PHYSICAL REVIEW B

VOLUME 40, NUMBER 16

1 DECEMBER 1989

Electronic theory of phase stability in substitutional alloys:
The generalized perturbation method versus the Connolly-Williams method

M. Sluiter
Materials and Chemical Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720
and Condensed Matter Division (L-268), Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550

P. E. A. Turchi
Condensed Matter Division (L-268), Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550
(Received 26 May 1989)

A detailed analysis of the tendencies toward ordering and phase separation, and more generally
the stability properties at 750 K in substitutional alloys, is carried out using the prescription pro-
posed by Connolly and Williams and the generalized perturbation method. Both methods are exam-
ined and contrasted within the framework of a simple but realistic tight-binding model applicable to

paramagnetic transition-metal alloys.

I. INTRODUCTION

The basic tools for studying ordering and phase stabili-
ty in substitutional alloys and ultimately their phase dia-
grams, are based on the so-called 3D Ising model within
various approximations, such as the cluster-variation
method"? (CVM) and Monte Carlo simulations.>* In
these models it is assumed that the internal energy can be
written as a rapidly convergent sum of pair and multisite
interactions. This statement has been proved in normal
metals and their alloys® using the pseudopotential theory,
but in transition metals, where strong disorder effects can
be important, such an expansion must be clearly justified.
Statistical mechanical studies of ordering processes, with
arbitrarily chosen interactions, have been remarkably
successful. The realization that these interactions can be
derived from electronic band-structure calculations has
initiated extensive research in an effort to provide a direct
link with statistical-mechanical models. Among other
approaches, one can mention the concentration function-
al theory of ordering,6 the embedded-cluster method,’
the generalized perturbation method® (GPM), the
Connolly-Williams method® (CWM), and the closely re-
lated e-G approach.!®!!" The aim of this paper is to ex-
amine and contrast two alloys theories, namely, the GPM
and the CWM. This preliminary study is performed
within a tight-binding framework applicable to paramag-
netic transition metal alloys, but as will become apparent,
the conclusions drawn from this study are expected to be
model independent.

In the GPM a perturbation treatment is derived by
choosing a reference medium which is close to any partic-
ular configuration of the alloy. Hence, the intuitive idea
to use the completely disordered state, as the one de-
scribed by the coherent-potential approximation
(CPA),'>13 a5 an appropriate reference medium. %4719

Let p] be the occupation numbers, usually defined as
pi=0or 1 depending on whether or not site n is occupied
by an atom of type i (i = 4,B). Thus, for a binary alloy
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A,_.B,, in which only chemical rearrangements exist,
each atomic configuration is completely specified by the
set of {p;}.

The GPM allows the band energy E ({p}}) of a given
configuration of the alloy to be expressed as the sum of
two terms: (1) the energy of the totally disordered state,
E ;. (c), also called the disordered energy, which is con-
centration dependent but independent of the set {p]} and
hence configuration independent, and (2) the ordering en-
ergy AE 4({P}}), which is the difference between the en-
ergy of the state specified by the set {p}} and the energy
of the totally disordered state. It is important to note
that the simplest version of GPM does not study the
configuration dependence of the energy of alloying, or the
total energy, but rather focuses only on one (important)
contribution to the total energy, namely the band energy.
The band energy is the main contribution to the total en-
ergy, in the absence of charge transfer, because other
electronic contributions to the total energy either cancel
(interatomic electron-electron energy and Madelung ener-
gy) or vanish (intra-atomic electron-electron energy).
However, charge-transfer effects can be taken into ac-
count within the GPM description.!”?° The band energy
is given by

E({P;}):Edls( )+AEord({ }) ’ (1
with
AE 4 ({pi})=1 2 m(c)8c, 8¢,
%z Vo mi(c)8c, 8¢, 6c;+ -+, (2)
where ¢ =c? is the concentration of the B species,

8¢, =pE—c?® is the concentration deviation at site n and
V,.. .(c) is the concentration-dependent cluster interac-
tion.

These cluster interactions, for a given lattice (fcc,
bec,. . .), depend on the distances between the cluster
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sites (n,m in case of pairs, n,m,l in case of triplets) and
their relative arrangements, the concentration ¢, and the
following electronic quantities: the one-electron potential
difference ¢4 —¢® and the Fermi energy e which deter-
mines the filling of the band with respect to the complete-
ly disordered state, i.e., the averaged number of electrons
per atom. Note that the concentration dependence of the
cluster interactions reflects the properties of the reference
medium and, therefore, the averaged local neighborhood
of the clusters. Due to mean-free-path effects (scatter-
ing), a rapid convergence of the expansion is expected.
The CWM is based on a formal expression for the total
energy, first derived by Sanchez (see, e.g., Ref. 21),

E&(n=3V,(nE, (3)
Y

where the total energy of a particular configuration « is
expressed as the sum of products of multisite interactions
V, and multisite correlations £5. These correlations are
defined as

1
57N, r%x TmGn
where o, =1—2p,, takes the values +1 or —1 depend-
ing on the occupancy of site n, N, is the total number of
v-type clusters, and the sum runs over all y-type clusters
on the lattice.

The total energies and the multisite interactions are
generally lattice-parameter r (or volume) dependent. The
multisite interactions are not composition dependent in
an explicit fashion as in the GPM. However, the CWM
interactions vary indirectly with composition because the
equilibrium volume is generally composition dependent.
The summation in (3) runs over all clusters types that can
be formed by combining sites on the entire crystal (in-
cluding the “empty” cluster).

Provided that the configurations are restricted to or-
dered structures, total energies can be computed by accu-
rate ab initio band-structure methods, and multisite
correlations (which are determined by site occupancy
only) can be found by inspection. The computation of V',
proceeds by inversion of the system (3). In practice, (3)
can be solved only if the existence of a maximum cluster
Ymax 18 assumed beyond which the corresponding mul-
tisite interactions are supposed to be negligible. Hence,
by choosing a set of ordered structures and by (arbitrari-
ly) truncating the summation in (3) a set of multisite in-
teractions can be obtained from,

V(=3 (ENTEG(r), ¢=¥ =¥

Vy(r)=0, Vax <Y <@ ,

where ¢ represents the empty cluster.

The empty- and point-cluster “interactions” do not
affect coherent phase diagrams, or more general, phase
equilibria. When comparing superstructures based on
different lattices, the respective differences between the
empty- and point-cluster interactions must be taken into
account. These two interactions merely supply an energy
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contribution that is linear in composition. Hence, it fol-
lows that instead of using total energies to compute the
cluster interactions (beyond the point cluster), any other
energy can be used to compute the interactions as long as
it satisfies the condition that it only differs from the total
energy merely by a linear function of composition. The
band energy satisfies that condition assuming that
charge-transfer and zero-point vibrational effects can be
neglected. Therefore, the band energy will be used in-
stead of the total energy from now on. For simplicity the
band energies will be calculated at fixed volume.

