50 kHz, and with the
driving field along the c axis. Solid lines are guides to the eye.
(b) Same as (a), but out-of-phase linear susceptibility y"(u, T).

III. RELAXATIQN TIMES

In this section, we analyze the data of Fig. 1 with the
primary aim to deduce the relaxation times and to corn-

above Tf the frequency dependence of y" is extremely
weak, even on a logarithmic scale; and (v), although at
higher temperatures g" shows the usual increase with in-
creasing frequency, g" decreases with m below approxi-
mately 4 K. Finally, y" exhibits an inAection point, al-
though a faint one, at a few tenths of a K above Tf, goes
through a maximum at typically 0.2 K below Tf, and de-
creases strongly towards lower temperatures.
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pare their temperature dependence with Eq. (1). This is
independently accomplished in terms of the phenomeno-
logical description of Cole and Cole (Sec. III A) and, al-
ternatively, by use of the Fourier transform of the time
decay of the spin-correlation function (Sec. III 8).
For the latter, two forms will be considered, viz. ,
the exponential-logarithmic decay and the stretched-
exponential decay.

evidence for the distribution is found from the frequency
dependence of y", which, for broad distributions and cor-
respondingly weak dependences of y" on the frequency,
quite directly mirrors the distribution of relaxation times.
As it appears (cf. Fig. 4), y" indeed is a broad and nearly
symmetric function of lnco.

The Cole-Cole equation may be written

A. Cole-Cole analysis ( )
Xo Xs

1+(ivor )' (3)

The Cole-Cole formalism' involves a modeling of the
dynamics at a given temperature onto a distribution of
relaxation times that is symmetric on a logarithmic time
scale. Substantial justification for this assumption is
found in Eq. (1) as well as the experiments themselves.
According to Eq. (1), applicable to the case of activated
dynamics, a distribution in the barrier height 8 reAects it-
self in a distribution of ln~ rather than w. Experimental

in which go and gs are the isothermal and adiabatic sus-
ceptibilities, respectively, and v., is the median relaxation
time. The parameter a determines the width of the dis-
tribution, such that a=1 corresponds to an infinitely
wide distribution, while for a=O Eq. (3) returns to the
Debye equation appropriate for relaxation with a single
time constant. Equation (3) may be decomposed into

sinh[(1 —a)ln(d'or, )]
X'(~) =Xs+

2 cosh[( 1 —a )ln(cor, )]+sin( —,
' am)

(4a)

XO Xs
2

cos( —,'am )

cosh[(1 —a)ln(cow, )]+sin( —,'am )
(4b)

+0++s—x'—+0 +S
2 tan[ —,'m(1 —u)]

Xa Xsx"(x') =—
2 tan[ —,

'n.(1—a)]

Although Eqs. (4) may be adjusted directly to the experimental data with yo, gs, a, and r, as adjustable parameters, it is
advantageous to first perform a fit to the locus of y in the complex plane (Cole-Cole diagram),

'2 2 1/2

This yields ys, yo, and a, and permits ~, to be extracted
from a fit of Eqs. (4) with go, gs, and a set at the values
determined in the fitting of Eq. (5). Note that in the
relevant part of the diagram Eq. (5) represents a circular
arc of size (1—a)n cutting the y' axis at y'=ps and
y'=go. At the maximum of y", co~, = 1.

Figure 2 shows some representative Cole-Cole dia-
grams, i.e., Eq. (5) with the fitted values of the parameters
inserted, together with the data points. Note that g'/go
and y" /go are the more natural variables for a compar-
ison of y at diferent temperatures. The most noteworthy
feature of Fig. 2 is the shift of the data points from a
nearly isothermal susceptibility at 6.75 K, via a max-
imurn in g" around 4 K, to an almost vanishing suscepti-
bility at 3.40 K. This, in fact, corresponds with a ~,
evolving from w, «10 s to ~, )&1 s. The relaxation
time z, thus moves rapidly through our time window,
which covers slightly over 5 decades, within only a frac-
tion of a K. Below 3.4 K the fits do not give reliable
values for yo and ~, . As to the resultant fitting parame-
ters, ys was found equal to zero within errors in all cases.
The temperature dependence of yo wiH be discussed
below in Sec. III D. The parameter a, shown in Fig. 3(a),
amounts to 0.902+0.002 at 3.40 K. It decreases linearly
with increasing temperature, but remains above 0.80. At
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FIG. 2. Cole-Cole diagram for a selection of temperatures.
Susceptibilities are normalized to the isothermal susceptibility