The disordered energy, playing a crucial role in the
GPM, is obtained as a by-product in the CWM. In the
totally disordered state the pair- and higher-order corre-
lations are given as products of the point correlations. In
a disordered structure with one atom per unit cell, such
as fcc and bcec, all atomic positions are equivalent so that
all correlations can be expressed in terms of one point
correlation &;:

gls=(g)"r

where n,, is the number of sites contained in the ¥ clus-
ter. The energy of the disordered configuration, accord-
ing to the CWM, is then given by

ymax

Ef= 3 V(&) 5)
14

We have extended the CWM in various ways. (1) Oth-
er ordered structures than the ones originally proposed
(fcc, L1y, L1,) have been included. The set has been ex-
tended with the following set of ordered structures:
DO,, (A3;B and AB;), MoPt, type of order (A4,B and
AB,), A,B, (phase 40 in Kanamori’s notation??), L1,
(CuPt prototype) (AB), and PtgV type of order ( AzB)
(see Ref. 22 for a description of these ordered structures).
This allows computation of cluster interactions from
various sets of ordered structures (called basis sets from
now on), i.e., including other combinations than the usual
set 4, B, L1, and L1, (2) Expansion (3) has been trun-
cated at the tetrahedron-octahedron (TO) maximum clus-
ter, which leads to a set of 11 interactions V', as opposed
to a set of only 5 interactions at the tetrahedron (T)
maximum-cluster truncation. (3) Moreover, the case of
overdetermined systems is considered where interactions
are obtained from a large set of ordered structures by a
least-squares fit. In general, one expects that this will
lead to an improved accuracy of the cluster interactions
since the effects of the arbitrary truncation at the max-
imum cluster in (3) are “averaged out.”

An alternate method of determining cluster interac-
tions is to find two ordered structures that have identical
correlations, except for the cluster which interaction is to
be determined. Because of geometrical constraints, this is
strictly speaking not possible. However, one can find
structures which have identical correlations (with excep-
tion for one cluster) up to quite a large maximum cluster.
An example is formed by the L 1, structure (CuPt proto-
type) and a structure defined as follows: A sites: 101,
110, 000, 0— 11, B sites: 033, —10%, — 130, 001, with
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TABLE I. Correlations included in the tetrahedron truncation of the CWM for some structures on
the bce lattice. The & with increasing index i, correspond to the “empty” cluster, the point, the
nearest-neighbor (NN) pair, the next-nearest-neighbor (NNN) pair, the triangle formed by two NN
pairs and one NNN pair, and the tetrahedron formed by four NN pairs and two NNN pairs.

Structure: Composition &o & & &; I &s
bee A 1 1 1 1 1 1
bee B 1 —1 1 1 —1 1
B2 AB 1 0 —1 1 0 1
B32 AB 1 0 0 —1 0 1
DO, A;B 1 1 0 (0] -1 —1
DO, AsB 1 -1 0 0 1 —1

translation vectors {110), (101), and {011). These two
structures have identical correlations up to the TO trun-
cation except for the tetrahedron; there, the first struc-
ture has a correlation of —1 and the latter has a correla-
tion of +1. Hence, to a good approximation, the
difference of the two total energies should yield a good es-
timate for twice the tetrahedron cluster interaction. This
alternate method is planned to be discussed in forthcom-
ing work.

Correlations for the most common bce and fecc based
superstructures are given below in Tables I and II, re-
spectively. Correlations for the empty cluster &, (not in-
dicated in Table II) take the value unity for all structures.
Correlations corresponding to the tetrahedron approxi-
mation of the CWM for fcc based structures can be ex-
tracted from Table II, by taking solely the coefficients

corresponding to &, &,, &4, and & A comparison of the
correlations up to the tetrahedron maximum cluster indi-
cates that the L1, and DO,, structures, and the L1, and
“40” structures are degenerate.

To shorten the notation, the ordered structures,
comprising the “basis sets,” will be referred to by a num-
ber. The numbers are assigned as follows: 1= 4 —fcc,
2=B —fcc, 3=L1, 4=40, 5=L1,, 6= A4,B—MoPt,,
7= AB, —MoPt,, 8=A;B—L1,, 9=AB;—L1,,
10=A4,B —DO,,, 11=AB;—DO0,,, 12=AzB —PtgV,
and 13= AB3—PtgV. Cluster interactions obtained with
TO truncation with a basis set 1 through 13 thus corre-
spond to a set of 11 cluster interactions obtained by a
least-squares fit to the total energies of all structures cor-
responding to numbers 1 to 13. For brevity, this pro-
cedure will be denoted by TO:1-13. The commonly

TABLE II. Correlations included in the tetrahedron-octahedron truncation of the CWM for some
structures on the fcc lattice. The &; with increasing index i, correspond to the point, the nearest-
neighbor (NN) pair, the next-nearest-neighbor (NNN) pair, the equilateral NN triangle, the isosceles
triangle formed by one NNN and two NN pairs, the equilateral NN tetrahedron, the irregular tetrahed-
ron consisting of one NNN and five NN pairs, the square formed by four NN pairs, the pyramid, and
the octahedron, respectively. The abbreviations “comp.” and “str.” denote composition and structure.

comp.-str. & & & &4 &s &6 & &3 &o &0
A-fee 1 1 1 1 1 1 1 1 1 1
B-fcc -1 1 1 —1 -1 1 1 1 —1 1
AB-L1, 0 -1 1 0 0 1 -1 1 0 1
AB-40 0 -1 1 0 0 1 1 -1 0 —1
AB-L1, 0 0 -1 0 0 -1 0 1 0 -1
4,B-MoPt, L T e e S T N SRR S
e CT S S S R e S S R
A3B-L1, 1 0 1 —-1 1 -1 0 1 1 1
AB5-L1, -1 0 1 1 -1 -1 0 1 —1 1
4,8-DOx, e T S S S S S
AB;-DO, o S R B T S N Lo
AsB (C2/m) 2 1 1 0 0 —1 -1 -1 -2 —1
ABs (C2/m) -2 1 1 0 0 -1 -1 —1 2 -1
A4,B (C2/m) T (N 0 -1 1 o -1 1 1
AB, (C2/m) -1 0 -1 0 1 o’ 0 -1 -1 1
AsBPGY S B S - B R S
ABPWY -3 3y -4 - 4 4 -5
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selected basis set™!%23725 consisting of the pure metals,
L1, and L1, ordered structures with T truncation corre-
sponds to T:1,2,3,8,9.

Note that the CWM approach and the GPM are, in
many respects, almost complete opposites as will be dis-
cussed in more detail below. The strength of the CWM
lies in its flexibility: Any method can be used to obtain
the total energies required as input, and in its simplicity
the interactions are computed through solving a small
system of linear equations. Furthermore, the effects of
important physical variables such as lattice parameters
can be included easily in the formulation of the multisite
interactions. As an example, the influence of volume is
demonstrated in the Appendix.

The GPM is based on a sound perturbative treatment
of the disordered medium and produces uniquely defined
concentration-dependent interactions. In the GPM, pair
interactions tend to be significantly larger than multisite
interactions, and among the pair interactions the first-
neighbor interaction is usually much larger than the oth-
er pair interactions. 26728

The CWM on the other hand, does not uniquely define
interactions. Rather, concentration-independent interac-
tions are determined such that total energies of an arbi-
trarily chosen set of ordered configurations are repro-
duced by a rather arbitrarily truncated sum (3). It is
clear that there is no guarantee whatsoever that choosing
a different set of ordered structures or choosing another
maximum cluster for truncation will reproduce previous-
ly computed interactions. However, if the concen-
tration-independent multisite interactions do decay rap-
idly, as is assumed in the CWM, one can expect that pre-
viously mentioned ambiguities are minor and that in
practice the interactions can be uniquely computed.
These considerations bring up the following questions:
(1) Is truncation of (3) justified, i.e., are the multsite in-
teractions rapidly diminishing, and closely related, (2) to
what extent do the CWM interactions vary if they are
computed with total energies from different sets of or-
dered structures? (3) How do the CWM cluster interac-
tions compare to GPM pair interactions? (4) How accu-
rate are predictions of formation energies (or total ener-
gies) with the GPM and with the CWM, respectively? (5)
Do phase diagrams computed with different sets of in-
teractions from the CWM and the GPM resemble each
other? Although the CWM has received much attention
recently, 1%11:23725.29=31 thege crucial questions have been
addressed only partly.

In order to compare the CWM and the GPM on the
same footing, a simple tight-binding model was used to
study phase stability from band-structure calculations in
binary substitutional paramagnetic transition-metal al-
loys. This tight-binding model has been studied in more
detail elsewhere. 12672833

II. FORMALISM

As usual, it will be assumed that the most important
properties of a given transition-metal alloy 4,_.B, come
from the d band. Hence, only d electrons will be taken
into account. Within the complete orthogonal d-atomic
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orbital basis, the following tight-binding Hamiltonian

will be used to describe the alloy in a particular

configuration {p, }:
H=T3|nMei(nrl+ 3

nA n,m,A,u

[nA)BY (mul ,

where e is the orbital-dependent energy of the atomic
level at site n, and B is the hopping integral between
sites n and m, with orbital A(u) centered on site n(m).
Neglecting the d-orbital dependence of the energies e is
a reasonable approximation in the case of transition met-
als. Thus, a site-occupancy dependent on-site energy ¢,,,
which takes the value £ (e?) if site n is occupied by an 4
(B) atom, specifies a given configuration of the alloy. For
simplicity, the hopping integrals are assumed to be in-
dependent of site occupancy, and charge transfer effects
are neglected. The alloy effects come in through the
difference in the atomic d levels, also called the diagonal-
disorder parameter: §,=(cz—e ,)/W, where W is the
concentration weighted average of the half d-band widths
of the pure elements. In the following 5, takes the value
0.8.

Canonical Slater-Koster parameters involving first
nearest-neighbor hopping integrals in the fcc crystal
structure will be used, ddo=—1.385, ddw=|ddo|/2,
dd5=0, leading to a d-band width of 11.08 canonical
units (c.u.) for the pure metal. Because of the spin degen-
eracy and the number of d orbitals a factor of 10 must be
taken into account for all energetic properties. There-
fore, for a typical d-band width of about 5 eV, 1 c.u. cor-
responds to approximately 10 (5/11.08)=4.5 eV/atom (or
conversely, 1 c.u.=~0.45 eV /state).

The Green functions of the pure elements and the or-
dered superstructures, required for the CPA and GPM,
and the CWM band energies, respectively, are computed
with the recursion method.** The continued fraction ex-
pansion of the Green function is calculated with 11 exact
levels and is terminated . analytically according to the
Beer-Pettifor method.’> The band energy E,,,, (per
atom) can be expressed as

Epana= f_:dﬁ(e—ep)n(e) ’

where € is the energy, and €, and n (&) are the Fermi lev-
el and the density of states (DOS), respectively, pertain-
ing to the disordered alloy.

A similar expression is used for the band energies of or-
dered structures, which are required as input for the
CWM. The DOS obtained for the various phases con-
sidered in this study are shown in Fig. 1. Within the con-
text of this model, band energies for ordered structures
computed with the recursion method can be regarded as
exact.

For the tight-binding model previously outlined, ana-
lytic expressions for the GPM effective cluster interac-
tions, mentioned in Eq. (2), can be derived. Note, that
the GPM is by no means limited to the tight-binding ap-
proximation, see Ref. 36 for an application of the GPM
within the multiple scattering formalism of the
Korringa-Kohn-Rostoker-CPA (KKR-CPA) method.
The configuration-dependent Hamiltonian can be written
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FIG. 1. Density of states for various fcc superstructures computed with the recursion method (11 levels of continued fraction, see
the text). The solid line represents the density of states in states per canonical unit, and the dashed line indicates the band filling di-
vided by 4 (the density of states are normalized to ten states). The numbers are assigned as follows: 1= A4 —fcc, 3=L 1, 4=40,
5=L1,, 6= A4,B —MoPt,, 7= AB, —MoPt,, 8= A3;B —L1,, 9= AB;—L1,, 10= A3;B —DO,,, 11= AB; —DO0,,, 12= A3B —Pt;V,
and 13= AB3—Ptg¥V. Number 2, corresponding to B —fcc, is the same as number 1 except for a shift of the energy axis by 4.16
canonical units.
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as a perturbation of the CPA medium,

H=h+h*,
with
h=3n)3(nrl+ 3 [nA)BM (mpul
A nym, A
and
h*=3 InA)(e,—2)(nAl,
A

where h is the Hamiltonian of the CPA medium, A * is
the configuration-dependent perturbation term, and X is,
for simplicity, the orbital-independent CPA self-energy.
The CPA self-energy is site independent for the lattice
under consideration (fcc). Note that the alloy Hamiltoni-
an H, which has no translational symmetry, is split in two
parts: the translationally invariant CPA Hamiltonian A,
and the site-diagonal perturbative term A *, which carries
all configuration dependence. This separation allows the
band energy to be written as a configuration-dependent
perturbation expansion.?’” The expansion coefficients in
the expression for the ordering energy (2), that is, the
effective cluster interactions V, are given by