Symbols correspond to the frequencies in Fig. 1. Solid lines
are fits of Eq. (5).

temperatures so low that d'or, »1, Eq. (4b) simplifies to
y"(~) ~ ~ " ', which still allows a determination of a.
Good fits are found, yielding, for example, a=0.92+0.01
at 2.00 K. These truly high values of a evidence that an
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FIG. 3. Temperature dependences of the exponents e, 5, and

P occurring in Eqs. (3), (7), and (8), respectively. Solid lines are
guides to the eye.

extremely broad distribution of relaxation times persists
throughout the entire temperature range studied. Note
that for constant EB/B the parameter a should decrease
with increasing temperature. Ciiven the output values of

+0 and e, we subsequently extract, for each tempera-
ture, r, by simultaneous adjustment of Eqs. (4a) and (4b)
to the data for, respectively, g' and y". For the tempera-
tures selected in Fig. 2, the result of these fits is shown in
Fig. 4 as a function of the frequency. It is evident that
the Cole-Cole approach indeed provides an adequate
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FIG. 4. Frequency dependences of g'(co, T) and y"(cu, T) for a

selection of temperatures. Susceptibilities are normalized to the
isothermal susceptibility y0. Solid lines are fits of Eqs. (4).
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FIG. 5. Temperature dependence of the relaxation time w„
derived from the Cole-Cole analysis. Solid line is a fit of Eq. {1).

description of the data. The results for ~, are presented
in Fig. 5.

We now turn to an examination of the temperature
dependence of the relaxation time v„which constitutes
the principal result of the present Cole-Cole analysis of
the complex susceptibility. In Fig. 5, it is manifest that
the dynamic response of our system slows down by as
many as 16 decades in time in the range of temperatures
considered. The most likely source for such a dramatic
divergence clearly is activated dynamics, and we examine
this first. The solid line in Fig. 5, then, represents a fit of
r, =roexp[(b/T)'+~'], appropriate to a system with a
zero critical temperature [cf. Eq. (1)]. Indeed, the diver-
gence is found to be excellently described (y = 1). The fit
given in Fig. 5 extends over the temperature range of
3.7—6.8 K, and yields /v=2. 2+0.2, so=(2+1)X 10 ' s,
and b = 10.8+0.6 K. Note that the finite value for lt v ex-
cludes a simple Arrhenius description, which would cor-
respond to /v=0. The result for Pv will be further dis-
cussed below. The result for the microscopic single-spin
time ~0, which corresponds to an exchange energy of or-
der 40 K, is of quite reasonable magnitude, and so is the
value for b, which is a measure for the temperature-
dependent barrier height B through B =b '+~ /T~".
Below 3.5 K, the expression for v., is apparently inade-
quate, but for plausible reasons. Here, the relaxation
times have become many orders of magnitude longer
than the upper bound of the experimental time window
( —1 s). In fact, the range of the agreement may be ex-
tended to lower temperatures, albeit by only 0.2 K, by
adding "dc" points ' (typical time scale of 30 s) to our
set of data. These were deduced from the time-dependent
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zero-field-cooled magnetization M in a small field H =10
G via the well-known "m /2 rule, " i.e., y'=M/H and

—(n/2)d(M/H)/d int .

Note that ~, rises so steeply that even extension to time
scales of a week would not bring us lower in temperature
than, say, another 0.2 K.

To establish the occurrence of activated dynamics in
the present SG more firmly, we point out that the data in
Fig. 5 definitely are at variance with power-law dynamics
as well as a finite T, . A fit of a power law of the form
r, o- T ", diverging at T, =0, entirely fails (g =40),
and, if pursued, yields unphysical values for zv of order
80. A finite T, of the SG transition in Rb2Cu, Co F4
could conceivably be caused by residual coupling among
the magnetic layers. The dynamics would then be
governed by ordinary critical slowing down, i.e.,
r, o- (T —T, )

' . Such a power law appears to yield fits
of reasonable quality (y =1—4), but the resultant
zv= 15+1 is unacceptably large. More importantly, the
value of 3.26+0.07 K found for T, is incompatible with
T&=2.97+0.02 K measured at a time of 90 s. ' Forc-
ing T, to lower values drives zv to values of over 20, and
deteriorates the fit. A finite T, also markedly worsens the
fit in the case of activated dynamics. For instance, when
setting 7 p at the reasonable value of 2 X 10 ' s, activated
dynamics with a finite T, results in y =5 for T, =1.0 K,
gradually increasing to y =90 for T, =3.0 K. Note that
the inadequacy of the latter fit also rules out the Vogel-
Fulcher law, ' which in our notation corresponds to
&(v=0 and finite T, . In summary, therefore, the tempera-
ture dependence of the relaxation time is excellently, and
uniquely, accounted for in terms of activated dynamics
with a vanishing critical temperature.