Vi=etm [ de 3 (1 - (e =2,

i 1 ¢F iyj Me o
Vnm——glmf det't lEgnmgnm ’
W

where i,j represent either element A4 or B, F is the site-
diagonal Green function, ¢ is a (site) diagonal element of
the scattering matrix, and g is the (site) off-diagonal
Green function. The single-site interactions allow species
to preferentially occupy certain sites. When all sites in
the unperturbed medium are equivalent, as in this study
pertaining to the fcc lattice, the single-site interaction
term of the ordering energy expansion vanishes according
to

S (pi—cW'= V'3 (pj—ec)=0.
in i n

The expression for the ordering energy can be
simplified even more (i) by using the relations 3, p/ =1,
hence p,=1—p,, where p, and ¢ from now on will refer
to the B species only, and (ii) by defining At =¢8—¢4.
This algebraic manipulation yields

-1 _ _
AEord({Pn})‘ N %(pn C)(pm C)Vnm+ ’

where the effective-pair interactions (EPI) V,,,
by
v,

n

are given
-— yAA __ 3y AB_ y/BA BB
m Vnm Vnm Vnm + Vnm

—_ 1 F 2 Apy2
s -Im [ Tde(an) %( i)

Retaining only the effective-pair interaction terms results
in a simple equation for the ordering energy

AE, ({g;})= 3 q,V; , 6)
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where ¥V is the effective-pair interaction between an atom
and its neighbor in the sth coordination shell, and g, is a
coefficient which depends on the occupation of the sth
neighbor shell of a B atom in the alloy, i.e., on the type of
ordering. g, is defined by

g;,=1(nBBc —ny.c?), ‘ 7

where n; is the number of sites in the s shell, nSBB is the
number of B atoms in the s shell that surround a B atom
at the origin.

The EPI (V) for a given lattice depend on (i) the com-
position (via the concentration-dependent self-energy of
the CPA medium), (ii) the interatomic distance, (iii) the
diagonal disorder §,, (iv) possibly on the off-diagonal dis-
order, in cases where the bandwidths of the two com-
ponents of the alloy differ substantially, and (v) on the
average filling of the d band N,. Thus, we have

V,=WV(s,¢,84,8,4,N,) ,
where
€
Ne=f Fdsndis(s) )

ngs being the DOS of the disordered alloy (CPA medi-
um). Note,

N,=(1—c)N ,+cN,

where N, ) is the number of d electrons per A (B)
atom. The off-diagonal effect can be taken into account
by allowing the hopping integrals to be site-occupation
dependent’” and by using a CPA adapted to this effect. >

In the tight-binding description, briefly outlined above,
most of the tendencies toward ordering and phase separa-
tion as well as the prediction of the most probable or-
dered states at 7=0 K can be obtained with the
GPM. 28 As in the extensive study performed by Bieber
and Gautier,”® the GPM expression for the ordering en-
ergy (2) is computed with two levels of truncation; only
the point and pair contributions are considered [first two
terms in Eq. (2)], and the pair interactions are computed
up to the fourth nearest-neighbor shell [truncation of the
summation in second term of Eq. (2)].

III. RESULTS AND DISCUSSION

A. Convergence of the CWM and GPM interactions

As mentioned earlier, the CWM requires a rapid con-
vergence of expansion (3) in order to justify its trunca-
tion. This convergence is examined by computing CWM
multisite interactions with both T and TO truncation and
various basis sets of ordered structures.

First, the commonly chosen basis set®!%?3725 of pure
metals 4 and B, L1, and L1, ordered structures with
tetrahedron truncation (T:1,2,3,8,9) will be investigated.
In Fig. 2 the pair, triangle, and tetrahedron cluster in-
teractions (V,, V,, and Vg, respectively) are shown as a
function of the number of d electrons of the B species for
fixed AN =N 4—Njg. Because of the proportionality be-
tween &, and AN, a value of AN=6 is chosen, in reason-
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FIG. 2. CWM cluster interactions in canonical units comput-
ed with tetrahedron truncation and energies of the fcc, L 1,, and
L1, phases; solid line: V,, dashed line: ¥,, and dash-triple-
dotted line: V4. The interactions are depicted as a function of
the number of d electrons of element B (Ng =N, —6).

able agreement with §;=0.8. Convergence appears to be
satisfactory since ¥, and V¢ are much smaller than V,,
except for very small and very large values of Ngz. In the
cases where the convergence is poor, the ordering of
phases 3, 8, and 9 can be shown to be very small.

Figures 3(a) and 3(b) show the V,,, Y=23,...,10
computed with TO:1-11. A similar pattern as was ob-
served in Fig. 2 emerges, the first-neighbor-pair interac-
tion (V,) is much larger than all other interactions ex-
cept when Ny is very small or very large, or, in other
words, when the ordering energy is small. The interac-
tions corresponding to the pyramid and octahedron (¥,
and V,,) are found to be significantly smaller than the
other interactions.

Table III allows a more quantitative evaluation of the
convergence. Cluster interactions obtained with T and
TO truncation and various basis sets are listed for a {9-3}
alloy, where, by convention, {9-3} stands for N ;=9 and
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FIG. 3. CWM cluster interactions in canonical units, com-

puted with tetrahedron-octahedron truncation: (a)

=0.1XVy; —— —=V3;, ——-—=V4 ———-= Vs;
ce =V () =V — o =V —ee= Vs
— — —=V),. The interactions are shown as a function of

Ng(Np=N,4—6).

TABLE III. Cluster interactions ¥, (in canonical units), computed with T and TO truncation, for an alloy with N,=9 and
Ny =3, obtained with various basis sets: (a) T:1,2,3,8,9, (b) T:1,2,3,9,10, (c) T:1,2,4,10,11, (d) T:1-13, (¢) TO:1-11, and (f) TO:1-13.

k a b c d e f
0 —0.136 650 —0.139530 —0.134370 —0.136 496 —0.139330 —0.137 650
1 —0.332896 —0.338656 —0.341270 —0.336618 —0.357759 —0.345760
2 0.094 554 0.094 554 0.086 849 0.093 150 0.082 130 0.089 258
3 0.006 897 0.007 388
4 0.001 183 0.006 943 0.009 557 0.008 152 0.001 183 0.005 182
5 0.024 603 0.020911
6 0.002 987 0.005 867 0.008 413 0.006 573 0.002 987 0.003 847
7 0.012 425 0.006 525
8 —0.002 767 —0.004 242
9 0.000 260 —0.008 969

10 —0.001 449 —0.002 597
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Np=3. The ratio of ¥V, over V¢ takes values between
10.3 and 31.7, indicating that the first-neighbor-pair in-
teraction is an order of magnitude greater than the
tetrahedron interaction. The {9-3} alloy is not a special
favorable case, the {8-2} alloy would yield even larger ra-
tios. The {10-4} and the (hypothetical) {6-0} (Ref. 38) al-
loys, however, which have very small ordering energies,
produce ratios of the order of unity, indicating a very
poor convergence.

Note, that the absolute value of the ratio of V4 over
Vo is only about 1.5 to 2. This means that the conver-
gence for larger clusters slows down considerably. In
summary, it appears that the cluster interactions con-
verge quite well, except when the ordering energies are
small; in which case the first-neighbor interaction is not
significantly larger than the other multisite interactions.
Some general rules of thumb for the occurrence of small
ordering energies in transition-metal alloys are given in
Ref. 39.

A close inspection of Figs. 2, 3(a), and 3(b) and of Table
III reveals that an important interaction is left out in the
T truncation: the interaction Vs, associated with the ir-
regular triangle, is quite large, larger than both the regu-
lar triangle and the tetrahedron interactions. The oc-
currence of such a large interaction cannot be known un-
til the cluster interactions are computed with a larger
maximum-cluster truncation, but at this higher level,
once again, important interactions may have been exclud-
ed. Hence, it appears that one can never be certain that
all significant interactions have been included in the com-
putation of the cluster interactions.

For comparison, the convergence of the GPM
effective-pair interactions is illustrated for a number of al-
loys in Table IV. The GPM yields pair interactions
which converge extremely well when nearest-neighbor in-
teractions are compared with more distant pairs. Aver-
aged for the {7-1}, {8-2}, and {9-3} alloys, the absolute
values of the ratios of V{™ over V$™™, V§PM  and
VE’PM are, respectively, 17.9, 34.1, and 18.1. This conver-
gence is lacking for the {6-0} and, to a lesser extent, for
the {10-4} alloys, where the V™™ approaches zero.
These two alloys were found to be problematic in the
CWM also. In both methods the poor convergence of the
interactions can be attributed to the smallness of the or-
dering energies. Aside from these “troublesome” alloys,
the convergence beyond the nearest neighbor is extremely
slow, VS™, p$PM and V™M are all of the same order of
magnitude.

Concerning the convergence of the GPM interactions
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the following can be concluded: (1) The nearest-neighbor
pair interaction is generally much larger than the interac-
tions pertaining to more distant pairs. The more distant
pair interactions do not converge rapidly, as V,, V3, and
V, are all of the same order of magnitude. It must be
noted, however, that the more distant pair interactions
are extremely small, typically about 0.003 c.u. (0.014 eV),
whereas the nearest-neighbor pair interaction is typically
about 0.04 c.u. (0.18 eV). (2) The GPM interactions do
not converge well when the nearest-neighbor interaction
is very small, that is, when the ordering energy is small.

B. Uniqueness of the CWM cluster interactions

Table III allows a comparison of cluster interactions
computed from various basis sets and with two levels of
truncation: T and TO. With T-truncation, the largest
and smallest values of the nearest-neighbor-pair interac-
tion V, differ by less than 9%. The triangle and
tetrahedron interactions ¥V, and Vg, vary much more
strongly; the ratio of the largest and the smallest values is
as large as 8.1 and 2.8, respectively. The interactions, ob-
tained with T or TO truncation, do not differ more from
each other than the interactions obtained with T trunca-
tion vary among themselves. The multisite cluster in-
teractions, computed with TO truncation, vary
significantly percentage wise. In the case of ¥, the sign is
different for basis sets 1-11 and 1-13. The absolute varia-
tion in the interactions ¥, does not appear to change
with y. Typically this variation takes values of about
0.004 canonical units (c.u.) with TO truncation, and
about 0.007 c.u. with T truncation. It is clear then, that
the CWM cluster interactions of small amplitude will
show a larger relative variation.

The concentration-dependent effective-cluster interac-
tions in the GPM, by contrast, do not suffer such an am-
biguity®?’ and the interactions can be computed, at least
in principle, with arbitrary numerical precision.

C. Comparison of the magnitude
of GPM and CWM interactions

Comparing cluster interactions from the CWM and
effective-pair interactions from GPM is only possible to a
limited extent because both types of interactions are
defined in very different terms. To make this apparent,
consider the ordering energy, defined by a variant of (1),

AES,=E2 —E% (8)

TABLE IV. The CPA-disordered energy Eg;, and the first-, second-, third-, and fourth-nearest-
neighbor effective-pair interactions (V§PM, PSPM pPM and V$PM| respectively), in canonical units,

for various alloys at equiatomic composition.

N—Ny Ey ye yg yg yge
{6-0} —0.60026 —0.009 394 —0.000 44 0.00053 0.002 99
{7-1} —0.57133 0.042 661 —0.003 86 —0.002 21 —0.00052
{8-2} —0.42181 0.081 560 —0.004 64 —0.002 50 —0.005 59
{9-3} —0.144 42 0.043 652 0.000 86 0.000 20 —0.003 16

{10-4} 0.254 61 —0.019133 0.00518 0.002 80 0.004 47
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From now on, for brevity, the superscript «, which indi-
cates the configuration dependence, will be ignored. The
ordering energy in the CWM is then, in a more explicit
form, obtained by substitution of (3) and (5) into (8),

Ymax
AEQM= 3 ViM™MIE,—(£)"]. ©)
14

Comparing this expression with the GPM expression for
the ordering energy [a variant of Eq. (6)],

AEGM=3 ¢, Vo™, (10
s

makes clear that both types of interactions are used in
quite different ways. In order to make a comparison pos-
sible, the CWM expression for the ordering energy will be
matched to the corresponding GPM expression (as was
suggested by Carlsson?). To this end both the g, weight
factors and the higher-order correlations (the latter by
means of a superposition approximation) will be ex-

|

57’:<0P101’2 e opn)z<oplapz)<0)"_2+<0p1035(0>"_2+ . +(0pn_lapn>(0)”"2-—

= -2 —24 ... -2__
'—gplngl +§p1p3§1 + +§pn~1pn§1 2
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pressed in terms of pair and point correlations, and then
the coefficients of these point and pair correlations in the
GPM and CWM expressions for the ordering energy will
be compared.