B. Correlation-function analysis

Monte Carlo simulations of the d =3 random-field Ising
system, for which the dynamics is expected to be closely
similar to the d =2 Ising SG, this form for q(t) was
found to describe the long-time tail of the decay with an
exponent 5=3. '

The real and imaginary parts of g(co) obtained from
Eqs. (6) and (7) by numerical integration have been fitted,
at fixed temperatures, to the data with go, 5, and r, as ad-
justable parameters, while adopting ~o= 10 ' s. The re-
sults for ln(r, /ro) versus the temperature are plotted
double-logarithmically in Fig. 6. The resultant tempera-
ture dependences of 5 and yo are presented in Figs. 3(b)
and 7, respectively. The fits appeared to be of a quality
comparable to the Cole-Cole fits for temperatures ranging
from 5.0 to 7.0 K. In this range, the exponent 5 is ap-
proximately constant and equal to 5=1.15+0.05, indi-
cating that the decay of q (t) is very close to algebraic
(5=1). Accordingly, the decay is not dominated by the
relaxation of isolated locally ordered clusters, for which,
at long times, Eq. (7) has been derived to hold with
5=d/(d —1)=2. ' Below 4.8 K, the fits gradually
deteriorate, and the value of 5 increases to 5=1.6 at 4.0
K. As seen is Fig. 6, in this temperature regime a sharp
increase in 1n(r, /ro) is apparent. Upon lowering the
temperature further, its with realistic values for the pa-
rameters could not be achieved. For a comparison of the
relaxation times derived from the exponential logarithm
with those from the Cole-Cole analysis, we have replotted
the latter in Fig. 6. Clearly, the exponential-logarithmic
decay, as much as the Cole-Cole analysis, establishes ac-
tivated dynamic behavior [cf. Eq. (I)], although with a
slightly different value for the exponent gv. In the tem-

50

At this point, it is important to ascertain to what ex-
tent this conclusion and the result for Pv depend on the
assumptions underlying the Cole-Cole description, more
specifically, identifying the median value of a distribution
on a logarithmic time scale with the characteristic relaxa-
tion time r, in Eq. (1). An alternative method to derive
the relevant dynamic quantities from the data is to as-
sume a certain form for the spin-correlation function

20—

and next to calculate, by use of the fluctuation-dissipation
theorem, the susceptibility from the relation'

(6)

o Exponentiai logarithm
~ Cole—Cole
i-i Stretched exponential

~ ~

First, we consider the exponential-logarithmic decay

ln(t Iso)
q (t) =exp

ln(r, /ro)

which is expected to be suitable for cases where thermally
activated processes dominate the relaxation, and lnt rath-
er than t is the appropriate time parameter. From

I I I

Temperature (K)

FIG. 6. Double-logarithmic plot of ln(z, /70) vs the tempera-
ture. Here, v; is derived from Eqs. (3), (7), and (8) (open circles,
solid circles, and squares, respectively). For clarity, the latter
data are shifted downwards by dividing ln(~, /~o) by 1.35 (cf. ar-
rows). Solid lines represent fits of Eq. (1).
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FIG. 7. Temperature dependence of the isothermal suscepti-
bility yo, as derived from the various analyses. Solid lines are
guides to the eye. The dashed line represents the field-cooled
(FC) "dc" susceptibility (Ref. 2).

q (t) =exp[ (t/~, —)~] . (8)