The g, weight factors for the s nearest-neighbor shell,
defined in (7), can be given exactly in terms of the coordi-
nation number z;, the pair correlation & ., and the
point correlation &,

Z 2
qs=—8—(§s-pair——§l) . (11)

Truncating the summation in (10) at the second-neighbor
shell and substituting (11) with z;=12 and z,=6 (fcc
case) gives

AESIM =36~ DV ™M +3(6—r§™ . (12)

The higher-order correlations in (9) can be approximated,
by means of a superposition suggested by Carlsson,?’ as

n(n—1)

> 1

(a)"

n(n—-l)__1

> &1 s (13)

where n represents the number of lattice points in the ¢ cluster. Truncating (9) at the TO maximum cluster and using
(13) for the higher-order correlations, the following (approximate) expression for the ordering energy is obtained:

AEGEM =~ (&= ED(VE™™M 436 VWM 26, VEVM 661V EVM 4 SE VM 48l VM 86§ + 1261V M)
+(&—ENVEYM + £ VWM 4+ £V FVM 283V EWM 426 §WM + 364V M) (14)

Matching (12) and (14) produces an approximate relationship between the GPM and CWM interactions,
VOPM = 2(P§WM + 38 VWM +2£, VWM +6£1V WM + 5V VM +4£1 v VM 488V VM + 126tV VM)
P =4 (VENM £ VENM VSN 426l L ag VS V)

At the equiatomic composition, &; vanishes so that (15)
can be simplified and rewritten as

CWM _ 3 yGPM
V2 ~7V1

(16)
PEWM 3 oM

Using (16) to compare the interactions in Tables IIT and
IV ({9-3} alloy), a clear trend emerges: Both pair in-
teractions are significantly larger in the CWM than in
GPM. In case of the first- and second-nearest-neighbor-
pair interactions the difference is of the order of 0.03 c.u.
(0.14 eV) and 0.006 (0.027 eV), respectively. The
differences between values of a typical CWM interaction
obtained from various basis sets was much less, for the
TO truncation only about 0.004 c.u. (0.018 eV). It is
clear that the differences between GPM and CWM in-
teractions are significant but at this point it is not possi-
ble to say which of the two methods produces the most
accurate results.

(15)

D. Prediction of total energies with the GPM and the CWM

A description of phase equilibria in substitutional al-
loys from first principles is only possible if total energies
of (ordered) phases can be predicted with sufficient accu-
racy. In order to predict the stable ordered structure at a
given composition, for example, the error of the total en-
ergy must be significantly less than the energy difference
between the competing phases.

As a measure of the energy difference between compet-
ing phases a and S, the following definition has been
adopted: The energy difference squared Aiﬁ is the
difference in the total energies of the phases a and B
squared, averaged for 5 alloys, namely {6-0}, {7-1}, {8-
2}, {9-3}, and {10-4}. In Table V the band energies for a
series of competing phases are listed for this set of alloys.
Energy differences for phase 3 and 4, 8 and 10, and 9 and
11, are respectively, 0.0074, 0.0073, and 0.0036 c.u. It is
apparent that the band-energy differences of competing
phases are of the order of 0.005 c.u. (0.02 eV). At this
point, the question to be asked is, can the GPM and the
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TABLE V. Band energies (in canonical units) of several competing phases obtained by recursion, for the set of alloys discussed in
the text. For convenience the number associated with each ordered phase is given in the second row.

L1, 40 L1, (A,B) DO,, (A;B) L1, (AB;) DO,, (AB;)
N,—Nj 3 4 8 10 9 11
{6-0} —0.590725 —0.596 075 —0.867459 —0.872 140 —0.281020 —0.280335
{7-1} —0.592724 —0.585396 —0.802 562 —0.796427 —0.350596 —0.356097
{8-2} —0.465 551 —0.468 838 —0.622 609 —0.613 865 —0.212544 —0.211040
{9-3} —0.165181 —0.154 907 —0.306 676 —0.318 196 0.027 403 0.032 631
{10-4} 0.276 150 0.267 625 0.173785 0.173 945 0.377064 0.378 740

CWM predict total energies (i.e., band energies) with an
error of the order of 0.005 c.u. (or less).

To address this question, both the GPM and the CWM
were used to predict the band energy of the L 1, phase in
the 5 alloys already mentioned. The accuracy of the
GPM or the CWM is defined in a similar fashion as the
energy difference A, that is, as the root of the mean of the
differences between predicted and exact (i.e., obtained
directly with the recursion technique) band energies
squared. Predictions with the GPM were made by substi-
tuting the data in Tables IV and VI into (1) and (10), and
predictions with the CWM were based upon Table II and
(3) and on band-energy data obtained by recursion.

The errors produced by both methods at various levels
of approximation are shown in Table VII. The zeroth
level of the GPM, that is, approximating the band energy
by only the CPA disordered energy, gives an error that
corresponds [per definition, see Eq. (8)] to an averaged
value of the ordering energy. This averaged value of the
ordering energy will be of use in Sec. E.

The first level of the GPM, in which the band energy is
approximated by the sum of the contributions of the
disordered energy (CPA) and the first-neighbor-pair in-
teraction V|, is almost an order of magnitude more accu-
rate than the zeroth approximation. Moreover, at this
level the accuracy is about the same as the energy
difference of competing structures. The GPM with V),
only is therefore already useful in the computation of
phase equilibria.

Adding more (pair) interactions does not produce as
drastic an improvement in the prediction of the band en-
ergy as was realized before. As a matter of fact the re-

TABLE VI. Shell weight factors g, as defined by (7), for a
number of ordered structures. N, refers to the number associat-
ed with each ordered structure.

N, Structure q, 9> qs3 94
1or2 fcc 0 0 0 0
3 L1, -1 e -1 3
4 40 -3 3 1 -3
5 L1, 0 -3 0 3
6 or 7 MoPt, -1 0 2 —1
8 or 9 L1, - 2 -3 3
10 or 11 DO, -3 = 1 1

sults with V| and V, have about the same error as the re-
sults with ¥ —V,. This is not surprising, since we ob-
served in Sec. IIT A, that the pair interactions beyond the
first neighbor do not converge rapidly in the GPM. An
interesting observation is that the GPM in its most accu-
rate form (V| —V,) consistently gives too low values for
the band energy of the ordered phase. We will return to
this observation in Sec. III E. In the majority of cases,
the GPM is just about accurate enough to allow predic-
tion of the ground-state properties, as was concluded
elsewhere too. %

The CWM in the tetrahedron truncation yields gen-
erally less impressive results. Using a variety of basis sets
(1,2,4,8,9, 1,2,6,8,9, and 1,2,5,6,7) generates errors which
are generally several times greater than the energy
differences of competing phases. It appears that the
1,2,4,8,9 basis set performs reasonably well, but that can
be misleading because prediction of other ordered struc-
tures (such as 12 and 13) is much less accurate. When
cluster interactions are computed from a basis set with
more ordered structures than there are interactions (over-
determined basis set), the situation improves. Using an
overdetermined basis set T:1,2,4—13, in which 5 interac-
tions are computed from band energies of 12 structures,
an accuracy is achieved comparable to (but still not as
good as) what is obtained with the GPM. With T:1-13 as
basis set, the L1, band ‘energy is, strictly speaking, not

TABLE VII. Errors in the total energies (in canonical units)
for the L 1, phase predicted with the GPM and CWM at various
levels. “Level” refers to (1) in case of the GPM, the number of
pair interactions considered, and (2) in case of the CWM, the T
or TO truncation and the basis set used to compute the interac-
tions.

Method Level Error (c.u.)
GPM ESPA only 0.0259
GPM V, only 0.0059
GPM V, and V, 0.0045
GPM Vi—V, 0.0043
CWM Ti:1,2,4,8,9 0.0074
CWM T:1,2,6,8,9 0.0317
CWM T:1,2,5,6,7 0.0201
CWM T:1,2,4-13 0.0066
CWM T:1-13 0.0036
.CWM TO:1,2,5-13 0.0137
CWM TO:1,2,4-13 0.0130
CWM TO:1-13 0.0000
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TABLE VIII. Disordered energies (in canonical units) obtained with the CPA and with the CWM

for a number of alloys at equiatomic composition.

N,4—Npg CPA T:1,2,3,8,9 T:1-13 TO:1-13
{6-0} —0.60026 —0.576 591 —0.581777 —0.588117
{7-1} —0.57133 —0.569927 —0.566477 —0.562 657
{8-2} —0.42181 —0.420 105 —0.417 882 —0.414 103
{9-3} —0.14442 —0.136 650 —0.136496 —0.137 650

{10-4} 0.254 61 0.276 262 —0.272 820 0.269 771

predicted since this band energy value was used in the
computation of the interactions. It is no surprise that in
such a case high accuracies are found. Increasing the
number of interactions is not very successful as is demon-
strated by the disappointing accuracies obtained with the
TO truncation. Basis set TO:1,2,5-13, which is not over-
determined, is more accurate than similar tetrahedron
basis sets, but only by a factor of 2 or so. It appears that
the degree of overdetermination of the basis set is very
important since basis sets TO:1,2,5-13 and TO:1,2,4-13
have greater error than those obtained by using a
T:1,2,4-13 basis set. The overdetermined TO:1-13 basis
set does not really predict the L1, band energy, and due
to a peculiarity of the correlation matrix the L1, band
energies are reproduced exactly.

E. Comparison of the disordered energy
from the CPA and from the CWM

In order to examine how the disordered energies from
the CPA and from the CWM compare, computations
with three basis sets have been performed: T:1,2,3,8,9,
T:1-13 and TO:1-13. Table VIII shows that the CWM
consistently gives less negative values for the disordered
energy than the CPA does. This appears curious since
CWM predictions of ordered configurations (L 1, in Sec.
III D) are just as often overestimated as underestimated.
It must be that the CPA systematically yields too nega-
tive values for the disordered energy. This is in agree-
ment with the finding (in Sec. III D) that the GPM in the
most accurate procedure (using V;—V,) consistently
gave too negative values for the band energy. A very
rough estimate of the accuracy of the CPA disordered en-
ergy can be found by comparing the two differences: (1)
The difference between the CWM predicted band energy
of an ordered phase with the actual value, and (2) the
difference between the CWM predicted band energy of a
disordered configuration with the CPA band energy. For
the Ti:1,2,4-13 basis set, one finds that it predicts the
band energy of the L 1, structure with an average error of
0.0066 c.u., whereas the difference averaged of the pre-
dicted disordered energy and the CPA band energy is as
large as 0.0124 c.u. (at equiatomic composition). Assum-
ing that the CWM describes the disordered configuration
with the same accuracy as it describes an ordered
configuration, it follows that the extra error must be in-
curred by the inaccuracy in the CPA disordered energy.
This suggests that at ¢=0.5 the error in the CPA disor-
dered band energy can be of the order of 0.006 c.u.

F. Prediction of ordering energies
and calculation of phase diagrams

An important feature of phase diagrams is the oc-
currence and range of stability of ordered phases. The
temperature range of an ordered phase is determined by
the order-disorder temperature, which in turn is more or
less proportional to the ordering energy of the ordered
phase. Accurate prediction of the ordering energy is
therefore a requirement if a realistic first-principles calcu-
lation of a phase diagram is desired.

In Fig. 4 the ordering energy of the L 1, phase is shown
as a function of the number of d electrons of the B species
(Ng=N 4—6). The energies are computed by 3 methods;
(1) by subtracting the CPA disordered energy from the
total energy of the L1, phase (recursion CPA), (2) with
the GPM using V, to V,, and (3) with the CWM using a
basis set T:1-13. The recursion CPA is probably the
most accurate because the CPA is regarded as very pre-
cise (although not exact). The GPM and the CWM pro-
duce results that correspond well with the recursion
CPA, although the GPM deviations at low Nz and the
CWM digresses at high Ng. It is remarkable that the or-

.00

AEor d (cu)
o

-0.04

-0.06 . ; -

FIG. 4. The ordering energy AE,, of the L1, phase in
canonical units as a function of Ny (Nzy=N 4 —6), computed
with three different methods: (i) the solid line represents the
recursion—CPA, (ii) the dotted line designates the GPM result,
and (iii) the dashed line is computed with the tetrahedron CWM
(T:1-13).



11226

dering energies from the GPM and the CWM are actual-
ly closer to each other than either of them is to the recur-
sion CPA.

In Sec. III D we saw that the ordering energy is typi-
cally of the order of 0.025 c.u. (0.1 eV), which can be
verified by inspection of Fig. 4, so that a precision of
about 0.0025 c.u. in the ordering energy is needed to pre-
dict an order-disorder temperature with an error of 10%.
Neither the GPM nor the CWM appears to attain that
accuracy at the levels of approximation considered in this
study.

Assuming that the ordering energy has about the same
error as the total energy (given in Table VII), it follows
that the most accurate procedures, the GPM with the
first-neighbor-pair interaction only (or with higher-
neighbor-pair interactions) and the CWM with T:1-13 or
TO:1-13 basis sets, are capable of predicting ordering en-
ergies (and hence order-disorder temperatures) with er-
rors of about 20%. Many CWM procedures, however,
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which obtain interactions from smaller basis sets, will not
be nearly as precise. In certain unfortunate cases the er-
ror in the ordering energy is expected to be of the same
order as the ordering energy itself (see in Table VII
T:1,2,5,6,7 and T:1,2,6,8,9).