This dependence is widely used to describe relaxation
processes in SG and disordered media in general. As a
case in point, extensive numerical simulations of the
d = 3 +J Ising SG (Ref. 3) have shown that this form ex-
cellently represents the behavior of q(t) at long times.
Similarly to Eq. (7), Eq. (8) substituted in Eq. (6) has, at
fixed temperatures, been adjusted to the measured g(co)
with go, P, and ~, as parameters. The fits turn out to be
of good quality for a substantial range of temperatures.
In fact, from 7 down to 3.4 K the fits are essentially of
the same quality as the fits of the Cole-Cole expression.
In comparison with the exponential-logarithmic decay,
the fits have somewhat improved below =4.6 K (g =1
compared with y =2), but they deteriorated above this
temperature (y =0.6 compared with y =0.3). The tem-
perature dependences of the fitted yo and P are presented
in Figs. 7 and 3(c), respectively. The results for ln(w, /ro)
are given in Fig. 6, for the sake of clarity of presentation
downshifted as indicated. The relaxation times nearly
equal the Cole-Cole results, and thus once more evidence
activated dynamics. From the slope of the pertinent solid
line in Fig. 6, which represents a least-squares adjustment
of Eq. (1), we find fv= l. 9+0.2.

As to the exponent P, its value appears to increase
from P=0.06 at 6.75 K to a constant value of /3=0. 09

perature range where 5 is approximately constant, a
straight line according to Eq. (1) has been fitted to
ln ln( w, /wo ) vs ln T (Fig. 6) as derived from the
exponential-logarithmic decay, to yield gv= 1.6+0.2.

The second form for q (t) we consider is the stretched
exponential, or Kohlrausch, decay

below 4 K. These very small values again evidence an ex-
tremely slow decay of q (t), and sharply contrast both nu-
merical and experimental results in d =3 SG. In the
latter, p typically varies from 0.3 just above the SG tran-
sition temperature to 1 at the Curie temperature of the
nonrandom Ising system. For the present system, nonex-
ponential decay of the correlation function may be ex-
pected below temperatures as high as T=100 K, the
transition temperature of RbzCoF&. To understand the
decrease of P with temperature it is necessary to realize
that in the event of extremely slow decays only a very
small fraction of the total decay of q(t) is actually
probed. Although this fraction, which is determined by
the experimental time window (10 —1 s), can be accu-
rately described by Eg. (8), q (t) viewed over a longer time
interval may be functionally different. An increase of the
temperature, in fact, results in shifting the part of the de-
cay of q(t) probed to times long compared with r, . The
concommittant decrease of the fitted exponent P then
shows that the functional dependence of q (t) drops
slower than according to Eq. (8) with fixed P. Apparent-
ly, as was shown above, the long-time tail of q (t) is better
represented by the exponential-logarithmic decay, Eq. (7).
According to the same reasoning, the near constancy of P
below 4 K suggests that q(t) is quite well described by
the stretched-exponential form for lnt ~ln~, . The two
time decays of q (t) considered thus seem to apply best to
different temperature regimes, but in a reversed order
compared to d =3 SG. These considerations, however,
do not detract from the conclusion that the associated
temperature dependences of ~, establish activated dy-
namic behavior, and support the identification of ~, in
the Cole-Cole equation as the characteristic relaxation
time of the d =2 SG. Further, all deduced values for ir'jv

are mutually consistent with an average of /v= 1.9+0.3.

1 sin(am. )
g 1 2' cosh[(1 —a)ln(~/~, )]—cos(acr)

(9)

which is normalized according to f + g(w)d 1nr= l. In
Fig. 8 some representative distributions are shown. The
salient point here is that the profiles g(w), which on a log-
arithmic scale are symmetric about ~„ turn out to be ex-
tremely broad, even at temperatures substantially above
Tf. In fact, at 5.8 K the distribution spans as many as 10
decades in time (full width at half maximum), spreading
by another 5 decades when going to 3.4 K. Meanwhile,
the distribution is seen to shift as a whole towards larger
times over a distance significantly beyond its width.

It is of interest to compare the Cole-Cole distribution
with the distribution of relaxation times g'(~) associated
with the correlation function q(t). This distribution may
be defined by the relation

q(t)= f g'(v)exp( t/r)d in~ . — (10)

C. Relaxation-time distribution

With knowledge of the median relaxation time ~, and
the width parameter a, it is straightforward to calculate
the distribution of relaxation times associated with the
Cole-Cole equation, Eq. (3). We have
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FIG. 8. Distribution of relaxation times g(~) according to
Eq. (9) for a selection of temperatures.

lower temperatures. Ultimately, the growth of the corre-
lations is, of course, limited by the SG correlation length,
so that the susceptibility approaches the Curie law. In
the present system, yo is antiferromagnetically suppressed
down to = 15 K, below which temperature it starts catch-
ing up, crossing the Curie law at =7.5 K. More precise-
ly, from 7 down to 3.5 K go from the Cole-Cole analysis
follows the phenomenological quasicritical power-law
divergence yo~(T —T') r with y=1.67 and T*=2.99
K. Similarly, yo from the stretched exponential yields
y=1.68 and T*=2.80 K. These results for y conform
essentially with the d =2 Ising value y=1.75. The ulti-
mate crossover to a Curie law is not observed, presum-
ably because below 3.5 K yo escapes determination with
the present experimental time window.