“To illustrate this point, the phase diagram of the {9-3}
alloy in the tetrahedron approximation of the Cluster
Variation Method has been computed with interactions
obtained from four different procedures: By using (i) the
GPM first-nearest-neighbor effective pair interaction
V$PM and by using the CWM with basis sets, (ii)
T:1,2,3,8,9 and (iid) T:1,2,4,10,11, and (iv) T:1,2,3,9,10
(see Figs. 5(a)-5(d)]. The basis set T:1,2,3,9,10 corre-
sponds to the most stable phases for the {9-3} alloy (see
Table V). CWM interactions employed in this computa-
tion are listed in columns a, b, and ¢ of Table III. Wide
variations in order-disorder temperatures are displayed
by the CWM phase diagrams. Table VII strongly sug-
gests that the T-CWM with a basis set of 5 structures is

0.06

(b)

.03

TEMPERATURE (c.u)
[@]

T T
(o] 0.2 04 06 08 1
CONCENTRATION

(d)

.03

TEMPERATURE (c.u.)
(o]

0.00 T T T
(o] 0.2 04 0.6 0.8 1
CONCENTRATION

FIG. 5. Equilibrium fcc order-disorder phase diagrams for an alloy with N, =9, Nz =3, and §,=0.8, calculated in the tetrahed-
ron approximation of the CVM. The cluster interactions used for diagrams (a), (b), and (c) are indicated in Table IIl, and the
concentration-dependent effective-pair interaction used for (d) is computed with the GPM (the value at ¢=0.5 is listed in Table IV).
the dashed curve indicates the [100] ordering spinodal. The temperature is expressed in canonical units (1 c.u.~52 000 K).
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much less accurate than the GPM with nearest-neighbor
effective-pair interactions only. We expect, therefore,
that the phase diagram obtained with the GPM to be the
most accurate among the four.

The conclusion is that phase diagrams can be comput-
ed with a reasonable accuracy with both methods, with
the stipulation that the CWM can be relied upon only in
case the basis set contains a rather large number of or-
dered structures (at least about ten in this study).

IV. CONCLUSION

The GPM was shown to be a useful method for the
computation of phase diagrams and phase equilibria in
general. The convergence of the GPM effective-pair in-
teractions is generally very good up to the first-nearest-
neighbor level only, but at that level many aspects of
phase equilibrium are already accurately described. Go-
ing beyond the first-nearest-neighbor level is not a
straightforward matter because the more distant pair in-
teractions do not decay rapidly. The convergence breaks
down, for both the GPM and the CWM, in alloys where
the ordering energy is small. Within the GPM, at least a
formal remedy exists, namely by retaining multisite terms
in the perturbative expansion (2) for the ordering ener-
gy. 240

The CWM was found to be a convenient and flexible
method which could be extended easily to take into ac-
count volume (or more general, lattice parameter) depen-
dence. Unfortunately, the CWM exhibited some trouble-
some features.

The terms of the “CWM equation” (3) do exhibit con-
vergence, although at any particular truncation impor-
tant cluster interactions can be overlooked. The CWM
cluster interactions are basis set dependent and hence, in-
teractions will vary within a certain range. For interac-
tions which have large numerical values, such a variation
produces only a small relative change, but for the numer-
ically small interactions this variation can result in
changes of sign. It was found that CWM interactions,
after casting them in a “GPM?” form, differ considerably
from the GPM values. The difference between CWM and
GPM interactions is much larger than the variation be-
tween the CWM interactions computed with different
basis sets.

Regarding the accuracy of predicted total energies and
ordering energies, the GPM was generally found to be su-
perior to the CWM. If a sufficiently large set of ordered
structures (about 10) is used for the computation of the
CWM interactions, the accuracy of the CWM ap-
proaches that obtained with the GPM. It was shown that
using the CWM with tetrahedron truncation with only
five phases in the basis set is not very reliable for comput-
ing accuracy phase diagrams.

We conclude that phase diagrams can be computed
with a reasonable accuracy with both methods, with the
stipulation that the CWM can be relied upon only in case
the basis set contains a rather large number of ordered
structures (at least about ten in this study). Moreover,
our computations suggest that the CPA has a tendency to
result in disordered energies which are too negative.
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We believe these conclusions to be model independent.
Hence, we expect that similar conclusions will be ob-
tained from a forthcoming study based on highly accu-
rate ab initio KKR-CPA-GPM and full-potential linear-
ized augmented-plane-wave (FLAPW) -CWM calcula-
tions. One should point out that although this study was
restricted to binary substitutional transition metal alloys,
similar conclusions can be drawn when the GPM and the
CWM are applied within a tight-binding scheme to the
problem of vacancy nitrogen, carbon ordering in
transition-metal nitrides and carbides. *!

ACKNOWLEDGMENT

This work was performed under the auspices of the
U.S. Department of Energy by the Lawrence Livermore
National Laboratory and by the Lawrence Berkeley Lab-
oratory under Contract No. W-7405-ENG-48. One of
the authors (M.S.) gratefully acknowledges Professor D.
de Fontaine for encouragement and computer resources
during the initial stages of this study.

APPENDIX: INTRODUCING VOLUME DEPENDENCE
IN THE CWM

Total-energy computations for a particular ordered
structure a with cubic symmetry have only one degree of
freedom, the lattice parameter r or, completely
equivalent, the molar volume v. Calculating E ¢, for vari-
ous volumes v reveals that, in the vicinity of the equilibri-
um volume v§, Ef, has a volume dependence that is well
described by a parabola of the form

a a2
Ee (n)=E, (w§)+ B2 LV
2 v§

(A1)
where E,(vy) is the total energy at the equilibrium
volume, and where B represents the bulk modulus.
Hence, by fitting the total-energy values computed at
various volumes to (A1), the equilibrium total energy, the
equilibrium volume (or lattice parameter), and the bulk
modulus are found. The volume dependence can be made
more explicit by rewriting (A1) as

EZ (v)=gl0atelhay 4 e@hay2 (A2)
where

ePe=E% (v§)+ 1B ,

E(l),a: —B¢“ ,
B

E(z):az——a .
205

When the configuration «a is used as a vector index, (A2)
can be expressed in matrix form as

a

E. () 8(0),(1] 8(1),al 8(2),(11
o (0),c (1),a 2),a
E 5 (v) e g et |1
= v
as (0), a4 (1), a4 (2),04 ’
E . (v) € € € v?
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or, in shorthand
EY(v)=¢g-v . (A3)
Combining (A3) and (4) in matrix form then yields

V(v)=§—lEtot(v)=§_’§-v=Ev ,

where
0 (1 ,,(2)
By By My
(1), (2)
X Au‘yz luyz :u‘yz
p=Elg=

§ © (1 @)
My, By, Hy,
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Hence, the volume dependence of the cluster interactions
obeys a simple parabolic expression,

(0) (2),2

V,(0)=p+pi v +uPo (A4)

Volume-dependent interactions like those given by (A4)
can be included easily into CVM free-energy function-
als.?>% Tt is then possible to examine changes in the lat-
tice parameter as a function of composition and state of
order.
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