For a stretched-exponential decay [Eq. (8)], with small
values of P, i.e., 13~in(t/r, )~ &&1, the inverse Laplace
transform of q (t) can be written as the series expansion'

g'(r)=P exp[ ,'13 ln (—r/—r, ) —1][1+O(P )],
which, to leading order, is a Gaussian distribution on a
lnv scale. Apparently, in the present case the Cole-Cole
and stretched-exponential descriptions are closely related
and differ only with respect to the precise shape of their
otherwise symmetric logarithmic distributions. The
Cole-Cole distribution carries more weight in its wings,
which affects the decay of the associated correlation func-
tion at long times. In fact, in this limit the Cole-Cole
q(t) reduces to the simple algebraic form q(t)=t
which is close to the exponential-logarithmic decay [Eq.
(7)] for 5=1.

D. Isothermal susceptibility

The temperature dependences of the isothermal suscep-
tibility yo as derived with the above three fitting pro-
cedures are presented in Fig. 7. The dependences appear
to be quite similar, except for a gradual disparity below
=5 K. Above this temperature, the yo found further
coincide with the results from the dc susceptibility
(dashed line in Fig. 7). A monotonic increase with de-
creasing temperature is observed which is much faster
than the simple Curie law y ~ 1/T anticipated for a d =2
SG with a symmetric distribution of random exchange
couplings. Apparently the susceptibility is enhanced by
the presence of short-range ferromagnetic correlations.
Predominantly ferromagnetic, or for that matter antifer-
romagnetic, correlations are indeed expected to develop
in any SG system exhibiting an asymmetric distribution
of exchange interactions, even if the interactions average
out to zero. In Rb2Cuo 782Coo 2»F4, the antiferromagnet-
ic J's are —37 and —90 K, while the ferromagnetic J's
are typically 20 K. ' Nevertheless, this system forms a
SG because the concentrations of Cu and Co are such
that the weaker ferromagnetic bonds are more abundant.
When cooling, at first short-range antiferromagnetic or-
der develops, followed by short-range ferromagnetic or-
der upon further cooling. Accordingly, the susceptibility
initially drops below the Curie law, but rises above it at

IV. DYNAMIC SCALING

An alternative analysis of the data, which extends to
lower temperatures and yields additional information on
the critical exponents, is based on scaling the susceptibili-
ty in the frequency domain according to activated dy-
namics. For random systems controlled by a zero-
temperature fixed point the dynamic spin-correlation
function may quite generally be expressed in a scaling
form with argument In(coro)/g~, and an activated dy-
namic scaling form for y"(co, T) then follows by use of the
fluctuation-dissipation theorem, which connects the
correlation function to y". We thus have

y"T ~= 9'[ —ln(coro) T~],

in which P is a scaling function, and

p = —1 —v(2 —rj —P) = —1 —y+1(v,

(12)

q—:gv, and ro are scaling parameters; y and rI are critical
exponents in the usual notation. In the derivation of Eq.
(12) it is assumed that the relaxation spectrum is a slowly
varying function of co, a condition that is amply met in
Rb2Cuo 782Cop 2»F4.

In Fig. 9, we present a scaling plot of g"(co, T) as ob-
tained by optimizing p, q, and ~o such as to achieve maxi-
mal coincidence on a universal curve. In this plot all
data of Fig. 1(b) have been included. The frequency
co/2m thus runs from 0.3 to 50000 Hz, while T varies
from 1 to approximately 7 K. Scaling is found to be sat-
isfactorily obeyed for p= —3.0+0.5, q =2.2+0.3, and
co=10' ' *"s. The maximum of the scaling function
corresponds to co~, =1, with ~, at the pertinent tempera-
ture taken from the Cole-Cole analysis. The right-hand
Hank is associated with co~, (1, or higher temperatures,
and conversely the left-hand side with co~, & 1. The result
for q =gv and 7 p are in good agreement with the corre-
sponding results of the relaxation time analyses of the
previous section, which is gratifying in that it demon-
strates consistency of the two approaches. The results for
p and q =gv, when substituted into the relation
p = —1 —y+gv, yield for the critical exponent of the
order-parameter susceptibilty y =4.2+0.6, which excel-
lently compares with the result y=4. 5+0.2 deduced
from the static nonlinear susceptibility.
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A somewhat surprising conclusion deduced from Fig. 9
is that, apart from deviations near cow, =1, dynamic scal-
ing in Rb~Cup 78/Cop pi8F4 holds over the entire regime of
temperatures despite the freezing of the system into a
nonequilibrium state. In this context we recall that the
system would only attain equilibrium if it were left to re-
lax for a time exceeding the longest relaxation time
present in the spectrum. Although this condition is evi-
dently violated in the low-temperature regime, the time
to take a data point, of order 10 s in the present experi-
ment, is much larger than the experimental time m

and consequently the susceptibility will, at the relevant co,

probe fluctuations that closely resemble those of true
equihbrium.

V. CONCLUDING REMARKS

The results from the Cole-Cole analysis, the frequency
transforms of the dynamic correlation functions, and dy-
namic scaling all confirm the physical concepts underly-
ing the theory of activated dynamics in SG: The dynam-
ics is governed by thermally activated relaxation over
barriers B that are distributed in height with a spread
AB -B, and diverge with decreasing temperature as some
power of the correlation length. That AB/B indeed is of

I I I I I IIII

10
—In(ufo) Tq

FICx. 9. Activated-dynamic-scaling plot of the y"(co, T) data
for temperatures from 1 to 7 K and frequencies from 0.3 Hz to
50 kHz. Symbols correspond to the frequencies in Fig. 1.

order unity at all temperatures may be verified from the
relaxation-time spectra obtained with the Cole-Cole
analysis by converting them to distributions of barrier
heights by use of Eq. (1). The temperature dependence of
g(7 ) observed in RbzCuo 7spCOO zisF4 is probably exem-
plary for the spectrum of relaxation times in the d =2 Is-
ing SG. Indeed, it sharply contrasts, at least in a qualita-
tive way, with the results available for d =3 SG above
T, . ' In the latter case, upon approaching T, from
above, g (r) suddenly expands toward dc time scales by
developing a long-time tail rather than a shift of the en-
tire distribution, while the time corresponding to the
maximum in g(r), although increasing, remains short
( (10 s).

The reason for the success of the Cole-Cole description
for this d =2 SG has become apparent from the analyses
based on the decay of the dynamic correlations. At short
times (ln t ~in r, ) the decay is well described by a
stretched exponential with a small exponent (/3=0. 09),
while at long times (ln t ~lnr, ) the decay is closer to
algebraic. Both features are contained in the Cole-Cole
equation with a close to unity. Below 3.4 K, the
relaxation-time spectrum has, as a whole, shifted to such
long times that analyses based on the determination of a
characteristic relaxation time are rendered unfeasible.
But here, dynamic scaling, directly probing fluctuations
in the "short"-time tail of the distribution, still allows a
determination of Pv. The value of itjv depends slightly on
the way the data are analyzed. From the various
methods of analysis an averaged value of /v=2. 0+0.3 is
found.

We finally derive a complete set of critical exponents
for RbzCup 78/Cop z, ~F4. Combining the Present result
y =4.2+0.6 with y =4.5+0.2 from the static susceptibil-
ity, we arrive at y=4. 4+0.2. This value favors a com-
parison of the present system with the +J model for
d =2 Ising SG, for which estimates of y range from 4 to
5.3, rather than the Gaussian model for d =2 Ising SG,
which leads to y=7. Indeed, RbzCu, „Co F4 is ex-
pected to be in the +J universality class because, first, the
distribution of interactions is discrete, and, second, the
number of spins subject to exchange fields balancing to
zero is finite. ' From the scaling relation y =v(2 —g) we
then deduce v=2. 4+0.3 upon adopting for g a small
positive value ( g =0.2+0.2), as appropriate to the
d =2 +J Ising SG. This implies 0= —1/v= —0.41
+0.05. Finally, by use of our result /v=2. 0+0.3 it fol-
lows that /=0. 8+0.2, which agrees with the upper limit
g ~ d —1 set by theory. ' "A recent rigorous numerical
calculation of the energy barriers in d =2 systems infers
/=1 z4
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